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This paper presents a novel technique to estimate the initial

coordinates and velocity vector of moving targets, including

those with velocities above the Nyquist limit, using a single

synthetic aperture radar (SAR) sensor without increasing the

pulse repetition frequency (PRF). The basic reasoning is that,

although the returned echoes may be undersampled in the

azimuth direction, their phase and amplitude are informative with

respect to the moving target trajectory parameters. Therefore, the

so-called blind angle ambiguity, inherent to systems using a single

SAR sensor, is overcome. The proposed method samples the data

in the spatial domain, along the signature curve which depends on

the moving target trajectory parameters. The resulting algorithm

is a highly efficient (from the computational point of view)

1D matched filter. The effectiveness of the proposed scheme is

illustrated using simulated SAR data and real data from the

MSTAR public release data set, corresponding to a static SAR

scene and a static BTR-60 with simulated motion.
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I. INTRODUCTION

The synthetic aperture radar (SAR) community
is presently researching, among other topics,
the detection and imaging of moving targets for
surveillance purposes. Many applications aim at
determining the position and the velocity of moving
targets. The purpose may be, for example, to find
traffic jams [1] or to detect ships in the sea [2]. Other
civil applications include oil pollution monitoring
and surface currents measurement [3]. Some military
applications are also oriented towards detecting and
recognizing moving targets [4]. The purpose may be
to intercept targets threatening facilities or resources.
In other scenarios the purpose may be to keep the
moving objects safely apart from each other as they
navigate, thus requiring accurate detection, high
resolution imaging, and precise kinematics estimation.
This paper, which elaborates on ideas presented

in [5], addresses the design of a processing scheme
aiming at trajectory estimation of multiple moving
objects in SAR, using a single sensor. When the data
is acquired using a single SAR sensor, it is generally
accepted that: 1) the azimuth position uncertainty
(also termed blindangle ambiguity) cannot be solved
[6, ch. 6], [7], and 2) the maximum unambiguous
moving target velocity is bounded by the Nyquist
velocity imposed by the pulse repetition frequency
(PRF) [7, 8].
Recently, the authors have shown in [9], [10],

and [11] that a proper processing of the phase
and amplitude of the received signal overcomes
the aforementioned limitations. In [10], we have
already presented an accurate method to detect and
to estimate the initial coordinates and velocity vector
(assuming no acceleration and no rotational motion)
of moving targets using a single SAR sensor. Herein,
we present a novel technique much lighter from the
computational point of view, although less accurate, to
estimate the initial coordinates and velocity vector of
a moving target using data from a single SAR sensor.
In fact, the primarily aim of the work presented here
is moving target trajectory estimation and not moving
target detection. Several methods are published in the
recent literature to efficiently deal with the detection
problem such as [12]. Nevertheless, we herein adopt a
simple technique that works reasonably well, namely,
for illustration purposes.
The detection and estimation scheme proposed

in [10] uses a matched filtering operation, depending
on the moving target parameters, that simultaneously
copes with range migration and compresses
two-dimensional signatures into one-dimensional
ones without degrading the slant-range resolution.
The resulting methodology simultaneously detects
moving targets and estimate their motion parameters.
We focus here mainly on the estimation side of the
problem, presenting a more efficient technique, from
the computational point of view, when compared
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with the estimation procedure presented in [10].
The algorithm samples the spatial domain and, in
contrast with the previous approach, the moving target
signature is not straightened. Instead, it processes
data along the signature curve that depends on
the moving target trajectory parameters. To keep
the computational requirements low in the global
scheme, the estimation algorithm is guided by a
simple moving target detection algorithm as referred
above. Therefore, the estimation algorithm only
processes data belonging to confined regions of
the target area. The detection of the moving targets
consists in first applying a high-pass filter in the
2D frequency domain with stop-band adjusted to
filter out static targets, and then performing imaging
using static ground parameters. The resulting image
displays the defocused and misplaced moving targets
images, even if their slant-range velocity is a multiple
of the Nyquist velocity, as far as their respective
2D spectrum exhibits a nonnegligible skew. The
estimation algorithm uses both the phase and the
amplitude information of each moving target signature
and is able to retrieve all the moving target trajectory
parameters using a single SAR sensor. The obtained
accuracy is high, provided that the clutter spectra does
not overlap completely that of the target. Otherwise,
the results are meaningful only if the signal-to-clutter
ratio (SCR) is higher than 10 dB.
The paper is organized as follows. In Section II we

write the received signal, after pulse compression, in
the spatial domain, parameterized by the trajectory
parameters. By assuming that the moving target
signature is immersed in white noise, we derive
a maximum likelihood (ML) estimator for the
moving target trajectory parameters. In Section III,
the proposed moving target trajectory estimation
algorithm is described and its computational
complexity is analyzed. In Section IV, we present
results using simulated SAR data and real data from
the MSTAR public release data set, corresponding to a
static SAR scene and a static BTR-60 with simulated
motion.

II. ESTIMATION SCENARIO

Fig. 1 illustrates a moving target with slant-range
and cross-range coordinates (x0,y0), when the platform
is at position u= 0, and velocity (vx,vy) = (¹vR,bvR)
defined in the slant-plane (x,y); symbol vR denotes
the platform speed and (¹,b) is the target relative
velocity with respect to the radar.1 Let us define
(x0 ´ x0¡¹u0, y0 ´ u0) as the moving target
coordinates when the radar platform is broadside to
the target. When the radar is positioned at coordinate
y = u, the corresponding received echo from a moving

1Velocities vx and vy are directed opposite to x and y.

Fig. 1. SAR slant-plane. At cross-range position u0, radar is
broadside to moving target.

target, after quadrature demodulation and pulse
compression, is given by

s(x,u)´ a(y0¡ ºu)pc[x¡ r(u)]fme¡j2k0r(u) (1)

where x= ct=2, a(¢) is the two-way antenna radiation
pattern, º ´ 1+ b, pc(x) is the compressed transmitted
pulse in the slant-range direction, fm is the moving
target complex reflectivity, k0 ´ 2¼=¸0 is the
wavenumber at wavelength ¸0, and r(u) is the distance
between the platform and the moving target, given by

r(u)´
q
(x0¡¹u)2 + (y0¡ ºu)2: (2)

It is assumed that a(u) does not depend2 on x, and that
there are no pointing errors of the antenna.
Let us define u0 ´ u¡ u0 such that u0 = 0

corresponds to the position of the radar when the
moving target is broadside to it. Therefore, defining
r0(u0)´ r(u0+ u0) and noting that y0¡ ºu0 = 0, we
obtain

r0(u0) =
p
(x0 ¡¹u0)2 + (¡ºu0)2: (3)

Approximating r0(u0) by a series expansion about
u0 = 0 and retaining only the terms through the
quadratic, results

r0(u0)¼ x0 ¡¹u0+ º2

2x0
u02| {z }

Ã(u0)

(4)

valid for ju0j ¿ x0. Assume that the range migration
Ã(u0) is known. We can then acquire data along
coordinates s0(x,u0)´ s[x= x0+Ã(u0),u0+ u0], leading
to

s0(x,u0) = a(¡ºu0)pc(0)fme¡j2k0r
0(u0): (5)

Since pc(³) exhibits high resolution about ³ = 0, then
s0(x,u0) becomes clustered about x= x0+Ã(u0), for
all u0 in the support of a(¢). Therefore, we can form
a vector containing the signature samples echoed by
the moving target.

2As shown in [10, eq. (21)], the range dependence of the antenna
pattern can be neglected if the length of the swath is much smaller
than the coordinate of the swath center.
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Let us assume that pc(0) = 1 and that the clutter
is white in the spatial domain [13]. Let z(x,u0) =
s0(x,u0) + n(x,u0) be the signal plus noise, respectively.
Define vectors

z´ [z¡N , : : : ,z0, : : : ,zN]T

s´ [s¡N , : : : ,s0, : : : ,sN]T

where, for i=¡N, : : : ,N,
zi = z[x

0+Ã(u0i),u
0
i]

si = a(¡ºu0i)e¡j2k0r
0(u0

i
)

with u0i ´ u0si, where u0s is the sampling space in the
cross-range direction chosen such that the clutter
samples exhibit negligible correlation. In fact, if we
assume homogeneous clutter, then the autocorrelation
of the signal echoed by the ground is Rn(¢u)/
F¡1[jA(ku)j2] as shown in [13], where F¡1 stands for
the inverse Fourier transform and A(ku) is the antenna
radiation pattern in the slow-time frequency domain.
If the bandwidth of jA(ku)j is B, then the correlation
Rn(¢u) is approximately zero for ¢u= vR=B. The
samples are therefore uncorrelated if taken with
spacing of ¢u= vR=B.
The observation vector z should be formed

with data sampled along the curve described by
Ã. However, in practical situations, SAR raw-data
is available only at discrete values of (x,u0). For a
fixed u0i, the corresponding slant-range coordinate is
x0+Ã(u0i), and, in general, this coordinate does not
correspond to a multiple of the sampling space in
the slant-range direction. Therefore, a resampling or
data interpolation should be done in the slant-range
dimension. Nevertheless, as illustrated in Section IV,
a simple nearest neighbor interpolation method may
lead to satisfactory results.
Let us assume that the moving target parameters

μ ´ (¹,º,x0,y0,u0) and the reflectivity fm are known. In
this case only the noise term is random. Therefore, the
density of vector z conditioned to μ and fm is

p(z j fm,μ)»N (¹z,Cz) (6)

where the mean is ¹z ´ fms(μ), the covariance is
Cz ´ ¾2nI, and the clutter variance is ¾2n . Notice that
zi = zi(μ). Consequently, the density in (6) is correct
only for the true μ. However, for μ ' μ0, the range
migration is known and the data taken to form vector
s is acquired along the correct curve, thus leading to
z(μ)' z(μ0). Therefore, we still use (6) to compute the
ML estimate of μ. After some algebra, we obtain

μ̂ML = argmax
μ

jPi zis
¤
i (μ)jP

i jsi(μ)j2
: (7)

We note that u0 is not exactly known. However,
assuming that u0 is a multiple of us, i.e., u0 = usis,
then an error on u0 corresponds to an integer shift i0

on the sequence zi. For this reason, we replace the
numerator of (7) by a correlation, obtaining

(¹̂, º̂, î0)ML = argmax(¹,º)

½
max
i0

jPi zis
¤
i¡i0 (μ)jP

i jsi(μ)j2
¾
: (8)

Parameters u0, x0, and y0 are then computed as
follows:

û0 = u0 + î0us (9)

x̂0 = x
0+ ¹̂û0 (10)

ŷ0 = (º̂¡ 1)û0: (11)

Notice that, by using the methodology herein
presented, we are able to estimate not only the full
velocity vector (¹,º), but also the initial coordinates
(x0,y0) of the moving target, thus solving the blind
angle ambiguity.

III. MOVING TARGET PARAMETER ESTIMATION
ALGORITHM

Algorithm 1 presents pseudocode for the procedure
entitled ProcessMultipleTargets, which aims at
the detection and trajectory parameter estimation
of multiple moving targets. It starts by searching
for all the moving targets in the target area, using
function SearchStrongestTargets. Then, for each
moving target, the algorithm increases the SCR by
digitally spotlighting the moving target area [14]. This
process consists of focusing the target area with static
ground parameters (recall that the true moving target
parameters are unknown) and cropping the region
containing the target of interest. Although the moving
targets will appear defocused, they span a region that
is typically much smaller than the total illuminated
scene. Each moving target signature can thus be
reasonably separated from the signatures of the other
(moving and stationary) targets. The algorithm then
resynthesizes the signature of the digitally spotlighted
object to the (x,u) spatial domain, via reversing the
wavefront reconstruction algorithm steps (see [10]
for a brief description of the wavefront algorithm).
Function GetParameters, which is described in
Algorithm 3, is then used to estimate parameters
(x0,u0,¹,º) of each detected moving target.
Algorithm 2 describes function

SearchStrongestTargets which implements a very
simple but efficient scheme (from the computational
point of view), to detect all the moving targets in the
target area. It takes as input S(!,ku) = F(t,u)[s(t,u)],
i.e., the 2D Fourier transform of s(t,u) and returns
Xc, Yc, Nt, and s(X,Y), where Xc, Yc is the array with
the estimated positions of the all the detected moving
targets, Nt is the number of detected targets, and
s(X,Y) is the target area focused with static ground
parameters. It should be stressed that the goal here
is to present and evaluate a strategy for moving
target trajectory parameters estimation and as such
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ALGORITHM 1 ProcessMultipleTargets
1: [Xc,Yc,Nt,s(X,Y)] := SearchStrongestTargets[S(!,ku)]
2: for i := 1 :Nt do
3: ŝ(x,u) := InverseWaveFront[s(X,Y) ¤MASK(Xc(i),Yc(i))]
4: (x̂0(i), ŷ0(i), ¹̂(i), º̂(i)) :=GetParameters[ŝ(x,u)]
5: end for

ALGORITHM 2 Function [Xc,Yc,Nt,s(X,Y)] := SearchStrongestTargets[S(!,ku)]
Initialization: ´, Nt = 0, HHPF(!,ku) := HighPassFilter
1: SF(!,ku) := S(!,ku)HHPF(!,ku) fremove static objectsg
2: sF(X,Y) :=WaveFront[SF(!,ku),®= 1]

ffocus moving targets with static ground parametersg
3: repeat
4: (X̂, Ŷ, l) := GetMaxPos[abs(sF(X,Y))]

fget position and value of strongest pixelg
5: if l >= ´ then
6: Nt :=Nt+1 ffound another candidateg
7: Xc(Nt) := X̂, Yc(Nt) := Ŷ fstore its coordinatesg
8: sF(X,Y) := sF(X,Y)MASK(X̂, Ŷ) fand remove itg
9: end if
10: until l < ´
11: s(X,Y) :=WaveFront[S(!,ku),®= 1]

fand return the data focused with static ground parametersg
ALGORITHM 3 Function (x̂0, ŷ0, ¹̂, º̂) := GetParameters[ŝ(x,u)]
Initialization: f¹igM¹i=1, fºigMºi=1
1: (x̂0,u0) :=GetSignatureCenter[ŝ(x,u)]
2: u0 := u¡ u0
3: for i := 1 :M¹ do
4: for j := 1 :Mº do
5: z := s(x̂0+Ã(u0),u0) fform vector using data extracted along curve given by expression (4)
6: o := Correlation(z,s) fcorrelation (8)g
7: [value, coord] := GetMax(o)
8: if value>max then [found higher objective function value]
9: max := value
10: i0 := coord
11: ¹̂ := ¹(i)
12: º̂ := º(j)
13: end if
14: end for
15: end for
16: û0 := u0 + i0us
17: ŷ0 := (º̂¡ 1)û0
18: x̂0 := x̂

0+ ¹̂û0

it uses, for illustration purposes only, a very simple
methodology for moving target detection. Other
efficient techniques are published in the literature such
as [12].
The scheme implemented by function

SearchStrongestTargets is now summarized. The
returns from the static ground in the 2D frequency
domain are filtered and compressed using the
wavefront reconstruction algorithm with static ground
parameters (®= 1). The signal that remains after
filtering and focusing corresponds to the returns from
moving targets with velocities inducing Doppler-shifts
and/or scalings on the returned echoes such that, at

least, part of the signature does not overlap with the
returns from the static ground on the 2D Fourier
domain. This detection scheme will only work if
the sensor has excess of bandwidth. The algorithm
then searches for all the returns with absolute value
(on the compressed data) above a predetermined
threshold ´, considering each of them as a return from
a moving target. For each moving target detected,
the algorithm estimates its coordinates (Xc,Yc) as the
position where the maximum absolute value l occurs.
Before proceeding to the next target, the current one is
removed from the compressed data. The algorithm is
repeated while l >= ´.
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Fig. 2. Schematic summary of proposed method.

Since the clutter returns are filtered in the 2D
frequency domain, the electronic noise is the only
perturbation that remains, besides the returns from
the moving targets. Therefore, the threshold can be
chosen to be dependent on the electronic noise power
only.
Algorithm 3 describes function GetParameters

which implements the scheme proposed to estimate
parameters (x0,u0,¹,º). It receives the resynthesized
signature of the current moving target in the (x,u)
domain (compressed in the fast-time domain but
uncompressed in the slow-time domain3). Then it uses
as reference coordinates (x̂0,u0), the mass center of the
signature. The algorithm then changes the coordinate
reference in the slow-time domain according to

3Herein, we follow Soumekh’s terminology (see [6, ch. 2])
according to which the cross-range coordinates and the round-trip
time are termed slow-time domain and fast-time domain,
respectively. This terminology stems from the fact that the motion
of the radar platform is much slower than the speed of light at
which the transmitted and backscattered pulses propagate.

u0 = u¡ u0 and performs a 2D search in the
(¹,º) space. This search can be done via
two one-dimensional searches to increase the
computational efficiency. We opt now for the
two-dimensional search, just for clearness of the
exposition. For each (¹,º) pair, the algorithm forms
the observation vector z using data extracted along
the curve given by (4). In step 6, it computes the
correlation (8). Step 7 retrieves the correlation
maximum absolute value and the coordinate where it
occurs. If the maximum value is the greatest observed
until that iteration then it stores the value, position,
and the pair (¹,º) for which it occurs. The algorithm
finishes with the computation of ŷ0 and x̂0.
Fig. 2 illustrates the overall scheme just described,

in a simplified scenario containing a single moving
target. On the top right in Fig. 2(a), the moving target
indicator (MTI) contour is obtained by imaging the
echoed signal after filtering the static ground returns
in the 2D frequency domain. The coordinates of the
maximum absolute value are estimated as the position
(Xc,Yc) of the defocused moving object. Using
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this coordinate pair the moving object is digitally
spotlighted in the spatial domain and its signature is
resynthesized back to the spatial domain as illustrated
in Fig. 2(b). After estimating the signature mass
center, the likelihood function of the moving target
velocity is computed, as shown in Fig. 2(c). Using the
resynthesized signature and the previously estimated
moving target trajectory parameters, the moving object
is then focused and repositioned in the target area as
presented in Fig. 2(d).

A. Computational Complexity

To evaluate the computational complexity of the
proposed methodology, we follow a strategy similar to
that presented in [15, ch. 12]. The approach consists
in estimating the number of complex operations
(Cops) for each major step of the algorithm. A
complex operation is defined as one radix-2 fast
Fourier transform (FFT) butterfly, which consists
of ten floating point operations (four floating point
multiplications and six floating point additions).
An equal cost for multiplications and additions is
assumed. Accordingly to [15, ch. 12.2] and [16, ch.
15], the following Cops are accounted:

1) FFT of size N: Cfft ¼N=2log2N[Cops];
2) 2D FFT with dimension of Nx by Ny: Cfft2 ¼

NxNy=5log2NxNy[Cops];
3) complex multiplication: Cm ¼ 1[Cops];
4) complex-by-real multiplication: Cmr ¼ 0:5[Cops];
5) 2D linear interpolation with size of Nx by Ny:

Cp ¼ 2NxNy[Cops].
The number of Cops just accounted, slightly

overestimates the total number of operations for a
given algorithm. In this way we provide a margin
for unaccounted machine cycles used in operations
such as array index generation and memory access.
The strategy herein proposed consists of the following
main steps:

1) two runs of the wavefront reconstruction
algorithm for a target area with Nx (slant-range) by
Ny (cross-range) samples;
2) for each target:
2a) a signature resynthesis from the (X,Y) domain

to the (x,u) domain for a spotlight region with
Nxs (slant-range) by Nys (cross-range) samples;
2b) computation of correlation (8) for all ¹ and º

of interest.

By summing the number of Cops associated to each
main step of the algorithm, we obtain

C ¼ 2N( 25 log2N +1)

+Ntrgts
h
2Ns(

2
5 log2Ns+1)+Tm(N¹+Nº)

p
Ns

£
³
log2

³p
Ns

´
+6
´i
[Cops] (12)

where N ´Nx£Ny and Ns ´Nxs£Nys; symbol Ntrgts
denotes the number of moving targets to process.
To obtain a simpler expression, we also considered
Nx =Ny and Nxs =Nys. For step 2b, we assumed
an implementation of Algorithm 3 in a multigrid
fashion, using Tm depth levels. At each depth level
we considered a unidirectional search in ¹ using N¹
discrete values, followed by a unidirectional search
in º using Nº discrete values. The multigrid search
permits a final resolution, for a given search direction,
of ¢= 2Tm¡1Li=N

Tm , where Li is the initial search
interval length, and N =N¹ or N =Nº , depending of
the considered search direction, at a computational
cost needed to obtain a much lower resolution given
by ¢= Li=(TmN). The first term of (12) corresponds
mainly to the computational requirements of function
SearchStrongestTargets, which is strongly dependent
of the algorithm chosen for moving target detection.
The second term of (12) corresponds to the proposed
strategy for the estimation of the moving target
trajectory parameters (steps 2 to 5 of function
ProcessMultipleTargets) and is linearly proportional
to the number of moving targets detected in the target
area.
As a numerical example, let us consider a target

area of size N = 512£ 512 pixels, containing Ntrgts =
20 targets and that each digitally spotlighted region
is of size Ns = 50£ 50 pixels. Consider also Tm = 3
and N¹ =Nº = 10. In this situation, the algorithm
requires, approximately, 5.2 millions of Cops, which is
accomplished in little more than one-tenth of a second
by a current desktop computer with a processor
running at a clock speed of 1.5 GHz.

IV. ESTIMATION RESULTS

The scheme developed in the previous section
to estimate the moving targets parameters is now
evaluated using synthetic and real data. The synthetic
data includes both point-like and extended targets.
The used MSTAR data corresponds to a static SAR
scene and a static BTR-60 with simulated motion.
Due to efficiency concerns, the observation vector
will not be filled with data sampled along the exact
curve described by expression (5). Instead, we use a
nearest neighbor approach. The estimation algorithm
performs the search in a multigrid fashion using
Tm = 3, N¹ =Nº = 20.

A. Synthetic Data

In this subsection we present results using
synthetic data. We use three types of simulated targets:
point-like targets, extended homogeneous targets,
and extended targets with predominant scatterers.
The mission parameters used in the simulations are
summarized in Table I.
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TABLE I
Mission Parameters used in the Simulation

Parameter Value

Carrier frequency 5 GHz
Chirp bandwidth 100 MHz

Altitude 12 km
Velocity 637 km/h
Look angle 20±

Antenna pattern Raised Cosine

Fig. 3. Velocity estimation as function of SCR, for 64
Monte-Carlo runs. Achieved results enable the focusing of moving

targets even in low SCR conditions.

Let us start by considering a point-like target
moving with slant-range velocity vx =¡7:959 m/s
(exactly 3 times the maximum velocity imposed
by the PRF), and cross-range velocity vy = 8 m/s.
The target cross-range coordinate is y0 = 209 m,
when the platform is at the center of the target area
(y = 0 m). Using this point-like moving target, we
carried out 64 Monte-Carlo simulations per SCR
value.4 Fig. 3 presents the corresponding standard
deviation of the velocity estimates as function of the
SCR. For SCR¸ 10 dB, both velocity components
are accurately estimated. When the SCR is below
this value, and assuming that the target is always
detectable, the estimates start to degrade seriously as
can be seen in the figure. For an SCR of 20 dB the
algorithm is able to solve the azimuth ambiguity with
an error of 0.45 m. Fig. 4 plots the standard deviation
of the error on the cross-range position estimation as
function of the SCR. As can be seen, if the SCR is
higher than 10 dB, the algorithm allows repositioning
the moving target with enough accuracy for most
applications.
Our second experiment consists of applying the

proposed scheme to an extended moving target with

4The definition of SCR herein used corresponds the ratio between
the peak (squared magnitude) of the correctly focused point-like
moving target signal and the covariance of the clutter background.

Fig. 4. Moving object position estimation as function of SCR,
for 64 Monte-Carlo runs.

TABLE II
Estimation Results for Three Types of Targets (SCR = 20 dB)

Target type vx error vy error x0 error y0 error

point-like 0,005 m/s 0,0123 m/s 0,02 0,45 m
7£ 12 m extended 0,3 m/s 4,2 m/s 0,18 28,3 m
7£ 12 m extended 0,041 m/s 0,29 m/s 0,07 1,6 m
(one predominant)

Note: All targets move with slant-range speed of ¡7:959 m/s
and cross-range speed of 8 m/s. Slant-range speed is three times
maximum imposed by mission PRF.

homogeneous reflectivity. The velocity parameters
are those used on the previous experiment. Although
the slant-range velocity is estimated with an error
of 0.3 m/s, the cross-range velocity exhibits now
an error of 4.2 m/s, which induces a repositioning
error of 28.3 m in the cross-range dimension. These
estimation results, although enabling the correct
focusing of the moving target, do not permit its
accurate repositioning. This degradation was expected
to occur because all the theory was developed for
point-like targets.
The last experiment consists of applying the

algorithm to an extended moving target exhibiting
a predominant scatterer (10 dB above the average
reflectivity). The results are expected to improve,
as the echo is dominated by the predominant
scatterer, thus partially behaving as a point-like
target. This is in fact the case: the errors of the
slant-range and cross-range velocities are 0.041 m/s
and 0.29 m/s, respectively. The repositioning error
is 1.6 m. These estimation results enable both the
focusing and the accurate repositioning of the moving
target.
Table II summarizes the estimation results for

the three considered targets. As can be seen, if the
target is point-like, or, if it has some predominant
scatterers, the proposed scheme performs quite well
and enables the velocity estimation, focusing, and
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TABLE III
Mission Parameters used with Real Data from MSTAR

Parameter Value

Carrier frequency 9.6 GHz
Chirp bandwidth 250 MHz

Altitude 12 km
Velocity 637 km/h
Look angle 15±

Antenna radiation pattern Raised Cosine
Oversampling factor 2

TABLE IV
BTR-60 Trajectory Parameters

BTR-60 x0 [m] y0 [m] vx [m/s] vy [m/s] vr=vmax

1 37 220 8.63 ¡10 6.25
2 90 122 16.58 ¡2 12
3 110 115 11.74 ¡2 8.5

Fig. 5. Target area focused using wavefront reconstruction
algorithm with static ground parameters. As expected, only ground
becomes focused. Moving vehicles appear misplaced, blurred, and
defocused. If correctly processed they should appear focused at

coordinates given by Table IV.

repositioning with accuracy high enough for most
applications.

B. Real Data

We now present results using a BTR-60 vehicle
and the background scene from Hunstville, AL, both
taken from the MSTAR data. To obtain a smaller
dataset a low-pass filtering to the original data and
a decimation by a factor of 4 was applied in both
directions. The moving targets signatures were
generated as explained in [10].
The mission parameters are presented in Table III.

The trajectory parameters of the 3 BTR-60 are
displayed in Table IV. The SCR is approximately
20 dB. Notice that the slant-range velocities of the
moving objects range from 6.25 to 12 times the
maximum allowed by the PRF.

Fig. 6. Resynthesized signature. Coordinates (x̂0,u0) = (87,123) m
were estimated by algorithm GetSignatureCenter.

Fig. 7. Likelihood function for speed vector of BTR-60 vehicle.
Estimated velocity vector is (v̂x, v̂y) = (16:53,6:2) m/s.

Fig. 5 presents the target area focused with static
ground parameters. As expected all the vehicles
appear misplaced, blurred, and defocused. If correctly
processed, they should appear focused at coordinates
given by Table IV. After detection, we digitally
spotlighted the BTR-60 signatures and resynthesized
them.
For illustration purposes only, we now concentrate

on the processing for the moving object number 2.
Fig. 6 displays the resynthesized signature and
the estimated (x̂0,u0) = (87,123) m. The estimated
velocity is (v̂x, v̂y) = (16:53,6:2) m/s. The retrieved
initial coordinates of the BTR-60 are (x̂0, ŷ0) =
(87:6,129) m. These results permit both the focusing
and repositioning of the moving target, as seen
next. The likelihood function of (vx,vy) is shown in
Fig. 7. In this figure it is clear that the likelihood
function concentration is higher on the slant-range
velocity axis than on the cross-range velocity axis.
We can therefore expect better estimation results
on the slant-range velocity component than on the
cross-range velocity component. This is verified
in this experiment: the error in the cross-range
velocity component is 4.2 m/s whereas the
error in the slant-range velocity component is only
0.005 m/s.
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Fig. 8. Focused and repositioned moving vehicles. Notice that by
using a single SAR sensor and because moving targets spectrum
overlap the clutter spectrum, defocused BTR-60s cannot be

completely removed from image.

TABLE V
Estimation Results for the Three BTR-60 (SCR = 20 dB)

BTR-60 x0 error [m] y0 error [m] vx error [m/s] vy error [m/s]

1 1,8 6,2 0,012 4,7
2 2,4 5 0,005 4,2
3 2,2 3,4 0,008 3,5

Using the estimated velocities and initial
coordinates we focused and repositioned the three
BTR-60 as shown in Fig. 8. One should note,
however, that in real situations the accuracy is
expected to be lower since the estimation algorithm
assumes that the moving target does not contain
acceleration, pitch, or roll.
Notice that since we are using a single SAR sensor

and because the moving targets spectrum overlaps
the clutter spectrum, the defocused BTR-60s cannot
be completely removed from the original image. To
achieve this goal the moving target spectrum should
not overlap the clutter spectrum. Another possibility
would be to have data from more than one SAR
sensor [17].
The obtained results for the moving objects

under study are summarized in Table V. As can be
seen, the proposed methodology yields velocity and
position estimates accurate enough for focusing and
repositioning the three vehicles.
From the results presented in this section, we

conclude that the suggested strategy works well for
point-like targets or extended targets exhibiting some
predominant targets. When this is not the case, the
algorithm still gives good results for the slant-range
velocity. It produces, however, large errors on the
cross-range velocity estimation and on the estimated

cross-range initial position. Nevertheless, the presented
methodology can be used to estimate the velocity and
initial coordinates of most man-made targets, since
they typically exhibit predominant scatterers.

V. CONCLUSIONS AND FINAL REMARKS

In this paper we presented a spatial-based
methodology for the estimation of all the moving
target parameters using a single SAR sensor. The
main algorithm samples the 2D spatial domain to
acquire data along the signature curve defined by
the moving target kinematics. To achieve efficiency
and simplicity, we derived the ML estimator of
the velocity parameters assuming white noise.
This assumption led us to a matched filter type
solution.
The methodology was tested using a combination

of simulated and real data. All the moving targets
velocities were beyond the Nyquist bound imposed
by the mission PRF. In all experiments the targets
velocities ranged from 3 to 12 times the Nyquist
bound. The technique was shown to provide good
results when the objects are point-like targets
or extended targets provided they exhibit some
predominant scatterers. When this is not the case,
the slant-range velocity is estimated with accuracy
high enough for most practical applications. However,
the algorithm is no longer able to give accurate
estimates of the cross-range velocity and of the initial
coordinates.
The global scheme is very efficient, from the

computational point of view. This computational
efficiency is mainly due to the simplified moving
target detection and to the way that the moving target
signature is sampled. The moving target detection
consists in applying a high-pass filter in the 2D
frequency domain with stop-band adapted to filter
out static targets and then focusing using static
ground parameters. The moving target signature
is sampled along the locus defined by the moving
target trajectory parameters. These computational
gains come, however, at a cost: if the moving
target signature is completely overlapped, in the
2D frequency domain, with the returns from the
static ground, then the target is simply ignored. The
estimation errors are also larger than those of the
estimator presented in [10]. To improve the estimation
results we could perform more than one iteration of
the algorithm.
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