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Abstract. The paper introduces a new approach to absolute phase esti-
mation from frequency diverse wrapped observations. We adopt a discon-
tinuity preserving nonparametric regression technique, where the phase is
reconstructed based on a local maximum likelihood criterion. It is shown
that this criterion, applied to the multifrequency data, besides filtering
the noise, yields a 27 Q-periodic solution, where @) > 1 is an integer. The
filtering algorithm is based on local polynomial (LPA) approximation for
the design of nonlinear filters (estimators) and the adaptation of these
filters to the unknown spatially smoothness of the absolute phase. De-
pending on the value of (Q and of the original phase range, we may obtain
complete or partial phase unwrapping. In the latter case, we apply the re-
cently introduced robust (in the sense of discontinuity preserving) PUMA
unwrapping algorithm [I]. Simulations give evidence that the proposed
method yields state-of-the-art performance, enabling phase unwrapping
in extraordinary difficult situations when all other algorithms fail.

Keywords: Interferometric imaging, phase unwrapping, diversity, local
maximum-likelihood, adaptive filtering.

1 Introduction

Many remote sensing systems exploit the phase coherence between the transmit-
ted and the scattered waves to infer information about physical and geometrical
properties of the illuminated objects such as shape, deformation, movement, and
structure of the object’s surface. Phase estimation plays, therefore, a central role
in these coherent imaging systems. For instance, in synthetic aperture radar in-
terferometry (InSAR), the phase is proportional to the terrain elevation height;
in magnetic resonance imaging, the phase is used to measure temperature, to
map the main magnetic field inhomogeneity, to identify veins in the tissues, and
to segment water from fat. Other examples can be found in adaptive optics,
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diffraction tomography, nondestructive testing of components, and deformation
and vibration measurements (see, e.g., [2], [], [3], [B]). In all these applications,
the observation mechanism is a 27-periodic function of the true phase, hereafter
termed absolute phase. The inversion of this function in the interval [—m,)
yields the so-called principal phase values, or wrapped phases, or interferogram;
if the true phase is outside the interval [—m, ), the associated observed value is
wrapped into it, corresponding to the addition/subtraction of an integer num-
ber of 27. It is thus impossible to unambiguously reconstruct the absolute phase,
unless additional assumptions are introduced into this inference problem.

Data acquisition with diversity has been exploited to eliminate or reduce
the ambiguity of absolute phase reconstruction problem. In this paper, we con-
sider multichannel sensors, each one operating at a different frequency (or wave-
lengths).

Let ¢, for s =1,..., L, stand for the wrapped phase acquired by a L-channel
sensor. In the absence of noise, the wrapped phase is related with the true
absolute phase, ¢, as u p = 1, + 27ks, where ks is an integer, ¢, € [—7, 7), and
l is a channel depending scale parameter, to which we attach the meaning of
relative frequency. This parameter establishes a link between the absolute phase
o and the wrapped phase 1, measured at the s-channel:

Y, =W(uzp,) = mod{p,o+m2r} —m, s=1,...,L, (1)

where W(-) is the so-called wrapping operator, which decomposes the absolute
phase ¢ into two parts: the fractional part ¢, and the integer part defined as
27ks. The integers ks are known in interferometry as fringe orders. We assume
that the frequencies for the different channels are strictly decreasing, i.e., p; >
fo > ... > fig, or, equivalently, the corresponding wavelengths A\, = 1/pu, are
strictly increasing, A1 < Ag,... Af.

Let us mention some of the techniques used for the multifrequency phase
unwrap. Multi-frequency interferometry (see, e.g., [I6]) provides a solution for
fringe order identification using the method of excess fractions. This technique
computes a set of integers ks compatible with the simultaneous set of equations
e =Yg+ 2mkg, for s =1,..., L. It is assumed that the frequencies p, do not
share common factors, i.e., they are pair-wise relatively prime. The solution is
obtained by maximizing the interval of possible absolute phase values.

A different approach formulates the phase unwrapping problem in terms of the
Chinese remainder theorem, where the absolute phase ¢ is reconstructed from
the remainders 1, given the frequencies p4. This formulation assumes that all
variables known and unknown are scaled to be integral. An accurate theory and
results, in particular concerning the existence of a unique solution, is a strong
side of this approach [I§].

The initial versions of the excess fraction and Chinese remainder theorem
based methods are highly sensitive to random errors. Efforts have been made
to make these methods resistant to noise. The works [19] and [I7], based on he
Chinese remainder approach, are results of these efforts.

Statistical modeling for multi-frequency phase unwrapping based on the max-
imum likelihood approach is proposed in [13]. This work addresses the surface
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reconstruction from the multifrequency InSAR data. The unknown surface is
approximated by local planes. The optimization problem therein formulated is
tackled with simulated annealing.

An obvious idea that comes to mind to attenuate the damaging effect of
the noise is prefiltering the wrapped observations. We would like, however, to
emphasize that prefiltering, although desirable, is a rather delicate task. In fact,
if prefiltering is too strong, the essential pattern of the absolute phase coded
in the wrapped phase is damaged, and the reconstruction of absolute phase is
compromised. On the other hand, if we do not filter, the unwrapping may be
impossible because of the noise. A conclusion is, therefore, that filtering is crucial
but should be designed very carefully. One of the ways to ensure efficiency is to
adapt the strength of the prefiltering according to the phase surface smoothness
and the noise level. In this paper, we use the wrapped phase prefiltering technique
developed in [20] for a single frequency phase unwrapping.

2 Proposed Approach

We introduce a novel phase unwrapping technique based on local polynomial ap-
proximation (LPA) with varying adaptive neighborhood used in reconstruction.
We assume that the absolute phase is a piecewise smooth function, which is well
approximated by a polynomial in a neighborhood of the estimation point. Besides
the wrapped phase, also the size and possibly the shape of this neighborhood
are estimated. The adaptive window selection is based on two independent ideas:
local approximation for design of nonlinear filters (estimators) and adaptation of
these filters to the unknown spatially varying smoothness of the absolute phase.
We use LPA for approximation in a sliding varying size window and intersection
of confidence intervals (ICI) for window size adaptation. The proposed technique
is a development of the PEARLS algorithm proposed for the single wavelength
phase reconstruction from noisy data [20].
We assume that the frequencies p, can be represented as ratios

[s = Ds/ s (2)

where ps, g5 are positive integers and the pairs (ps, ¢:), for s,t € {1,...,L} do
not have common multipliers, i.e., ps and ¢; are pair-wise relatively prime.
Let

L
Q = H gs- (3)
s=1

Based on the LPA of the phase, the first step of the proposed algorithm
computes the maximum likelihood estimate of the absolute phase. As a result,
we obtain an unambiguous absolute phase estimates in the interval [-Q - 7, Q@ -
7). Equivalently, we get an 27Q periodic estimate. The adaptive window size
LPA is a key technical element in the noise suppression and reconstruction of
this wrapped 27@-phase. The complete unwrapping is achieved by applying an
unwrapping algorithm. In our implementation, we use the PUMA algorithm [I],
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which is able to preserve discontinuities by using graph cut based methods to
solve the integer optimization problem associated to the phase unwrapping.
The polynomial modeling is a popular idea for both wrapped phase denoising
and noisy phase unwrap. Using the local polynomial fit in terms of the phase
tracking for the phase unwrap is proposed in the paper [12]. In the paper [13] the
linear local polynomial approximation of height profiles is used for the surface
reconstruction from the multifrequency InSAR data. Different modifications of
the local polynomial approximation oriented to wrapped phase denoising are
introduced in the regularized phase-tracking [14], [15], the multiple-parameter
least squares [8], and the windowed Fourier ridges [9]. Compared with these
works, the efficiency of the PEARLS algorithm [20] is based on the window size
selection adaptiveness introduced by the ICI technique, which locally adapts the
amount of smoothing according to the data. In particular, the discontinuities
are preserved, what is a sine quo non condition for the success of the posterior
unwrapping; in fact, as discussed in [7], it is preferable to unwrap the noisy in-
terferogram than a filtered version in which the discontinuities or the areas of
high phase rate have been washed out. In this paper, the PEARLS [20] adap-
tive filtering is generalized for the multifrequency data. Experiments based on
simulations give evidence that the developed unwrapping is very efficient for the
continuous as well as discontinuous absolute phase with a range of the phase
variation so large that there no alternative algorithms able to unwrap this data.

3 Local Maximum Likelihood Technique

Herein, we adopt the complex-valued (cos/sin) observation model
us = Bsexp(ju,p) +ns, s=1,..,L, Bs >0, (4)

where B, are amplitudes of the harmonic phase functions, and ng is zero-mean
independent complex-valued circular Gaussian random noises of variance equal
to1,i.e., E{Rens} = 0, E{Imn,} = 0, E{RensImns} = 0, E{(Ren,)?} = 1/2,
E{(Imn)?} = 1/2. We assume that the amplitudes B; are non-negative in order
to avoid ambiguities in the phase p,p, as the change of the amplitude sign is
equivalent to a phase change of +7 in p . We note that the assumption of equal
noise variance for all channel is not limitative as different noise variances can be
accounted for by rescaling us and A in (@) by the corresponding noise standard
deviation.

Model (@) accurately describes the acquisition mechanism of many interfero-
metric applications, such as InSAR and magnetic resonance imaging. Further-
more, it retains the principal characteristics of most interferometric applications:
it is a 2m-periodic function of i p and, thus, we have only access to the wrapped
phase.

Since we are interested in two-dimensional problems, we assume that the
observations are given on a regular 2D grid, X C Z?. The unwrapping problem
is to reconstruct the absolute phase ¢(z,y) from the observed wrapped noisy
Y (x,y), for z,y € X.
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Let us define the parameterized family of first order polynomials

@(U,U|C) :pT(u,v)c, (5)
where p = [p1,p2,p3]T = [1,u,v]T and ¢ = [e1, ca, c3]7 is a vector of parameters.
Assume that in some neighborhood of the point (z,y), the phase ¢ is well ap-
proximated by an element of the family (&l); i.e., for (z;,y;) in a neighborhood
of the origin, there exists a vector ¢ such that

ol + 1,y + x1) ~ ¢(21, Y1) (6)
To infer ¢ and B = {By,...,Br} (see {@)), we compute
¢ = argc%lgo Ly(c,B). (7)

where Ly, (c,B) is a negative local log-likelihood function given by

Ly(c,B) = (8)

YLy
Wh,,
o2 . s

S

u, (x4 21,y +y1) — Bs exp(jip, @ (a1, yile) .

Terms wp1,s are window weights and can be different for different channels.
The local model @(u,v|c) (@) is the same for all frequency channels. We start
by minimization Lj with respect to B, which reduces to decoupled minimiza-
tions with respect to By > 0, one for channel. Noting that Relexp(—ju c1)F]| =
|F'| cos(p,c1 — angle(F)), where F is a complex and angle(F) € [—m,n[ is the

angle of F', and that ming>g{aB* —2Bc} = —c3 /a, where a > 0 and b are reals
and x4 is the positive par of z, then after some manipulations, we obtain
—Li(c) = 9)

1 1
Z O_g Zl Whis ‘vahys(ﬂ’sc% Msc3)‘2 COS?&- [H’scl - angle(vahys(uSCQ, MSCS.))] )

S

where Fy, 5,5 (pcz, pieg) is the windowed/weighted Fourier transform of u_,

Foyns(wa,ws) =Y wheu, (x4 21,y + y1) exp(—j(wazs +wsyr)),  (10)
l

calculated for the frequencies (wa = p co,ws = pgcs). 3
The phase estimate is based on the solution of the optimization of L; over
the three phase variables ¢y, c3, c3

& = argmax Ly, (c). (11)

Let the condition (@) be fulfilled and @ = [] ¢s. Given fixed values of ¢z and c,
the criterion (@) is a periodic function of ¢; with the period 27@Q). Define the main
interval for ¢; to be [ @, Q). Thus the optimization on ¢; is restricted to the
interval [—7Q, mQ). We term this effect periodization of the absolute phase ¢,
given that its estimation is restricted to this interval only. Because ) > max; ¢s,
this periodization means also a partial unwrapping of the phase from the periods
gs to the larger period Q.

Ye,zy =zifz>0and z, =0if z <O0.
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4 Approximating the ML Estimate

The 3D optimization (1)) is quite demanding. Pragmatically, we compute a
suboptimal solution based on the assumption

Fuh,s(C2,5:C3,5) 22 Fupn,s (g2, psC3), (12)

where é; and é3 are the solution of (IIl) and

(Co,s,C3,5) = arg max | Fuo,h,s(c2, ¢3)|- (13)
We note that the assumption ([I2)) holds true at least in two scenarios: a) sin-
gle channel; b) high signal-to-noise ratio. When the noise power increases, the
above assumption is violated and we can not guarantee a performance close to
optimal. Nevertheless, we have obtained very good estimates, even in medium
to low signal-to-noise ratio scenarios. The comparison between the optimal and
suboptimal estimates is, however, beyond the scope of this paper.
Let us introduce the right hand side of (I2) into (@). We are then led to the
absolute phase estimate ¢ = ¢; calculated by the single-variable optimization

¢1 = arg max ih(cl),
c1

~ 1 1 . R
Lh(cl) = Z Jz Zl Wh s |E07h78(62787 0373)‘2 COS%'_(,U,Scl - 7%) (14)
S W

{bs = angle(EU,h,s(éZSa éS,s))-

Phases 72157 for s = 1,...,L, are the LPA estimates of the corresponding
wrapped phases 1, = W (j1,). Again note that the criterion Ly,(c1) is periodic
with respect to ¢; with period 27@Q. Thus, the optimization can be performed
only on the finite interval [—-7Q, 7Q):

¢ = arg Cle[r_nﬂagﬁ@) Lp(c1). (15)
If this interval covers the variation range of the absolute phase ¢, ¢ €
[-7Q,7Q), the estimate (IH]) gives a solution of the multifrequency phase un-
wrap problem. If ¢ ¢ [-7Q, 7Q), i.e., the range of the absolute phase ¢ is larger
than 27Q, then ¢; gives the partial phase unwrapping periodized to the interval
[-7Q,7Q). A complete unwrapping is obtained by applying one of the standard
unwrapping algorithms, as these partially unwrapped data can be treated as
obtained from a single sensor modulo-27Q) wrapped phase. The above formu-
las define what we call ML-MF-PEARLS algorithm as short for Maximum
Likelihood Multi-Frequency Phase Estimation using Adaptive Regularization
based on Local Smoothing.

5 Experimental Results

Let us we consider a two-frequency scenario with the wavelength A\; < Ay and
compare it versus a single frequency reconstructions with the wavelengths \;
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Fig. 1. Discontinuos phase reconstruction: a) true phase surface, b) ML-MF-PEARS
reconstruction, (u; = 1, uy = 4/5), ¢) ML-MF-PEARS reconstruction, (p; = 1, sty =
9/10), d) a single frequency PEARLS reconstruction, p; = 1 e) a single frequency
PEARLS reconstruction, u, = 9/10, f) a single beat-frequency PEARLS reconstruc-
tion, py, = 10

and Ay as well as versus the synthetic wavelength A2 = AA2/(A2 — A1). The
measurement sensitivity is reduced when one considers larger wavelengths. This
effect can be modelled by the noise standard deviation proportional to the wave-
length. Thus, the noise level in the data corresponding to the wavelength A; o
is much larger than that for the smaller wavelength A; and As.

The proposed algorithm shows a much better accuracy for the two-frequency
data than for the data above mentioned corresponding single frequency scenarios.
Another advantage of the multifrequency scenario is its ability to reconstruct
the absolute phase for continuous surfaces with huge range and large derivatives.
The multifrequency estimation implements an intelligent use of the multichannel
data leading to effective phase unwrapping in scenarios in which the unwrapping
based on any of the data channels would fail. Moreover, the multifrequency data
processing allows to successfully unwrap discontinuous surfaces in situations in
which the separate channel processing has no chance for success.

In what follows, we present several experiments illustrating the ML-MF-
PEARLS performance for continuous and discontinuous phase surfaces. For the
phase unwrap of the filtered wrapped phase, we use the PUMA algorithm [I],
which is able to work with discontinuities. LPA is exploited with the uniform
square windows wy, defined on the integer symmetric grid {(z,y) : |z|,|y| < h};
thus, the number of pixels of wy, is (2h+1). The ICI parameter was set to I' = 2.0
and the window sizes to H € {1,2,3,4}. The frequencies ([I3]) were computed
via FFT zero-padded to the size 64 x 64.

As a test function, we use ¢(z,y) = A, x exp(—z?/(202) — y*/(203)), a
Gaussian shaped surface, with o, = 10, o, = 15, and A, = 40 x 27. The surface
is defined on a square grid with integer arguments z, y, —49 < z,y < 50. The
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maximum value of ¢ is 40 x 27 and the maximum values of the first differences
are about 15.2 radians. With such high phase differences, any single channel
based unwrapping algorithm fail due to many phase differences larger than 7.
The noisy observations were generated according to (@), for By = 1.

We produce two groups of experiments assuming that we have two channels
observations with (u; = 1,4y = 4/5) and (u; = 1,y = 9/10), respectively.
Then for the synthetic wavelength A, » we introduce the phase scaling factor
as fy o = 1/A12 = A1 — Xo. For the selected py = 1 and py = 4/5 we have
po = 1/50r A1 o =5, and for y; = 1 and p, = 9/10 we have p; , = 1/10
or A1 2 = 10. Note that for all these cases we have the period @) equal to the
corresponding beat wavelength A; o = 5, 10.

It order to make comparable the accuracy results obtained for the signals of
different wavelength, we assume that the noise standard deviation is proportional
to the wavelength or inverse proportional to the phase scalling factors u:

01 = O—/;U’la 02 = O—/;U’Qa 01,2 = J/:“’l,Qa (16)

where o is a varying parameter. Tables [I] and 2] shows some of the results. The
ML-MF-PEARLS shows systematically better accuracy and manage to unwrap
the phase when single frequency algorithms fail.

Table 1. RMSE (in rad), A, =40 X 27, p; = 1, uy = 4/5

Algorithm \ o 3 1 .01
PEARLS, pu, =1 fail fail fail
PEARLS, p1, =4/5 fail fail fail
PEARLS, iy , = 1/5 fail  0.722 0.252
ML-MF-PEARLS  0.587 0.206 0.194

Table 2. RMSE (in rad), A, =40 x 27, py =1, uy = 9/10

Algorithm \ o 301 .01
PEARLS, p, =1 fail fail fail
PEARLS, py, = 9/10 fail fail fail
PEARLS, j1; 5 = 1/10 fail 3.48 0.496
ML-MF-PEARLS 1.26 0.204 0.194

We now illustrate the potential in handling discontinuities of bringing to-
gether the adaptive denoising and the unwrapping. For the test, we use the
Gaussian surface with one quarter set to zero. The corresponding results are
shown in Fig.[Il The developed algorithm confirms its clear ability to reconstruct
a strongly varying discontinuous absolute phase from noisy multifrequency data.

Figure [2 shows results based on a simulated InSAR example supplied in the
book [3]. This data set have been generated based on a real digital elevation
model of mountainous terrain around Long’s Peak using a high-fidelity InSAR
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Fig. 2. Simulated SAR based on a real digital elevation model of mountainous terrain
around Long’s Peak using a high-fidelity InSAR simulator (see [3] for details): a) origi-
nal interferogram (for p; = 1); b) Window sizes given by ICI; ¢) LPA phase estimation
corresponding to ¥, = W(u,p); d) ML-MF-PEARS reconstruction for g, = 1 and
1o = 4/5 corresponding to rmse = 0.3 rad (see text for details)

simulator that models the SAR point spread function, the InNSAR geometry, the
speckle noise (4 looks) and the layover and shadow phenomena. To simulate
diversity in the acquisition, besides the interferogram supplied with the data,
we have generated another interferogram, according to the statistics of a fully
developed speckle (see, e.g., [7] for details) with a frequency py = 4/5.

Figure [ a) shows the original interferogram corresponding to p; = 1. Due
to noise, areas of low coherence, and layover, the estimation of the original
phase based on this interferogram is a very hard problem, which does not yield
reasonable estimates, unless external information in the form of quality maps
is used [3], [7]. Parts b) and c¢) shows the window sizes given by ICI and the
LPA phase estimation corresponding to ©¥; = W(u,¢), respectively. Part d)
shows ML-MF-PEARS reconstruction, where the areas of very low coherence
were removed and interpolated from the neighbors. We stress that we have not
used these quality information in the estimation phase. The estimation error is
RMSE = 0.3 rad, which, having in mind that the phase range is larger the 120
rad, is a very good figure.

The leading term of the computational complexity of the ML-MF-PEARLS
is O(n*%) (n is the number of pixels) due to the PUMA algorithm. This is,
however, the worst case figure. The practical complexity is very close to O(n)
[1]. In practice, we have observed that a good approximation of the algorithm
complexity is given by complexity of nL FFTs, i.e., (2LP%log, P)n, where L is
the number of channels and P x P is the size of the FFTs. The examples shown
is this section took less than 30 seconds in a PC equipped with a dual core CPU
running at 3.0GHz
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6 Concluding Remarks

We have introduced ML-MF-PEARLS, a new adaptive algorithm to estimate the
absolute phase from frequency diverse wrapped observations. The new method-
ology is based on local maximum likelihood phase estimates. The true phase is
approximated by a local polynomial with varying adaptive neighborhood used
in reconstruction. This mechanism is critical in preserving the discontinuities
of piecewise smooth absolute phase surfaces. The ML-MF-PEARLS, algorithm,
besides filtering the noise, yields a 2w@-periodic solution, where ) > 1 is an inte-
ger. Depending on the value of (Q and of the original phase range, we may obtain
complete or partial phase unwrapping. In the latter case, we apply the recently
introduced robust (in the sense of discontinuity preserving) PUMA unwrap-
ping algorithm [I]. In a set of experiments, we gave evidence that the ML-MF-
PEARLS algorithm is able to produce useful unwrappings, whereas state-of-the
art competitors fail.
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