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Abstract. This paper extends and generalizes the Bayesian semi-

supervised segmentation algorithm [1] for oil spill detection using SAR 

images. In the base algorithm on which we build on, the data term is 

modeled by a finite mixture of Gamma distributions. The prior is an M-

level logistic Markov Random Field enforcing local continuity in a 

statistical sense. The methodology proposed in [1] assumes two classes 

and known smoothness parameter. The present work removes these 

restrictions. The smoothness parameter controlling the degree of 

homogeneity imposed on the scene is automatically estimated and the 

number of used classes is optional. Semi-automatic estimation of the 

class parameters is also implemented. The maximum a posteriori 

(MAP) segmentation is efficiently computed via the α-expansion 

algorithm [2], a recent graph-cut technique, The effectiveness of the 

proposed approach is illustrated with simulated (Gaussian or Gamma 

data term and M-level logistic classes)  and real ERS data. 

1   Introduction 

Segmentation of dark patches in SAR images is an important step in any oil spill 

detection system and many different approaches to the problem have been proposed 

so far. These approaches are buit on off-the-shelf segmentation algorithms such as 

‘Adaptive Image Thresholding’, ‘Hysteresis Thresholding’, ‘Edge Detection’ (see [3] 

and references therein),  and entropy based methods like the ‘Maximum Descriptive 

Length’ technique [4]. 

Work  [1] introduces a Bayesian segmentation algorithm where the observed data (oil 

and water) data  is modeled by a  finite Gamma mixture, with a given predefined 

number of components. To estimate the parameters of the class conditional densities, 

an expectation maximization (EM) algorithm was developed. The used prior is a 

second order Markov Random Field (MRF), more specifically an isotropic Ising 

Model. To estimate the labels, the posterior distribution is maximized (MAP) via 

graph-cut techniques [5]. 

Notwithstanding the promising results provided by the above described segmentation 

method, it has restrictions that the present work overcomes. The first restriction 
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concerns the number of classes that is limited to two. The second restriction concerns 

the smoothness parameter that has to be manually tuned. Furthermore, the class 

parameters estimation process is completely supervised, requiring an interaction with 

the user in order to manually select a region containing oil pixels and a region 

containing water pixels. 

In the present work we generalize [1] by: (1) extending the number of segmented 

classes to a predefined optional number c, (2) automatically estimating the 

homogeneity parameter β in the MRF, and (3) automatically estimating the class 

parameters. 

To extend [1] to an optional number of classes, the so-called α-expansion algorithm 

[2] is implemented. In order to estimate the smoothness parameter, two different 

techniques are tested, namely the Least Squares (LS) Fit and the Coding Method (CD) 

[6]. A first attempt is carried out to implement unsupervised segmentation using a 

semi-supervised initialization. 

To evaluate the accuracy of the algorithm, different simulations are carried out. The 

simulations address both the Gamma and the Gaussian data model. For the real 

images, the Gamma mixture data model proposed in [1] is adopted to model the 

observed SAR intensity values. 

The article is organized as follows: Section 2 gives a short overview of the original 

algorithm that builds the base to this work; Section 3 describes, in pseudo-code, the 

main steps of the proposed segmentation methods; Section 4 presents simulation and 

real results, and finally Section 5 contains concluding and future work remarks.    

2   Overview of Base Algorithm 

The algorithm proposed in [1] addresses the problem of finding an estimation f̂  of a 

labeling for a set of N pixels P := {1, 2, …, N}. When c possible classes are available, 

a labeling f := {f1,f2,…fN} is a mapping from P to L, where L := {l1,l2,…,lc} is the set 

of discrete values that the pixels may take. The vector y:={y1,y2,…yN} stands for the 

observed data, corresponding to the image intensity measurements at the pixels.  

In order to infer f̂ , we adopt the MAP criterion. This amounts to maximize the 

posterior density of the labeling given the observed data. As described in [1] in detail, 

this is equivalent to minimizing the objective function 
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where p, j ∈ P are pixel locations, pE  is the negative likelihood given by 
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where p(yp|fp) is the conditional density of yp given fp, called data model or sensor 

function, and jpE ,  is the prior clique potential associated with the the  clique {p,j} 



containing the pair of neighboring pixels p and j  [6]. Since we have adopted an MLL, 

we have 
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where δ is the discrete delta function and β controls the degree of homogeneity we 

wish to impose on the scene. Note that 

 

)(rsnrNeighbou),(
,

fffE jp

jp

jp β−=∑
<

,   (4) 

 

with 

,)()(rsnrNeighbou
1

∑
=

=
N

i

ifnf    (5) 

 

where n(fi) is the number of neighbors in neighborhood Ni having the same label as 

pixel i. 

As demonstrated in [1], E(f1,…fN) is graph representable for c = 2 and in these 

circumstances, the global minimum of the objective function may be computed by 

applying the graph-cut algorithm described in [5]. 

3   Proposed Segmentation Methods 

In the next Sections we propose supervised and unsupervised approaches to the 

segmentation. The first approach assumes known class parameters, whereas the 

second does not. In both methods, the smoothness parameter is assumed unknown.  

3.1 Supervised Segmentation with Beta Unknown 

In the first segmentation method, we  adopt iterative labeling-estimation, with the two 

steps being performed alternately, inspired by the  EM algorithm [6].  The initial 

values for the labeling and the parameter estimator are optional and don’t seem to 

have a relevant influence on the final performance. Since the class parameters are 

assumed known, they are omitted from the pseudo-code. 

 

Algorithm-1: 
1. Start with an arbitrary initial labeling f 0

 and 

arbitrary parameter β̂ =β
0 

2.  While δβ ≤∆ ˆ  or nrIterations < ItMaxNr do 

 2.1 Find f̂ = α_Expansion( f 0
, β̂ ) 

 2.2 Find β̂ =LS_Estimation( f̂ )or CodingMethod( f̂ ) 

3. Return ( f̂ , β̂ ) 



3.2 Unsupervised Segmentation with Semi-Supervised Initialization 

In this second method, we have also adopted iterative labeling-estimation as in 

‘Algorithm-1’, but now the class parameters are also iteratively estimated. The 

initialization of the class parameters is performed in a semi-automatic way: the user 

provides a region of pixels corresponding to one (for example the most frequent) of 

the classes (class1). This region is then used to estimate the ML (Maximum 

Likelihood) parameters of the class1 distribution. In a second step, pixels are 

clustered in two sets, class1 and not-class1, by applying a simple threshold to the 

estimated distribution. Then, the parameters of the remaining classes are initialized by 

applying an EM mixture estimation procedure to the pixels clustered in the set not-

class1.  

 

Algorithm-2: 

1. Start with an arbitrary parameter β̂ =β
0 

and arbitrary initial labeling f 0
 

2. Provide initial class parameter estimations θ̂ =θ
0 
 

3. Provide initial f̂  = α_Expansion( f 0
,β

0,
θ
0
) 

4. While δβ ≤∆ ˆ  or nrIterations < ItMaxNr do 

 4.1 Find θ̂ = ML_Estimation( f̂ ) 

 4.2 Find f̂ = α_Expansion( f 0
, β̂ ,θ̂ ) 

 4.3 Find β̂ =LS_Estimation( f̂ ,θ̂ )or CodingMethod( f̂ ,θ̂ ) 

5. Return ( f̂ , β̂ ,θ̂ ) 

4   Results: Simulated and Real Images 

This section presents results for simulated and for real SAR images. In the first case, 

different test scenarios are provided, corresponding to Gaussian and Gamma data 

terms. Although simulations have been restricted to one Gamma mode per class, the 

developed procedure also works with Gamma mixtures as developed in [1]. 

4.1 Simulated Images  

Three different test scenarios have been adopted: 

 

Scenario 1: the simulated image contains three classes generated by an MLL Markov-

Gibs distribution corrupted with Gaussian noise. Segmentation is performed applying 

“Algorithm-1”, described in Section 3.1. The parameter estimation is performed using 

the LS method and the class parameters are known (same values as used for the 

simulation). The test is performed for five different images, corresponding to an 

increasing difficulty grade of segmentation. Each test is run three times and the mean 



values of the overall accuracies (OA) corresponding the percentage of correct label 

are computed. For comparison, the estimation of β is performed in a supervised way, 

applying the LS method to the ‘ground-truth’ image and running the α-expansion 

algorithm once with the estimated β.  

Scenario 2: here a simulated image of three classes corrupted by Gamma noise is 

used. The ground-truth is ‘hand-made’ and contains structures resembling those that 

may be found in oil-spill scenarios. The same algorithm as in ‘Scenario 1’ is used, 

both with the LS and the CD estimation methods. The unsupervised segmentation is 

compared with the results given by the best achievable segmentation using α-

expansion, corresponding to tuning the β parameter manually. 

Scenario 3: here, for the same simulated image used in scenario 1, the class 

parameters estimation is also incorporated in the algorithm, by applying ‘Algorithm-

2’, described in Section 3.2. Initial class parameters estimation is provided by 

performing a one-class supervised estimation based on one-class clustering. 

 

Scenario 1: To assess the segmentation performance, we compare the OA with that 

obtained without the MRF prior, i.e., β=0. For Gaussian classes with equal standard 

deviation σ, means equally D-spaced, we have 
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where erfc(.) is the complementary error function and c is the number of classes. 

Figure 1 shows the OA’s obtained by segmenting the image using ‘Algorithm-1’ 

(legend: unsupervised) and using the supervised estimated beta value (legend: 

supervised) against the values provided by (9). 

 

 

Fig. 1. On the left: overall accuracies against OAMAP(β=0). On the right: upper image is the 

MLL ground-truth with 3 classes; lower image are the simulated intensity values. 

Scenario 2: In Figure 2 and 3 as in Scenario 1 but the OA(β=0)  is now estimated by 

running the algorithm with β=0, since there is no close expression for it.  



 
 

Fig. 2. Upper image: OA’s obtained by unsupervised segmentation using LS and best 

achievable results with manually tuned β. Lower image: LS estimated β and best β. 

 

 
 

Fig. 3. Overall accuracies obtained by unsupervised segmentation using CD and best 

achievable results with manually tuned α-expansion. 

Figure 2 shows the results obtained with the LS method and Figure 3 the results 

obtained with the CD method. Figure 4 displays an example of simulated image and 

corresponding segmentation results. 

Scenario 3: By applying ‘Algorithm-2’ to an MLL image like the one adopted in 

Scenario 1, for a OA(β=0) of 85.9% given by expression (9), the achieved OA value 

is 94.5% using LS estimation. The Best achievable OA is 99.1%. 



.  

              (a) 

 
             (b)          (c)             (d) 

Fig. 4. (a) Density functions used to generate the simulated image with superimposed 

histogram of generated data set. (b) Ground-truth (c) Simulated image (d) Segmentation result 

using ‘Algorithm-1’: unsupervised LS estimated β = 0.4213, OA = 95.3%. The best achievable 

OA for this image was determined to be 95.4% . The OA for β = 0 is 83.2%. 

4.2 Real Images  

The ‘Algorithm-1’ has been applied to a real ERS-1 SAR image fragment. The scene 

(frame 2367, orbit 17211) containing the fragment has been acquired on 30 October 

1994, and covers several oil platforms in the Norwegian and British sector of the 

North Sea. The image has been radiometric calibrated and corrected for the incidence 

angle effect. We have assigned a class to ‘oil’, a class to ‘water’ and a class to 

‘platform’ and learned the class parameters using the supervised method described in 

[1]. Figure 6 displays the obtained results after applying ‘Algorithm-1’.  

 

   
(a)                         (b)                       (c) 

Fig. 6. (a) ERS image: intensity values (b) Segmentation with LS (c) Segmentation with CD. 



6   Conclusions 

The first results of applying the proposed methodology to simulated images with 

Gaussian and Gamma data models and to real ERS SAR data are promising. With 

‘Algorithm-1’ higher OA accuracies have been achieved. The analysis of the resulting 

OA plots for Gamma data exhibits a maximum around circa OAno prior= 85%. This 

value corresponds to a value for the estimated β equal to the best β. At this point the 

add-on value provided by introducing a prior into the segmentation starts to decrease. 

Regarding ‘Algorithm-2’, the adopted methodology seems to be adequate but needs 

further assessment. In the example given in Scenario 3, the inclusion of the parameter 

estimation into the segmentation procedure only reduces the OA from 97,3% to 

94,5%. By applying ‘Algorithm-1’ to a real ERS image, we have been able to 

successful segment a platform of reduced size, the water and the oil. Hereby, the CD 

estimation method seems to provide a better segmentation than the LS method, 

contrarily to what happened for simulated images, where the LS method provided 

slightly better results. 

These are preliminary results and more tests, with more trials per test, are required to 

fully determine the accuracy of the proposed methods..  
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