
1

Multi-frequency Phase Unwrap from Noisy
Data: Adaptive Least Squares Approach

Vladimir Katkovnika and José Bioucas-Diasb
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Abstract. Multiple frequency interferometry is, basically, a phase acquisition strategy aimed at reducing or eliminating the
ambiguity of the wrapped phase observations or, equivalently, reducing or eliminating the fringe ambiguity order. In multiple
frequency interferometry, the phase measurements are acquired at different frequencies (or wavelengths) and recorded using
the corresponding sensors (measurement channels). Assuming that the absolute phase to be reconstructed is piece-wise
smooth, we use a nonparametric regression technique for the phase reconstruction. The nonparametric estimates are derived
from a local least squares criterion, which, when applied to the multifrequency data, yields denoised (filtered) phase estimates
with extended ambiguity (periodized), compared with the phase ambiguities inherent to each measurement frequency. The
filtering algorithm is based on local polynomial (LPA) approximation for design of nonlinear filters (estimators) and adaptation
of these filters to unknown smoothness of the spatially varying absolute phase [9]. For phase unwrapping, from filtered
periodized data, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping
algorithm [1]. Simulations give evidence that the proposed algorithm yields state-of-the-art performance for continuous
as well as for discontinues phase surfaces, enabling phase unwrapping in extraordinary difficult situations when all other
algorithms fail.
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I. INTRODUCTION
Many remote sensing systems exploit the phase coherence between the transmitted and the scattered waves to

infer information about physical and geometrical properties of the illuminated objects such as shape, deformation,
movement, and structure of the object’s surface. Phase estimation plays, therefore, a central role in these coherent
imaging systems. For instance, in synthetic aperture radar interferometry (InSAR), the phase is proportional to
the terrain elevation height; in magnetic resonance imaging, the phase is used to measure temperature, to map
the main magnetic field inhomogeneity, to identify veins in the tissues, and to segment water from fat. Other
examples can be found in adaptive optics, diffraction tomography, nondestructive testing of components, and
deformation and vibration measurements (see, e.g., [2], [3]). In all these applications, the observation mechanism
is a 2π-periodic function of the true phase, hereafter termed absolute phase. The inversion of this function in
the interval [−π, π) yields the so-called principal phase values, or wrapped phases, or interferogram; if the true
phase is outside the interval [−π, π), the associated observed value is wrapped into it, corresponding to the
addition/subtraction of an integer number of 2π. It is thus impossible to unambiguously reconstruct the absolute
phase, unless additional assumptions are introduced into this inference problem.

Data acquisition with diversity has been exploited to eliminate or reduce the ambiguity of absolute phase
reconstruction problem. In this paper, we consider multichannel sensors, each one operating at a different
frequency (or wavelengths). Let ψs, for s = 1, . . . , L, stand for the wrapped phase acquired by a L-channel
sensor. In the absence of noise, the wrapped phase is related with the true absolute phase, φ, as µsφ = ψs+2πks,
where ks is an integer, ψs ∈ [−π, π), and µs is a channel depending scale parameter, to which we attach the



meaning of frequency. This parameter establishes a link between the absolute phase φ and the wrapped phase
ψs measured at the s-channel:

ψs = W (µsφs) ≡ mod{µsφ+ π, 2π} − π, s = 1, . . . , L, (1)

where W (·) is the so-called wrapping operator, which decomposes the absolute phase φ into two parts: the
fractional part ψs and the integer part defined as 2πks. The integers ks are known in interferometry as fringe
orders. We assume that the frequencies for the different channels are strictly decreasing, i.e., µ1 > µ2 > · · · >
µL, or, equivalently, the corresponding wavelengths λs = 1/µs are strictly increasing, λ1 < λ2 · · · < λL.

Let us mention some of the techniques used for the multifrequency phase unwrap. Multi-frequency interferom-
etry (see, e.g., [11]) provides a solution for fringe order identification using the method of excess fractions. This
technique computes a set of integers ks compatible with the simultaneous set of equations µsφ = ψs + 2πks,
for s = 1, . . . , L. It is assumed that the frequencies µs do not share common factors, i.e., they are pair-wise
relatively prime. The solution is obtained by maximizing the interval of possible absolute phase values. A
different approach formulates the phase unwrapping problem in terms of the Chinese remainder theorem, where
the absolute phase φ is reconstructed from the remainders ψs, given the frequencies µs [7], [8]. Statistical
modeling for multi-frequency phase unwrapping based on the maximum likelihood approach is proposed in [6].
This work addresses the surface reconstruction from the multifrequency InSAR data. The unknown surface is
approximated by local planes. The optimization problem therein formulated is tackled with simulated annealing.

An obvious idea that comes to mind to attenuate the damaging effect of the noise is prefiltering the wrapped
observations. We would like, however, to emphasize that prefiltering, although desirable, is a rather delicate
task. In fact, if prefiltering is too strong, the essential pattern of the absolute phase coded in the wrapped phase
is damaged, and the reconstruction of absolute phase is compromised. On the other hand, if we do not filter,
the unwrapping may be impossible because of the noise. A conclusion is, therefore, that filtering is crucial
but should be designed very carefully. One of the ways to ensure efficiency is to adapt the strength of the
prefiltering according to the phase surface smoothness and the noise level. In this paper, we use the wrapped
phase prefiltering technique developed in [9] for a single frequency phase unwrapping. The results presented in
this paper is a further elaboration of the maximum likelihood approach proposed and analyzed in [10].

II. PROPOSED APPROACH
We introduce a novel phase unwrapping technique based on local polynomial approximation (LPA) [14] with

varying adaptive neighborhood used in reconstruction. We assume that the absolute phase is a piecewise smooth
function, which is well approximated by a polynomial in a neighborhood of the estimation point. Besides the
wrapped phase, also the size and possibly the shape of this neighborhood are estimated. The adaptive window
selection is based on two independent ideas: local approximation for design of nonlinear filters (estimators) and
adaptation of these filters to the unknown spatially varying smoothness of the absolute phase. We use LPA for
approximation in a sliding varying size window and intersection of confidence intervals (ICI) [14, Ch. 6] for
window size adaptation. The proposed technique is a development of the PEARLS algorithm proposed for the
single wavelength phase reconstruction from noisy data [9].

We assume that the frequencies µs can be represented as ratios

µs = ps/qs, (2)

where ps, qs are positive integers and the pairs (ps, qt), for s, t ∈ {1, . . . , L} do not have common multipliers,
i.e., ps and qt are pair-wise relatively prime.

Let

Q =
L∏

s=1

qs. (3)

Based on the LPA of the phase, the first step of the proposed algorithm computes the least squares estimate of
the absolute phase. As a result, we obtain an unambiguous absolute phase estimates in the interval [−Q·π,Q·π).
Equivalently, we get an 2πQ periodic estimate. The adaptive window size LPA is a key technical element in
the noise suppression and reconstruction of this wrapped 2πQ-phase. The complete unwrapping is achieved by
applying an unwrapping algorithm. In our implementation, we use the PUMA algorithm [1], which is able to



preserve discontinuities by using graph cut based methods to solve the integer optimization problem associated
to the phase unwrapping.

The polynomial modeling is a popular idea for both wrapped phase denoising and noisy phase unwrap (e.g.
[6], [12], [13], [5]). Compared with these works, the efficiency of the PEARLS algorithm [9] is based on
the window size selection adaptiveness introduced by the ICI technique, which locally adapts the amount of
smoothing according to the data. In particular, the discontinuities are preserved, what is a sine quo non condition
for the success of the posterior unwrapping; in fact, as discussed in [4], it is preferable to unwrap the noisy
interferogram than a filtered version in which the discontinuities or the areas of high phase rate have been washed
out. In this paper, the PEARLS [9] adaptive filtering is generalized for the multifrequency data. Experiments
based on simulations give evidence that the developed unwrapping is very efficient for the continuous as well
as discontinuous absolute phase with a range of the phase variation so large that there no alternative algorithms
are able to unwrap this data.

III. LOCAL LEAST SQUARED TECHNIQUE
A. Observation Model

Herein, we adopt the complex-valued (cos/sin) observation model

us = Bs exp(jµsφ) + σns, s = 1, ..., L , Bs ≥ 0, (4)

where Bs are amplitudes of the harmonic phase functions, ns is zero-mean independent complex-valued circular
Gaussian random noises of variance equal to 1, i.e., E{Rens} = 0, E{Imns} = 0, E{Rens · Imns} = 0,
E{(Rens)2} = 1/2, E{(Imns)2} = 1/2, and σ is the noise standard deviation. We assume that the amplitudes
Bs are non-negative in order to avoid ambiguities in the phase µsφ, as the change of the amplitude sign
is equivalent to a phase change of ±π in µsφ. We note that the assumption of equal noise variance for all
channel is not limitative as different noise variances can be accounted for by rescaling us and Bs in (4) by the
corresponding noise standard deviation.

Model (4) accurately describes the acquisition mechanism of many interferometric applications, such as InSAR
and magnetic resonance imaging. Furthermore, it retains the principal characteristics of most interferometric
applications: it is a 2π-periodic function of µsφ and, thus, we have only access to the wrapped phase.

B. Phase Estimation
Since we are interested in two-dimensional problems, we assume that the observations are given on a regular

2D grid, X ⊂ Z2. The unwrapping problem is to reconstruct the absolute phase φ(x, y) from the observed
wrapped noisy ψs(x, y), for x, y ∈ X .

Let us define the parameterized family of first order polynomials

φ̃(u, v|c) = pT (u, v)c, (5)

where p = [p1, p2, p3]T = [1, u, v]T and c = [c1, c2, c3]T is a vector of parameters. Assume that in some
neighborhood of the point (x, y), the phase φ is well approximated by an element of the family (5); i.e., for
(xl, yl) in a neighborhood of the origin, there exists a vector c such that

φ(x+ xl, y + xl) ≃ φ̃(xl, yl|c). (6)

In [10], we have derived approximate maximum likelihood estimates of c and B ≡ {B1, . . . , BL} (see (4)). In
this paper, we take a slightly different path: we base our inferences in the transformed observation

zs ≡ exp(jϕs) ≡ us/|us|, s = 1, ..., L,

which can be written in terms of the original phase φ as

zs = exp(jµsφ) + n′s, s = 1, ..., L. (7)

The dependence of model (7) on B has been moved to the noise terms n′s, which are no more Gaussian
distributed.



Motivated by the modified observation model (7), we herein adopt a local least squares criterion to fit the
model exp(jµsφ̃(xl, yl|c)) to the observations zs, where φ̃ is the LPA (5) of the original phase φ. The local
least squares criterion is given by

LSh(c) =
1
2

∑
s

∑
l

ρswh,l,s|zs(x+ xl, y + yl) − exp(jµsφ̃(xl, yl|c))|2 (8)

∝ −
∑

s

∑
l

ρswh,l,s cos(ϕs(x+ xl, y + yl) − µsφ̃(xl, yl|c)),

where wh,l,s are window weights parameterized by h, for h ∈ H ≡ {h1 < h2 < · · · < hJ}, l is a window
relative index, s refers to the wavelength λs, and ρs > 0 are weights of the residuals for the different frequency
observations.

A straightforward manipulation of sum in (8) with respect to l leads us to the expression

L̃Sh(c) =
∑

s

ρs|Fw,h,s(µsc2, µsc3)| cos[µsc1 − arg(Fw,h,s(µsc2, µsc3))] + cte, (9)

where cte is an irrelevant constant and Fw,h,s(µsc2, µsc3) is the windowed Fourier transform of zs ,

Fw,h,s(c2, c3) =
∑

l

wh,l,s zs(x+ xl, y + yl) exp(−j(c2xl + c3yl)), (10)

calculated at the frequencies (µsc2, µsc3).

C. Phase Estimation for Fixed Windows
Let us study the inference of vector c for a given window, that is, we are considering a fixed h ∈ H . The

phase estimate is defined by optimization over the three variables c1, c2, c3

ĉ = arg max
c
L̃Sh(c). (11)

Let the condition (2) be fulfilled and Q ≡ Πqs. Then, provided fixed c2 and c3, the criterion (11) yields a
periodic function of c1 with the period 2πQ. The estimate ĉ obtained according to (11) solves simultaneously
two different problems. First, the phase estimate ĉ1 is denoised, as it is obtained by a local fitting of a low
polynomial model; second, we obtain a partially unwrapping because, in all useful practical applications, we
have Q > 1.

Because the optimization (11) is computationally quite demanding, we resort to an approximate solution
which exploits the equivalence between unconstrained minimization in (11) and the constrained form

min
c1

min
c2,s,c3,s

∑
s

ρs|Fw,h,s(µsc2,s, µsc3,s)| cos[µsc1 − arg(Fw,h,s(µsc2,s, µsc3,s))] + cte (12)

subject to: c2,s = c2, c2,s = c3 for s = 1, . . . , L. (13)

Our first approximation consists in dropping the constraints (13), which make sense if the unconstrained
optimization (9) yields a result close to the constrained optimization (12)-(13). The second approximation
consists in assuming that inner maximization in (12), with respect to c2,s, c3,s, for s = 1, . . . , L, depends little
on the cosine factors. Both approximations make sense if the signal-to-noise is not very low and the true phase
is locally well approximated by a plane.

Under these assumptions and approximations, we obtain

ĉ1 = arg max
c1

L̃Sh(c1) (14)

(ĉ2,s, ĉ3,s) = arg max
c2,c3

|Fw,h,s(µsc2, µsc3)|, (15)

where
L̃Sh(c1) ≡

∑
s

ρs|Fw,h,s(µsĉ2,s, µsĉ3,s)| cos(µsc1 − ψ̂s). (16)



with

ψ̂s ≡ arg[Fw,h,s(µsĉ2,s, µsĉ3,s)].

We note that the absolute phase estimate φ̂ = ĉ1 is calculated by the single-variable optimization (14),
whose computational complexity is dominated by the computation of the discrete Fourier transforms Fw,h,s, for
i = 1, . . . , L. By using the fast Fourier transform (FFT), these computations are carried out very efficiently.

For a fixed h ∈ H , the estimates φ̂s, for s = 1, . . . , L, are the LPAs of the corresponding wrapped phases
φs. Note that the objective function L̃Sh(c1) is periodical with respect to c1 with the period 2πQ. Thus, the
optimization can be performed only on the finite interval [−πQ, πQ):

ĉ1 = arg max
c1∈[−πQ,πQ)

L̃Sh(c1). (17)

D. Window Selection
The procedure described in the previous subsection computes, for each pixel, the estimates φ̂h for h ∈ H ,

where h indexes a set of windows of increasing size. To select, for each pixel, the window size, and thus the
corresponding estimate φ̂h, we use intersection of confidence intervals (ICI) [14, Ch. 6]. The details of applying
ICI to the present phase estimation are presented in [9]. We just stress that the adaptiveness introduced by ICI
trades bias with variance in such a way that the window size stretches in areas where the underlying true phase
is smooth and shrinks otherwise, namely in the presence of discontinuities.

E. Phase Unwrapping
If the range interval of the absolute phase φ is not larger than 2πQ, the estimate (17) gives a solution of the

multifrequency phase unwrap problem, otherwise i.e., the range of the absolute phase φ is larger then 2πQ,
then ĉ1 gives the phase wrapped to this interval. In this case, a complete unwrapping is obtained by applying
one of the standard unwrapping algorithms, as these partially unwrapped data can be treated as obtained from a
single sensor modulo-2πQ wrapped phase. The above formulas define what we call LS-MF-PEARLS algorithm
as short for Least-Square-Multi-Frequency Phase Estimation using Adaptive Regularization based on Local
Smoothing. The adaptive window size estimates are provided by the PEARL algorithm [9].

IV. EXPERIMENTAL RESULTS
We consider a two-frequency scenario with the wavelength λ1 < λ2 and compare it versus a single frequency

reconstructions with the wavelengths λ1 and λ2 as well as versus the synthetic wavelength Λ1,2 = λ1λ2/(λ2 −
λ1). The measurement sensitivity is reduced when one considers larger wavelengths. This effect can be modelled
by the noise standard deviation proportional to the wavelength. Thus, the noise level in the data corresponding
to the wavelength Λ1,2 is much larger than that for the smaller wavelength λ1 and λ2.

The proposed algorithm shows a much better accuracy for the two-frequency data than for the data above
mentioned corresponding single frequency scenarios. Another advantage of the multifrequency scenario is its
ability to reconstruct the absolute phase for continuous surfaces with huge range and large derivatives. The
multifrequency estimation implements an intelligent use of the multichannel data leading to effective phase
unwrapping in scenarios in which the unwrapping based on any of the data channels would fail. Moreover, the
multifrequency data processing allows to successfully unwrap discontinuous surfaces in situations in which the
separate channel processing has no chance for success.

In what follows, we present experiments illustrating the LS-MF-PEARLS performance for continuous and
discontinuous phase surfaces. For the phase unwrap of the filtered wrapped phase, we use the PUMA algorithm
[1], which is able to work with discontinuities. LPA is exploited with the uniform square windows wh defined
on the integer symmetric grid {(x, y) : |x|, |y| ≤ h}; thus, the number of pixels of wh is (2h + 1). The ICI
parameter was set to Γ = 2.0 and the window sizes to H ∈ {1, 2, 3, 4} and H = H − 1 for ML-MF-PEARLS
(see [10] for details) and LS-MF-PEARLS algorithms, respectively. The frequencies (ĉ2,s, ĉ3,s) defined in (12)
were computed via FFT zero-padded to the size 64 × 64.

As a test function, we use φ(x, y) = Aφ × exp(−x2/(2σ2
x) − y2/(2σ2

y)), a Gaussian shaped surface, with
σx = 10, σy = 15, and Aφ = 40 × 2π. The surface is defined on a square grid with integer arguments x, y,
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Fig. 1. Discontinuous phase reconstruction. First row: true phase surface; ML-MF-PEARLS reconstruction (µ = 9/10); and LS-
MF-PEARLS reconstruction (µ = 9/10). Second row: single frequency PEARLS reconstruction (λ2 = 1); single frequency PEARLS
reconstruction (λ2 = 9/10), and single beat-frequency PEARLS reconstruction (λ12 = 1/10).

−49 ≤ x, y ≤ 50. The maximum value of φ is 40 × 2π and the maximum values of the first differences are
about 15.2 radians. With such high phase differences, any single channel based unwrapping algorithm fail due
to many phase differences larger than π. The noisy observations were generated according to (4), with Bs = 1.

We produce two groups of experiments assuming that we have two channels observations with (µ1 = 1, µ2 =
4/5) and (µ1 = 1, µ2 = 9/10). Then for the synthetic wavelength Λ1,2, we introduce the phase scaling factor
as µ1,2 = 1/Λ1,2 = λ1 − λ2. For the selected µ1 = 1 and µ2 = 4/5, we have µ1,2 = 1/5 or Λ1,2 = 5, and for
µ1 = 1 and µ2 = 9/10, we have µ1,2 = 1/10 or Λ1,2 = 10. The period Q corresponding beat wavelength is
Λ1,2 = 5, for µ1 = 1 and µ2 = 4/5, and Λ1,2 = 10, for µ1 = 1 and µ2 = 9/10.

It order to make comparable the accuracy obtained for the signals of different wavelength, we assume that the
noise standard deviation is proportional to the wavelength or inverse proportional to the phase scaling factors
µ:

σ1 = σ/µ1, σ2 = σ/µ2, σ1,2 = σ/µ1,2, (18)

where σ is a varying parameter. Tables I and II show root mean square errors (RMSE) for the following
algorithms: PEARLS, introduced in [9], LS-MF-PEARLS (the proposed algorithm), and ML-MF-PEARLS,
introduced in [10]). LS-MF-PEARLS and ML-MF-PEARLS shows systematically better accuracy and manage
to unwrap the phase when single frequency algorithms fail. Perhaps a bit surprisingly, the performance of the
algorithms LS-MF-PEARLS and ML-MF-PEARLS is nearly identical, provided that the sets of the window
H − 1 and H are used for LS-MF-PEARLS and ML-MF-PEARLS, respectively.

TABLE I
RMSE (IN RAD), Aφ = 40 × 2π, µ1 = 1, µ2 = 4/5

Algorithm σ
.3 .1 .01

PEARLS, (µ1 = 1) fail fail fail
PEARLS, (µ2 = 4/5) fail fail fail
PEARLS, (µ1,2 = 1/5) fail 0.722 0.252
LS-MF-PEARLS 0.588 0.206 0.194
ML-MF-PEARLS 0.587 0.206 0.194



TABLE II
RMSE (IN RAD), Aφ = 40 × 2π, µ1 = 1, µ2 = 9/10

Algorithm σ
.3 .1 .01

PEARLS, (µ1 = 1) fail fail fail
PEARLS, (µ2 = 9/10) fail fail fail
PEARLS, (µ1,2 = 1/10) fail 2.268 0.302
LS-MF-PEARLS 0.6759 0.0746 0.0511
ML-MF-PEARLS 0.6718 0.0750 0.0487

We now illustrate the potential in handling discontinuities of bringing together the adaptive denoising and
the unwrapping. For the test, we use the Gaussian surface with one quarter set to zero. The corresponding
results are shown in Fig. 1. The developed algorithm confirms its clear ability to reconstruct a strongly varying
discontinuous absolute phase from noisy multifrequency data.
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