
RECENT DEVELOPMENTS IN SPARSE HYPERSPECTRAL UNMIXING

Marian-Daniel Iordache, Antonio Plaza

Department of Computer Science

University of Extremadura
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ABSTRACT

This paper explores the applicability of new sparse algorithms

to perform spectral unmixing of hyperspectral images using

available spectral libraries instead of resorting to well-known

endmember extraction techniques widely available in the lit-

erature. Our main assumption is that it is unlikely to find

pure pixels in real hyperspectral images due to available spa-

tial resolution and mixing phenomena happening at different

scales. The algorithms analyzed in our study rely on different

principles, and their performance is quantitatively assessed

using both simulated and real hyperspectral data sets. The ex-

perimental validation of sparse techniques conducted in this

work indicates promising results of this new approach to at-

tack the spectral unmixing problem in remotely sensed hyper-

spectral images.

Index Terms— Hyperspectral unmixing, sparse regres-

sion, convex optimization, spectral libraries.

1. INTRODUCTION

The wealth of spectral information available from advanced

hyperspectral imaging instruments currently in operation has

opened new perspectives in many application domains [1].

Exploring the information contained in hyperspectral data

sets is a challenging problem, not only from the viewpoint of

inferring information at sub-pixel levels, but also because of

the need to develop robust and fast algorithms. For instance,

the spectral signature of a pixel in a hyperspectral image is

obtained from the reflectance values of that material for a

specific range of wavelengths which can be in the order of

hundreds [2]. If the spatial resolution of the sensor is not

high enough to separate different materials, these can jointly

occupy a single pixel. As a result, most of the pixels of a

hyperspectral image are mixed in nature [3].

To deal with the mixture problem, linear spectral mix-

ture analysis techniques first identify a collection of spectrally

pure constituent spectra, called endmembers in the literature

[4], and then express the measured spectrum of each mixed

pixel as a linear combination of endmembers weighted by

fractions or abundances that indicate the proportion of each

endmember present in the pixel. It should be noted that the

linear mixture model assumes minimal secondary reflections

and/or multiple scattering effects in the data collection pro-

cedure, and hence the measured spectra can be expressed as

a linear combination of the spectral signatures of materials

present in the mixed pixel [3]. Quite opposite, the nonlinear

mixture model assumes that the endmembers form an intimate

mixture inside the respective pixel, so that incident radiation

interacts with more than one component and is affected by

multiple scattering effects [5]. Nonlinear unmixing generally

requires prior knowledge about object geometry and physical

properties of the observed objects. In this work we will focus

exclusively on the linear mixture model due to its computa-

tional tractability and flexibility in different applications.

In this work, we adopt a novel semi-supervised approach

to linear spectral unmixing which relies on the increas-

ing availability of spectral libraries of materials measured

on the ground, for instance, using advanced field spectro-

radiometers. Our main assumption is that mixed pixels can

be expressed in the form of linear combinations of a number

of pure spectral signatures known in advance and available

in a library. When the unmixing problem is approached us-

ing spectral libraries, the abundance estimation process no

longer depends on the availability of pure spectral signatures

in the input data nor on the capacity of a certain endmember

extraction algorithm to identify such pure signatures. Quite

opposite, the procedure is reduced to finding the optimal

subset of signatures in the library that can best model each

mixed pixel in the scene. Despite the appeal of this semi-

supervised approach to spectral unmixing, it is subjected to

several potential drawbacks:

1. One risk in using library of endmembers is that these

spectra are rarely acquired under the same conditions

as the airborne data. Image endmembers have the ad-

vantage of being collected at the same scale as the data

and can, thus, be more easily associated with features

on the scene. However, such image endmembers may

not always be present in the input data. In this work,

we rely on the use of advanced atmospheric correction

algorithms which convert the input hyperspectral data

from at-sensor radiance to reflectance units.

2. Most importantly, if a large spectral library is used, it



is likely that the number of spectral endmembers con-

tributing to a mixed pixel, will be generally very small

compared with the total number of spectra in the li-

brary. In this case, the abundance vector is sparse and

its estimation can benefit from the use of sparse regres-

sion techniques based on sparsity-inducing regulariz-

ers.

3. Finally, since the number of endmembers participating

in a mixed pixel is usually very small compared with

the (ever-growing) dimensionality –and availability– of

spectral libraries, techniques able to perform sparse re-

gression and convex optimization in computationally

efficient fashion are also required.

In this paper, we specifically address the problem of spar-

sity when unmixing hyperspectral data sets using spectral li-

braries, and further provide a quantitative and comparative

assessment of several available and new convex optimization

and sparse regression algorithms which can be used for this

purpose.

2. THE SPARSE UNMIXING APPROACH

A semi-supervised approach is proposed to look for the end-

members in a spectral library containing spectra of many ma-

terials, with only a few of them present in a pixel. This means

that the vector of fractional abundances is sparse. This is the

central point of sparse unmixing techniques: they enforce the

sparsity of the solution explicitly, as opposed to non-sparse

techniques which aim at finding the correct set of endmem-

bers from the spectral library but do not enforce sparseness

explicitly. Examples of non-sparse techniques can be found

in [4].

In this work, two different formulations of the sparse un-

mixing problem are presented and discussed. Specifically, we

show some of the characteristics of the unmixing problem that

limit the performance of these techniques and their applica-

bility in simulated and real environments. The sparse tech-

niques will be exemplified using the following algorithms:

Constrained Sparse Unmixing algorithm via variable Splitting

and Augmented Lagrangian - CSUnSAL, Sparse Unmixing

algorithm via variable Splitting and Augmented Lagrangian -

SUnSAL, and Two-Step Iterative Shrinking/Thresholding al-

gorithm - TwIST [6]. CSUnSAL corresponds to the first for-

mulation of the sparse unmixing problem, while TwIST and

SUnSAL correspond to the second one. The two formula-

tions are further explained below. CSUnSAL and SUnSAL

are, respectively, variants of the algorithms presented in [7]

and [8, 9], tailored to hyperspectral data. In all cases, we rely

on a linear mixing model, expressed for one pixel in compact

notation as follows:

r = Mx + n (1)

Considering that the sensor acquires the information in L
bands and there are q endmembers present in the pixel, r is an

L-by-1 column vector representing the measured spectrum of

the pixel, M is an L-by-q matrix called the mixing matrix (the

spectral signatures of the endmembers), x is a q-by-1 column-

vector (the respective fractional abundances of the endmem-

bers) and n is an L-by-1 column-vector collecting the errors

affecting the measurements. If the spectral library S contains

p signatures (so it is an L-by-p matrix), the model in Eq. (1)

can be reformulated as follows:

r = Sf + n (2)

In Eq. (2), we changed the notation of the vector collect-

ing the fractional abundances, as the new vector f has p com-

ponents, of which only q are non-zero. In a practical scene, it

is true that q << p and, by consequence, f is a sparse vec-

tor. There are different techniques commonly used in order

to impose the sparsity of the solution in the hyperspectral un-

mixing problem. The problem is initially formulated as an

optimization problem as follows:

min
f

‖f‖0 subject to S f = R (3)

where ||f||0 denotes the l0 norm of f , which simply counts the

non-zero components in f . The optimization problem shown

in Eq. (3) offers the possibility to compute the exact solution

of the system if the observation is not affected by errors. Un-

fortunately, it represents a (NP-hard [10]) non-convex prob-

lem, which is very difficult to solve, and there are errors af-

fecting the observed spectrum due to the electronic noise and

to the speed of the sensor flying at high altitudes. As it was

shown in [11], under certain conditions the l0 norm can be

replaced by the l1 norm. We can implement now a relaxation

of the problem stated in Eq. (3) as follows:

min
f

‖f‖1 subject to ‖Sf − R‖2 ≤ δ. (4)

The optimization problem in Eq. (4) is a convex, which is

easier to solve. This is the first formulation of the sparse un-

mixing problem that we take into account in this paper and

it is solved using the CSUnSAL algorithm. The same algo-

rithm will be used to solve the same problem, but taking into

account the abundance non-negativity (ANC) constraint:

min
f

‖f‖1 subject to ‖Sf − R‖2 ≤ δ, f ≥ 0. (5)

The second formulation of the sparse unmixing problem is

expressed under the form of an l2 − l1 norm minimization

problem. This form results from Eq. (4) by bringing the con-

straint inside the objective function:

min
f

1

2
‖Sf − R‖2

2
+ λ‖f‖1 (6)



where the first term of the objective function measures the

lack of fitness of a candidate to the solution and the second

terms measures the lack of sparsity. The scalar parameter

λ has the role of weighting the two terms. This problem is

solved, in this paper, by TwIST algorithm. SUnSAL is used

to solve the same objective function 6, in which we enforce

the ANC constraint:

min
f

1

2
‖Sf − R‖2

2
+ λ‖f‖1 subject to f ≥ 0. (7)

3. EXPERIMENTAL RESULTS

3.1. Simulated data

In order to evaluate the performances of sparse unmixing al-

gorithms, in this subsection we describe the results obtained

after applying them to simulated hyperspectral data. The

spectral library S used in experiments was generated using

our own spectral library generator tool, which allows an user

to create a spectral library starting from the ASTER library1,

a compilation of over 2400 spectra of natural and man made

materials. Specifically, we generated a library which con-

tains 230 members, each of which has the reflectance values

measured for 224 spectral bands distributed uniformly in the

interval 3-10µm. Using the library S, four hyperspectral data

sets were generated, each of them containing 200 samples.

The term n in (1), in real applications, is highly corre-

lated because it is mostly due to modeling errors and the spec-

tra are of of low-pass type with respect to the wavelength.

Accordingly, we considered, in experiments, that term n re-

sults from low- pass filtering independent and identically dis-

tributed (iid) Gaussian noise. We have used a normalized cut-

of frequency of 10π/L. The amplitude of the noise was cho-

sen such that the signal-to-noise-ratio (SNR ≡ ||Sf ||2/||n||2)

takes values: ∞ (noiseless observation), 35dB, 30dB, 25dB

and 20dB.

We consider four data sets corresponding to sparsities

of the fractional abundances x (i.e., the number of non-zero

components of x) of 5, 10, 15 and 20 members, respectively.

We stress that in hyperspectral applications, the sparsity of

fractional abundances is small, most likely less of equal than

5.

Before describing our obtained results, it is important to

emphasize that the problem that we are solving is difficult,

first of all, because of the characteristics of the considered

spectral library. Specifically, it has been shown that the qual-

ity of the reconstruction of a spectral signature using the linear

mixture model (which can be measured, e.g., using the recon-

struction signal-to-noise ratio RSNR ≡ E[f2]/(E[f − f̂ ]),

where E[·] stands for mean value and f̂ is the computed fac-

tional abundances) decreases when the mutual coherence of

the library, µ(S), approaches 1 [11]. A simple test shows

1Available online: http://speclib.jpl.nasa.gov

that, in our case, the mutual coherence of the considered li-

brary is µ(S) ≈ 1; this characteristic of S is a good indicator

of the high difficulty of this problem. The fact hyperspectral

fractional abundances are very sparse attenuates, however, the

hardness of the sparse regression problem at hand.

Table 1 shows the RSNR obtained for different sparse

unmixing methods with libraries using different number of

members (the parameter settings used to arrive to these results

will be detailed at the final version of the paper), measured in

dBs, i.e RSNR(dB) ≡ 10 log
10

(RSNR).
From Table 1, it can be observed that, for noiseless data,

all the algorithms have good performances, CSUNSAL being

the most efficient. As expected, the accuracy of the results

decreases at the same with the decreasing SNR, for all the

methods. For the given problem, CSUnSAL returns the most

accurate results in all the situations, but, from the experience

of the authors, it can not be claimed to be “better” than SUn-

SAL in general, as SUnSAL attains comparable (and some-

times better) performances as CSUnSAL when the noise af-

fecting the measurements is white. CSUNSAL is, also, the

method which has the most abrupt degradation of the rela-

tive error when the level of noise increases. SUNsAL attains

better accuracies of the results than TwIST when the level of

the noise is not very high, but TwIST performs better than

SUnSAL in the later case, although, in its case, the ANC con-

straint is not enforced. All the methods loose accuracy when

the number of endmembers present in the mixture increases,

as expected. However, at least in the absence of noise, we still

obtain good sparse regressions for fractional abundances with

up to 20 non-zero components, what is more than enough in

most hyperspectral applications.

Unmixing results obtained in a real scene using the sparse

approach in the context of predefined spectral library are

shown in the following subsection.

3.2. Experimental results with real data

This subsection exemplifies the practical applicability of the

sparse unmixing algorithms (represented here by SUnSAL

(ANC)), for real data. The scene used in experiments is the

well-known AVIRIS Cuprite data set, available online in re-

flectance units2. The portion used in experiments corresponds

to a 350×350-pixel subset, comprising 224 spectral bands be-

tween 0.4 and 2.5 m, with nominal spectral resolution of 10

nm. Prior to the analysis, bands 1–2, 105–115, 150–170, and

223–224 were removed due to water absorption and low SNR

in those bands, leaving a total of 188 spectral bands.

Fig. 1 shows abundance maps obtained for several materi-

als present in the scene using a hyperspectral library contain-

ing 498 pure signatures of minerals selected from the USGS

splib063 library, released in September 2007. Different com-

parisons to reference maps available from USGS reveal that

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3http://speclab.cr.usgs.gov/spectral.lib06



Table 1. RSNR obtained by different sparse unmixing methods with simulated hyperspectral mixtures.

Members SNR CSUnSAL (unconstrained) CSUnSAL (ANC) TwIST (unconstrained) SUnSAL (ANC)
∞ 26.69 30.91 7.64 9.97

35dB 17.05 16.23 7.54 8.56
5 30dB 13.75 11.82 6.49 6.70

25dB 7.78 7.39 6.00 4.66
20dB -0.36 2.27 4.64 1.00
∞ 22.70 27.08 5.78 6.95

35dB 16.70 14.68 5.56 5.92
10 30dB 11.29 9.42 5.20 4.80

25dB 5.35 5.13 5.04 2.89
20dB -2.45 0.05 3.39 -0.63
∞ 20.68 24.45 4.82 5.57

35dB 14.40 13.03 4.4229 5.0721
15 30dB 10.40 8.70 4.14 4.31

25dB 4.23 4.09 3.58 2.12
20dB -3.70 -1.34 2.56 -1.89
∞ 16.92 18.80 4.16 4.62

35dB 12.83 11.54 3.49 3.79
20 30dB 8.41 6.88 3.34 2.99

25dB 3.89 3.37 2.81 1.79
20dB -3.74 -1.84 1.69 -2.286
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Fig. 1. Abundance maps obtained by SUnSAL (ANC) for the

Cuprite scene.

the obtained abundance maps provide accurate estimates of

mineral distributions in the AVIRIS Cuprite mining district.
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