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Abstract—This paper reviews our recent work on the appli-
cation of a class of techniques known as ADMM (alternating
direction method of multipliers, which belongs to the family
of augmented Lagrangian methods) to several imaging inverse
problems under sparsity-inducing regularization. After reviewing
ADMM, a formulation that allows handling problems with more
than two terms is introduced; this formulation is then applied
to a variety of problems, namely: standard image restora-
tion/reconstruction from linear observations (e.g., compressive
sensing, deconvolution, inpainting) with Gaussian or Poisson
noise, using either analysis or synthesis regularization, and
unconstrained or constrained optimization. We also show how
the proposed framework can be used to address hybrid analysis-
synthesis regularization. In all these cases, the proposed approach
inherits the theoretic convergence guarantees of ADMM and
achieve state-of-the-art speed.

I. INTRODUCTION

Imaging inverse problems abound in the modern world.
Medical imaging (CT, MRI, PET, ultrasound), remote sens-
ing, seismography, non-destructive inspection, digital photog-
raphy/video, astronomy, all involve at their computational
core the solution of imaging inverse problems: they pro-
duce visual representations (images) of an underlying reality
from indirect/imperfect observations. Inverse problems are
typically ill-posed, this meaning that even if the observation
model/operator is perfectly known, the observations do not
uniquely and stably determine the solution. This difficulty is
typically dealt with by seeking some sort of balance between
data fidelity and adherence to a set of properties that the
unknown image is known (or desired) to have. The classical
way to achieve such a balance consists in formulating an
optimization problem (usually convex) where the objective
function includes a term encouraging the estimates to explain
the observed data and another term (the regularizer or prior)
penalizing solutions considered undesirable. Current state of
the art regularizers encourage or enforce sparseness of the
representation of the underlying image with respect to some
redundant frame or dictionary, a feature known to characterize
natural noiseless images (see [15] and the many references
therein). This sparseness may be expressed via the analysis or
synthesis formulations [16], [28], usually via the standard `1
norm or, more recently and with better performance, by taking
into account dependency structures among the representation

coefficients via group norms [26].
A significant fraction of the recent progress in imaging

inverse problems revolved around developing fast algorithms
to address the convex optimization problems referred to in the
previous paragraph. Of course, the literature on this topic is
too large to be comprehensively covered in this short review;
instead, this paper will focus on some current state of the
art algorithms for a variety of imaging inverse problems and
formulations that we have recently developed [1]–[3], [6], [18],
[19]. All those algorithms will be presented as instances of
a common optimization framework, based on the alternating
direction method of multipliers (ADMM) [14], [22], [23].

II. GENERAL PROBLEM FORMULATION

Let Ψ(y,x) be a function that measures how much a
given candidate estimate x deviates from explaining the
data y. This function is typically derived from a model of
how the observations are generated; e.g., in a probabilis-
tic formulation, this would be the negative log-likelihood
(Ψ(y,x) = − log p(y|x)), but other semantics are possible.
Consider also the regularization function Φ(x) that measures
how undesirable a candidate estimate x is; e.g., in a Bayesian
approach, Φ(x) = − log p(x) is the negative log-prior, but
other formulations exist.

There are three standard ways to combine Ψ and Φ into an
optimization problem1, the solution of which strikes a balance
between the two desiderata expressed by these functions:
• Tikhonov regularization: minx Ψ(y,x) + αΦ(x);
• Morozov regularization: minx Φ(x) s. t. Ψ(y,x) ≤δ;
• Ivanov regularization: minx Ψ(y,x) s. t. Φ(x) ≤ τ .

If both Ψ(y,x) and Φ(x) are convex functions of x, these
formulations are equivalent, in principle, in the following
sense: under some mild conditions, for any choice of the
parameter defining one of the problems (α, δ, or τ ), there
is a choice of the other two parameters for which all the
problems have a common solution [32]. However, in practice
it is necessary to choose/adjust these parameters, which is
sometimes more conveniently done in one formulations than
the others. In this paper, we will consider only Tikhonov

1We are following the designations recently proposed by D. Lorenz; see
http://regularize.wordpress.com/2011/05/04/ivanov-regularization/



and Morozov regularization, since most of the derivations
for Morozov regularization apply with minor changes to the
Ivanov counterpart.

In this paper, we will focus only on frame-based regulariza-
tion, which has the following rationale: the frame2 coefficients
of natural noise-free images are sparse. A detailed discussion
of what sparseness exactly means and how it applies to images
is beyond the scope of this paper (see [15], for details and
pointers to a vast literature); we simply use the classical `1
norm (‖v‖1 =

∑
i |vi|) of the frame coefficients as a measure

of (non)-sparseness. There are essentially two formulations of
frame-based `1 regularization [16], [28]:
• In the analysis formulation, x ∈ Rn represents3 the image

itself, and the regularizer is applied to its frame analysis
coefficients, thus it has the form Φ(x) = ‖WTx‖1.
The data term has the form Ψ(y,x) = Υ(y,x), where
Υ(y,x) is a function that measures the degree of dis-
crepancy between image x and the data y.

• In the synthesis formulation, rather than the image it-
self, x ∈ Rk denotes the vector of coefficients of
its frame-based representation Wx. The regularizer is
thus Φ(x) = ‖x‖1 and the data term has the form
Ψ(y,x) = Υ(y,Wx).

If W is an orthonormal basis, the synthesis and analysis for-
mulations are equivalent; however, for redundant frames, the
two formulations yield different results [16]. Hybrid analysis-
synthesis formulations are also possible, as proposed in [19]
(see Section VI).

III. THE ALTERNATING DIRECTION METHOD OF
MULTIPLIERS (ADMM)

A. The Standard ADMM

Consider an unconstrained problem of the form

min
z∈Rd

f1(z) + f2(Gz), (1)

where f1 : Rd → R̄, f2 : Rp → R̄, and G ∈ Rp×d. The
ADMM for this problem is defined as follows:

Algorithm ADMM
1. Set k = 0, choose µ > 0, u0, and d0.
2. repeat
3. zk+1 ∈ argminz f1(z) +

µ
2
‖Gz− uk − dk‖22

4. uk+1 ∈ argminu f2(u) +
µ
2
‖Gzk+1 − u− dk‖22

5. dk+1 ← dk − (Gzk+1 − uk+1)

6. k ← k + 1
7. until stopping criterion is satisfied.

2In a vector space, say Rn, a frame is a collection of vectors {w1, ...,wk}
satisfying A‖x‖2 ≤

∑
j |〈x,wj〉|2 ≤ B‖x‖2, for some 0 < A ≤ B <∞.

If A = B, the frame is called tight, and if A = B = 1 it’s called a Parseval
frame (we will only use Parseval frames). Collecting the frame vectors into
a matrix W ∈ Rn×k , we have WWT = I, with WTW = I also holding
only if the frame is an orthonormal basis (of course with k = n). If n ≥ k,
the frame is called redundant. For a Parseval frame, W is called the synthesis
matrix and WT ∈ Rk×n is the analysis matrix.

3As is commonly done, x is the vector representation of an image, obtained
by a stacking its pixels in lexicographical order.

Convergence of (a generalized version of) ADMM was
shown by Eckstein and Bertsekas (in [14]):

Theorem 1: Consider problem (1), where G ∈ Rp×d has
full column rank and f1 : Rd → R̄ and f2 : Rp → R̄ are
closed, proper, and convex. Consider arbitrary µ > 0, u0,d0 ∈
Rp. Let ηk ≥ 0, k = 0, 1, ..., and ρk ≥ 0, k = 0, 1, ..., be
two sequences such that

∑∞
k=0 ηk < ∞ and

∑∞
k=0 ρk < ∞.

Consider three sequences zk ∈ Rd,uk ∈ Rp, and dk ∈ Rp, for
k = 0, 1, ..., satisfying∥∥∥zk+1 − arg min

z
f1(z) +

µ

2
‖Gz−uk−dk‖22

∥∥∥ ≤ ηk∥∥∥uk+1 − arg min
u
f2(u) +

µ

2
‖Gzk+1−u−dk‖22

∥∥∥ ≤ ρk

dk+1 = dk − (Gzk+1 − uk+1).

Then, if (1) has a solution, say z∗, the sequence {zk} converges
to z∗. If (1) does not have a solution, then at least one of the
sequences {uk} or {dk} diverges.

Notice that the sequences zk, uk and dk defined in the
ADMM algorithm satisfy the conditions in the theorem with
ηk = ρk = 0. However, the theorem shows that even if the
minimizations in lines 3–4 of ADMM are inexactly solved,
convergence still holds if the error sequences are absolutely
summable. This fact is quite relevant in designing instances of
ADMM, when these minimizations lack closed form solutions.
For recent and comprehensive reviews of ADMM and its
relationship with Bregman methods [33], see [7], [17].

B. ADMM for More than Two Functions

Consider a generalization of (1): instead of two functions,
we have J (closed, proper, and convex) functions, i.e.,

min
z∈Rd

J∑
j=1

gj(H
(j) z), (2)

where gj : Rpj → R̄, and H(j) ∈ Rpj×d are arbitrary matrices.
The minimization problem (2) can be written as (1) using the
following correspondences: f1 = 0,

G =
[
(H(1))T · · · (H(J))T

]T
∈ Rp×d, (3)

where p = p1 + · · ·+ pJ , and f2 : Rp×d → R̄ is given by

f2(u) =

J∑
j=1

gj(u
(j)), (4)

where u(j) ∈ Rpj and u = [(u(1))T , . . . , (u(J))T ]T ∈ Rp. In
applying ADMM to the resulting problem, it is convenient to
define the following partitions (where d

(j)
k , u

(j)
k ∈ Rpj ):

dk =
[
(d

(1)
k )T · · · (d

(J)
k )T

]T
, uk =

[
(u

(1)
k )T · · · (u

(J)
k )T

]
.

The fact that f1 = 0 turns step 3 of ADMM into a quadratic
problem, which has a unique solution if G has full column
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rank. Given the block structure of G in (3), the corresponding
solution is (with ζ

(j)
k = u

(j)
k + d

(j)
k ):

arg min
z

∥∥Gz−ζk
∥∥2
2

=

[ J∑
j=1

(H(j))TH(j)

]−1 J∑
j=1

(
H(j)

)T
ζ
(j)
k .

(5)
Furthermore, our particular way of mapping problem (2) into
problem (1) allows decoupling the minimization in Step 4 of
ADMM into a set of J independent ones:

u
(j)
k+1 ← arg min

v∈Rpj
gj(v) +

µ

2

∥∥v − s
(j)
k

∥∥2
2
, (6)

for j = 1, ..., J , where s
(j)
k = H(j)zk+1 − d

(j)
k .

The minimization problem in the right hand side of (6)
defines the so-called Moreau proximity operator of gj/µ

(denoted as proxgj/µ) [10], applied to s
(j)
k , thus

u
(j)
k+1 ← proxgj/µ(s

(j)
k ) ≡ arg min

x

µ

2

∥∥x−s(j)k ∥∥22+gj(x). (7)

For several functions, the corresponding Moreau proximity
operators can be computed exactly in closed form [11]. A
notable case (the only one used in this paper) is the `1 norm
(‖x‖1 =

∑
i |xi|), for which the corresponding proximity

operator is the well-known soft threshold: prox‖·‖γ(v) =
soft(v, γ) = sign(v) � max{|v| − γ, 0}, where sign(·) is
the component-wise application of the sign function, � is the
component-wise product, |v| denotes the vector of absolute
values of the elements of v, and the maximum is computed
in a component-wise fashion.

The computational bottleneck of this instance of ADMM
is the matrix inversion in (5); below, we will see how this
inversion can be very efficiently computed in a variety of
problems of interest.

IV. LINEAR OBSERVATIONS WITH GAUSSIAN NOISE

A. Observation Model

Arguably, the most classical imaging inverse problem in-
volves linear observations with additive white Gaussian noise;
formally, the observed data y is modeled as

y ∼ N (Bx, I) (8)

where B is the matrix representation of the direct operator and
N (µ,M) denotes a Gaussian distribution of mean vector µ
and covariance M (there is no loss of generality in assuming
unit variance, since we assume it is known). In the case of
image deconvolution, under periodic boundary conditions, B
is a block-circulant matrix. Matrix B can also represent other
linear operators, such as tomographic (Radon) projections or
the loss of image pixels (inpainting). Given (8), the natural
choice for the data term is the negative log-likelihood:

Υ(y,x) =
1

2
‖y −Bx‖22. (9)

B. Tikhonov Analysis Regularization
The analysis formulation of Tikhonov regularization yields

the following unconstrained optimization problem:

min
x

1

2
‖y −Bx‖22 + α‖WTx‖1. (10)

Problem (10) has the canonical form (2), with J = 2,
g1(u) = 1

2‖y − u‖22, g2(u) = α‖u‖1, H(1) = B, and
H(2) = WT . To implement the ADMM instance introduced
in Subsection III-B, the necessary building blocks are the
proximity operators of g1 and g2 in (7) and the matrix
inversion appearing in (5). The proximity operators in this
case are simple:

proxg1/µ(s) = arg min
x

µ

2
‖s− x‖22 +

1

2
‖y − x‖22

=
y + µs

1 + µ
; (11)

proxg2/µ(s) = soft(s, 1/µ). (12)

In this case, the matrix inversion in (5) has the form[
BTB + WWT

]−1
=

[
BTB + I

]−1
, (13)

because W is the synthesis matrix of a Parseval frame.
The cost of computing this inverse depends critically on the
structure of B; in the following paragraphs, we will show
how in a variety of problems of interest, this inversion can
be computed with low cost. The algorithm also involves
matrix-vector products involving W and WT , that is, frame
synthesis and analysis operations; we only consider frames
for which fast O(n log n) implementations of these operations
exist [25]. Examples of such frames include undecimated
wavelets, complex wavelets, curvelets, and shearlets. The re-
sulting algorithm was proposed in [1] and was termed SALSA
(split augmented Lagrangian shrinkage algorithm). Finally,
notice that convergence of SALSA is guaranteed by Theorem
1, since matrix G (see (3)), which in this case is equal to
G = [BT W]T , has full column rank, as WT is the analysis
matrix of a Parseval frame.

1) Periodic Deconvolution: If B is a block-circulant matrix
with circulant blocks, representing a periodic convolution, it
can be factorized as

B = UHDU, (14)

where U is the matrix that represents the 2D discrete Fourier
transform (DFT), UH = U−1 is its inverse4 (U is unitary,
i.e., UUH = UHU = I), and D is a diagonal matrix with
the DFT coefficients of the convolution kernel represented by
B. Thus (with BT = BH , since B is a real matrix)[

BTB + I

]−1
= UH

[
|D|2 + I

]−1
U, (15)

where |D|2 is the matrix with the squared absolute values of
the entries of D. Since |D|2+2 I is diagonal, its inversion has
O(n) cost. Products by U and UH can be carried out with
O(n log n) cost using the FFT algorithm.

4The notation AH denotes the conjugate transpose of matrix A.



2) Image Inpainting: In image inpainting problems, the
observed image y results from the loss of some elements of x;
the corresponding m×n (with m < n) binary matrix B is thus
a subset of the rows of an n× n identity matrix. In this case,
BTB is a diagonal matrix with ones and zeros in the diagonal
(with the zeros corresponding to the missing elements and the
ones to the observed elements). Consequently, BTB + I is a
diagonal matrix and its inversion is very inexpensive: O(n).

3) Compressive Fourier Imaging: The final case considered
is that of partial Fourier observations, which is used to
model magnetic resonance imaging (MRI) [24], and has been
the focus of much recent interest due to its connection to
compressed sensing [8], [13]. In this case B = CU, where
C is an m × n (with m < n) binary matrix, similar to the
observation matrix in the inpainting problem, and U is the
DFT matrix. In this case,[

BTB + I

]−1
=

[
UHCTCU + I

]−1
= I−UHCT

[
CUUHCT + I

]−1
CU

= I− 1

2
UHCTCU, (16)

where the second equality results from the application of the
famous Sherman-Morrison-Woodbury (SMW) matrix inver-
sion formula, and the third one from the fact that UUH = I
and CCT = I. Again, the cost of computing and applying
this matrix is dominated by the O(n log n) cost of the FFT
implementations of the products by U and UH .

C. Tikhonov Synthesis Regularization

The synthesis formulation of Tikhonov regularization yields
the following unconstrained optimization problem:

min
x

1

2
‖y −BWx‖22 + α‖x‖1. (17)

The standard approach for solving (17) is the so-called iter-
ative shrinkage/thresholding (IST) algorithm [10], [12], [20].
However, IST is known to be quite slow, specially when B is
poorly conditioned, a fact that has stimulated much research
aimed at developing faster variants [4], [5], [32].

Problem (17) has the canonical form (2), with J = 2,
g1(u) = 1

2‖y − u‖22, g2(u) = α‖u‖1, H(1) = BW, and
H(2) = I. The resulting ADMM algorithm is also termed
SALSA [1]. Notice that convergence of SALSA in this case
is also guaranteed by Theorem 1; matrix G (see (3)), in this
case is equal to G = [(BW)T I]T , which has full column
rank regardless of BW

The proximity operators of these g1 and g2 are as in (11)
and (12); the matrix inversion in (5) has the form[

WTBTBW + I

]−1
= I−WTBT

[
BWWTBT + I

]−1
BW

= I−WTBT

[
BBT + I

]−1
BW, (18)

where the first inequality results from the application of the
SMW matrix inversion formula and the second one from the
fact that W contains a Parseval frame, thus WWT = I. We
are thus left with the problem of inverting matrix BBT + I,
which again depends of the particular problem at hand.

1) Periodic Deconvolution: If B represents a periodic con-
volution, B = UHDU,[

BBT + I

]−1
= UH

[
|D|2 + I

]−1
U, (19)

exactly as in (15). Inserting this equality in (18) yields[
WTBTBW+ I

]−1
= I−WTUHD

[
|D|2 + I

]−1
DUW.

(20)
Since matrix D

[
|D|2 + I

]−1
D is diagonal, the cost of matrix-

vector products by the matrix in (20) is O(n log n), corre-
sponding to FFT implementations of the products by U and
UH and of the fast frame analysis (WT ) and synthesis (W).

2) Image Inpainting: In the image inpainting problem,
BBT = I, thus

(
BBT + I

)−1
= 1

2 I. Inserting this equality
into (18), we obtain[

WTBTBW + I

]−1
= = I− 1

2
WTBTBW, (21)

Since matrix BTB is diagonal, the cost of products by the
matrix in (21) is O(n log n), corresponding to fast frame
analysis (WT ) and synthesis (W) operations.

3) Compressive Fourier Imaging: In the case partial Fourier
observations, B = CU, where, as above, U is the DFT matrix
and C contains a subset of the rows of an identity. In this case,[

BBH + I

]−1
=

[
CUUHCT + I

]−1
=

1

2
I, (22)

again because UUH = I and CCT = I. Inserting this
equality and B = CU into (18) yields[

WTBTBW + I

]−1
= I− 1

2
WTUHCTCUW. (23)

Since CTC is diagonal, the cost of products by the matrix in
(23) is O(n log n), corresponding to fast frame analysis (WT )
and synthesis (W) operations and the FFT implementations of
the products by U and UH .

D. Morozov Analysis Regularization

The analysis formulation of Morozov regularization yields
the following constrained optimization problem:

min
x
‖WTx‖1 subject to

1

2
‖y −Bx‖22 ≤ 2 δ. (24)

Problem (24) can be rewritten as

min
x
‖WTx‖1 + ιB2 δ(y)(Bx), (25)

where ιS(x) is the indicator function of set S, defined as

ιS(x) =

{
0 ⇐ x ∈ S
∞ ⇐ x 6∈ S,



and B2 δ(y) is a ball of radius 2δ centered at y.
Clearly, problem (25) has the canonical form (2), with J =

2, g1(u) = ιB2 δ(y)(u), g2(u) = ‖u‖1, H(1) = B, and H(2) =
WT . The proximity operator of this g1 is

proxg1/µ(s) = arg min
x

µ

2
‖s− x‖22 + ιB2 δ(y)(x)

= PB2 δ(y)(s), (26)

where PS denotes an Euclidean projection on a set S. As
above, proxg2/µ(s) = soft(s, 1/µ).

The matrix inversion in (5) has the exact same form as in
(13), and all the derivations (for the analysis and synthesis
formulations of periodic deconvolution, inpainting, and com-
pressive Fourier imaging) carried out for the Tikhonov regu-
larization also apply in this case. The resulting algorithm was
proposed in [2] and was termed CSALSA (constrained split
augmented Lagrangian shrinkage algorithm). Convergence of
CSALSA results from the same arguments used to show
convergence of SALSA. Finally, notice that the relationship
between the Morozov analysis and synthesis formulations is
exactly the same as that between the Tikhonov counterparts
(the only difference is the replacement of the linear proximity
operator (11) by the projection (26)), so we will abstain from
studying it in detail here.

V. POISSONIAN OBSERVATIONS

A. Observation Model

Another widely used observation model in imaging is

y ∼ P(Bx) (27)

where B is the matrix representation of the linear observation
model and P(λ) denotes the distribution of a Poisson process
of intensity vector λ. Poissonian models are highly relevant
in fields such as astronomical [30], biomedical [27], [31], and
photographic imaging [21]. Given (27), the natural choice for
the data term is the negative log-likelihood,

Υ(y,x) =
∑
i

ξ((Bx)i, yi), (28)

where
ξ(z, y) = z + ιR+

(z)− y log(z+), (29)

where z+ = max{0, z} and 0 log(0) ≡ 0 (see [18] for a
detailed justification of this expression).

B. Tikhonov Analysis and Synthesis Regularization

The analysis formulation of Tikhonov regularization yields
the following unconstrained optimization problem:

min
x

∑
i

ξ((Bx)i, yi) + α‖WTx‖1 + ιRn+(x), (30)

where the indicator ιRn+ is added to impose non-negativity of
the solution, since the elements of x represent Poisson inten-
sities. Problem (30) has the canonical form (2), with J = 3,
g1(u) =

∑
i ξ(ui, yi), g2(u) = α‖u‖1, g3(u) = ιRn+(u),

H(1) = B, H(2) = WT , and H(3) = I. To implement the
ADMM instance introduced in Subsection III-B, the necessary

building blocks are the proximity operators of g1, g2, and
g3 and the matrix inversion appearing in (5). The proximity
operator of g2 is as above: proxg2/µ(s) = soft(s, 1/µ). The
proximity operator of g3 is simply the projection on the first
orthant:

proxg3/µ(s) = max{s, 0}. (31)

Concerning the proximity operator of proxg1 , it can be shown
that it is given (component-wise) by(

proxg1/µ(s)
)
i

=
1

2

si − 1

µ
+

√(
si −

1

µ

)2

+
4 yi
µ

 ,

(32)
Notice that

(
proxg1/µ(s)

)
i

is always non-negative.
All the derivations made in the previous section concerning

the matrix inversion in (5) apply unchanged to this case. The
resulting classof algorithm was proposed in [18] and was
termed PIDAL (Poisson image deconvolution via augmented
Lagrangia). Finally, notice that convergence of PIDAL is
guaranteed by Theorem 1, since matrix G (see (3)), which
in this case is equal to G = [BT W I]T , has full column
rank due to the presence of I.

The ADMM algorithm for the Tikhonov synthesis regular-
ization for linear-Poisson observations (also termed PIDAL in
[18]) is obtained by using the same g1, g2, and g3 functions,
and H(1) = BW, H(2) = I, and H(3) = I. All the derivations
made for linear-Gaussian case concerning the matrix inversion
in (5) also apply unchanged to this case.

Finally, we mention that in the linear-Poisson case, the
Morozov formulation is not as straightforward as in the
Gaussian case. In fact, the required projection (that takes the
place of (26)) doesn’t have a simple closed form solution, and
has to be computed numerically [9].

VI. HYBRID ANALYSIS-SYNTHESIS REGULARIZATION

Although some research has focused on comparing the
analysis and synthesis formulations [16], [28], there is no
consensus on which of the two is to be preferred for a
given problem. This choice can be avoided by combining the
two formulations into a hybrid synthesis-analysis criterion.
Considering linear-Gaussian observations (the application to
the linear-Poisson case is straightforward), one possible hybrid
(Tikhonov-type) formulation is

min
x

1

2
‖y −BW1 x‖22 + α‖x‖1 + β‖WT

2 W1 x‖1, (33)

where W1 and W2 are the synthesis matrices of two Parseval
frames (the same or two different ones). Clearly, problem (33)
can be written in the canonical form (2), with J = 3, g1(u) =
1
2‖y − u‖22, g2(u) = α‖u‖1, g3(u) = β‖u‖1, H(1) = BW1,
H(2) = I, and H(3) = WT

2 W1. The proximity operator of g1
is the linear shrinkage in (11), while those of g2 and g3 are
soft thresholds (12). The final component needed is the matrix
inverse in (5); since W2 W

T
2 = I, we obtain[

WT
1 (BTB + I)W1 + I

]−1
. (34)



Using again the SMW matrix inversion formula, (34) can be
re-written as

I−WT
1

[
(BTB + I)−1 + W1W

T
1

]−1
W1

= I−WT
1

[
(BTB + I)−1 + I

]−1
W1. (35)

It is easy to show that in the three cases studied in Subsection
IV-B (periodic deconvolution, inpainting, compressive Fourier
imaging), the matrices being inverted in (35) are diagonal,
yielding O(n log n) cost for computing and multiplying by
this matrix. Finally, notice that convergence of the resulting
ADMM algorithm is guaranteed by the fact that matrix G =[
(BW1)T I (WT

2 W1)T
]T

VII. CONCLUSION

We have reviewed some of our recent work on using the
alternating direction method of multipliers (ADMM) to solve
a variety of convex optimization problems arising in imaging
inverse problems. We presented an integrated view of several
formulations for different problems, based on an instantiation
of ADMM for sums of two or more functions. The matrix
inversion required by the algorithm was shown to be cheaply
computable in several cases of interest (periodic deconvolu-
tion, inpainting, compressive Fourier observations). We also
showed that the algorithm can be seamlessly used for uncon-
strained (Tikhonov) or constrained (Morozov) regularization,
and for analysis and synthesis formulations. The algorithms
are shown to satisfy sufficient conditions for convergence. We
have not presented any experimental results, since comprehen-
sive experimental assessment of this approach can be found
in [1], [2], [18]; the conclusions of those assessments is that
the ADMM-based algorithms exhibits state-of-the-art speed.
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