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Abstract. The paper introduces modelling and optimization contribu-

tions on a class of Bayesian wavelet-based image deconvolution problems.

Main assumptions of this class are: 1) space-invariant blur and additive

white Gaussian noise; 2) prior given by a linear (finite of infinite) de-

composition of Gaussian densities. Many heavy-tailed priors on wavelet

coefficients of natural images admit this decomposition. To compute the

maximum a posteriori (MAP) estimate, we propose a generalized expecta-

tion maximization (GEM) algorithm where the missing variables are the

Gaussian modes. The maximization step of the EM algorithm is approxi-

mated by a stationary second order iterative method. The result is a GEM

algorithm of O(N log N) computational complexity. In comparison with

state-of-the-art methods, the proposed algorithm either outperforms or

equals them, with low computational complexity.

1 Introduction

Image deconvolution is a longstanding linear inverse problem with applications
in remote sensing, medical imaging, astronomy, seismology, and, more generally,
in image restoration [1].

The challenge in many linear inverse problems is that they are ill-posed, i.e.,
either the linear operator does not admit inverse or it is near singular yielding
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highly noise sensitive solutions. To cope with the ill-posed nature of these prob-
lems, a large number of traditional techniques has been developed, most of them
under the regularization or the Bayesian frameworks [2], [3],[4], [5], [6].

The heart of the regularization and Bayesian approaches is the a priori knowl-
edge expressed by the prior/regularization term. A “good” prior should express
knowledge about images being described. For example, the weak membrane [7],
in the regularization setup, and the compound Gauss Markov random field [8],
in the Bayesian setup were conceived to model piecewise-smooth images. This
was an improvement over the classical quadratic priors.

Wavelet-based approaches have recently been adopted to solve linear inverse
problems [9], [10], [11], [12], [13], [14], [15], [16]. Underlying this direction is the
parsimonious representation provided by the wavelet transform of a large class
of natural images [17]: images are essentially described by a few large wavelet
coefficients. This fact has fostered Bayesian and regularization approaches where
the prior favors a few large wavelet coefficients and many nearly zero ones (the
so-called heavy-tailed priors).

In formulating linear space-invariant inverse problems in the wavelet domain,
one is frequently faced with linear operations resulting from the composition of
Toeplitz operators with the wavelet transforms. This composed operator is not
diagonal and introduces unbearable computational complexity in the wavelet-
based deconvolution schemes. Recent works [18] and [16] have circumventing this
difficulty by recognizing that each of these operations per se can be computed
efficiently with fast algorithms.

1.1 Proposed approach

We introduce a wavelet-based Bayesian solution to image deconvolution. The ob-
servation mechanism comprehends space-invariant blur and additive Gaussian
noise. The wavelet coefficients are assumed to be independent with density given
by a linear (finite of infinite) combination of Gaussian densities. This class of
densities models many heavy-tailed priors, namely, the Gaussian mixture mod-
els (GMM), the Jeffreys’ non-informative prior [19], the Laplacian prior, the
equivalent garrote prior (see [20] and papers therein).

To compute the MAP estimate, we propose an EM algorithm where the miss-
ing variables are the Gaussian modes. The maximization step of the EM algo-
rithm includes a huge non-diagonal linear system with unbearable computational
complexity. To avoid this difficulty we approximate the linear system solution
by a few iterations of a stationary second order iterative method. The resulting



scheme is a generalized expectation maximization (GEM) algorithm, achieving
convergence in a few tens of iterations. The fast Fourier transform (FFT) and
the discrete wavelet transform (DWT) are the heaviest computations on each
GEM step. Thus the overall algorithm complexity is O(N log N).

In a set of experiments, the proposed algorithm either equals or outperforms
state-of-the-art methods [10], [15], [16], [21], [12].

The paper is organized as follows. Section 2 formulates the restoration prob-
lem in the wavelet domain under the Bayesian framework. Section 3 introduces
a class of heavy-tailed priors that can be expressed as linear combination of
Gaussian terms. It is shown that this class contains many of the heavy-tailed
priors used in wavelet-based image denoising and restoration. Still in Section
3, it is introduced a generalized expectation maximization algorithm aimed at
the fast computation of the maximum a posteriori image estimate. Finally, Sec-
tion 4 presents experimental results illustrating the effectiveness of the proposed
methodology.

2 Problem formulation

Let us denote x and y as vectors containing the true and the observed image
gray levels, respectively, arranged in column lexicographic ordering. We assume,
without loss of generality, that images are square of size N (number of pixels).

The observation model herein considered is

y = Hx + n, (1)

where H is a square block-Toeplitz matrix accounting for space-invariant blur
and n is a sample of zero-mean white Gaussian noise vector with density p(n) =
N (n|0, σ2I) [N (z|m,C) denotes the Gaussian multivariate density of mean m
and covariance C evaluated at z, and I is the identity matrix].

Let W denote the orthogonal discrete wavelet transform (DWT) and θ =
Wx the wavelet coefficients of x. Since W is orthogonal, expression (1) can be
written as

y = HWT θ + n. (2)

The density of the observed vector y given θ is then p(y|θ) = N (y|HWT θ, σ2I).
Given a prior p(θ), the maximum a posteriori (MAP) estimate of θ is given by

θ̂ = arg max
θ
{log p(y|θ) + log p(θ)} (3)

= arg max
θ

{−‖y −HWT θ‖2
2σ2

+ log p(θ)
}

. (4)



As in many recent works, we assume that the wavelet coefficients are mutually
independent and identically distributed, i.e.,

p(θ) =
N∏

i=1

p(θi).

The independence assumption is motivated by the high degree of decorrelation
exhibited by wavelet coefficients of natural images. Although decorrelation does
not imply independence, the former has led to very good results.

If H = I, i.e., there is no blur, the image restoration at hand fall into a
denoising problem. In this case the maximization (4) reduces to N decoupled
coefficient-wise maximizations, what can be efficiently solved exploiting the or-
thogonality of W and using fast implementations of the DWT (see, e.g. [20],
[22]).

If H 6= I, i.e., there exists blur, the maximization (4) cannot be decoupled.
Furthermore, matrix HWT of size N × N introduces complexity beyond rea-
sonable. In the next section we develop a GEM algorithm that avoids direct
manipulation of matrix HWT .

3 A GEM algorithm that avoids direct manipulation of

HWT

Let us assume that the prior on each wavelet coefficient is given by

p(θ) = Ez[p(θ|z)], (5)

where z is a continuous or discrete random variable, and

p(θ|z) = N [θ|0, σ2(z)]. (6)

Many of the heavy-tailed priors used in wavelet-based image denosing/restoration
admit the decomposition implicit in the right-hand side of (5). Some examples
are listed below (see [19])

– Gaussian mixture models (GMM): z ∈ {1, . . . n} and P (z = i) is the proba-
bility of θ ∼ N [θ|0, σ2(i)]

– Laplacian prior: p(z) = γ exp(−γz), with z > 0, and σ2(z) = z

– Jeffreys prior: p(z) ∝ 1/z, with z > 0, and σ2(z) = z.
– Any even prior such that p(

√
θ) is completely monotone (see [23]).



Random vectors z ≡ (z1, . . . , zN ) and (y, z) play the role of missing data
and complete data, respectively, in our GEM formulation. The EM algorithm
generates a nondecreasing sequence [24] {p(y, θ̂t), |t = 0, 1, . . . }, where {θ̂t, |t =
0, 1, . . . } is generated by the two-step iteration

E-step:

Q(θ, θ̂t) = E
[
log[p(y, z,θ)|y, θ̂t

]
(7)

=
−‖y −HWT θ‖2

2σ2
− 1

2
θT Dtθ + cte,

where Dt ≡ diag {E[(σ−2(z1), . . . , σ−2(zN ))|θ̂t]} and cte stands for constant.
M-step:

θ̂t+1 = arg max
θ

Q(θ, θ̂t) (8)

=
(
σ2Dt + WHT HWT

)−1

WHT y. (9)

M-step (9) is impracticable from the computational point of view, as it
amounts to solving the linear system Atθ = y′, where At ≡ σ2Dt+WHT HWT

and y′ = WHT y, of size N2 and involving the matrix HWT . We tackle this
difficulty by replacing the maximization (9) with a few steps of an iterative pro-
cedure that increments Q(θ, θ̂t), with respect to θ. The resulting scheme is thus
a GEM algorithm.

Let At = Ct − R be a splitting [25] of At, where Ct ≡
(
σ2Dt + I

)
and

R ≡
(
I−WHT HWT

)
. Assuming that At is positive definite, then the second-

order iterative method defined by

ri = Atξi − y′ i = 0, 1, . . .

ξ1 = ξ0 − β0C−1
t r0

ξi+1 = αξi + (1− α)ξi−1 − βC−1
t ri i = 1, 2, . . . ,

(10)

converges to the solution of Aθ = y′, if and only if
{

0 < α < 2
0 < β < 2α/λN ,

(11)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λN are the eigenvalues of C−1
t At (see Theorem 5.9

of [25, ch. 5 ]). The optimal convergence factor is

ρopt ≡ [1−
√

λ1/λN ][1 +
√

λ1/λN ]



and is achieved for 



α = ρ2
opt + 1

β = 2α/(λ1 + λN )
β0 = β/α.

Some algebra applied to the third line of (10) leads to

ξi+1 = (α− β)ξi + (1− α)ξi−1

+βC−1
t

{
ξi + WHT

(
y −HWT ξi

)}
i = 1, 2, . . . (12)

Expression shown in the second line of (10) is also given by (12) with α = 1 and
β = β0. Given that Ct =

(
σ2Dt + I

)
is diagonal, the product WHT HWT ξi,

necessary to determine the residual ri, is the heaviest computation in each itera-
tion (12). We note however that WHT HWT ξi can be computed efficiently, since
there exists fast implementations [O(N)] of the DWT and of the inverse DWT
[17], and the product of a Toeplitz matrix by a vector can also be computed
efficiently, by embedding H in a larger block-circulant matrix. Block-circulant
matrices are diagonalized by the 2D discrete Fourier transform. Therefore, by
using the 2D fast Fourier transform, the complexity of the product of a Toeplitz
matrix by a vector is [O(N log N)] [1].

A pertinent question is the choice of the number of iterations, say p, of the
optimization step1 (O-step) assuring that Q increases, i.e., Q(ξp, θ̂t) > Q(θ̂t, θ̂t).
A very simple solution to this problem consists in computing Q(ξi, θ̂t) after
each iteration (12) and check if Q(ξi, θ̂t) > Q(θ̂t, θ̂t). Note that this procedure
adds only a small computational complexity to the GEM algorithm, since the
heaviest step in determining the quadratic function Q(ξi, θ̂t) given by (7) is the
computation of HWT θ, also needed to compute ξi in (12).

Figure 1, part a), illustrates the behavior of Q(ξi, θ̂t) and log p(θ̂t|y) for an
image of size 256×256, blur uniform of size 9×9, and blurred signal-to-noise ratio
of 40 dB. Notice that, for a given θ̂t, the plotted values of Q(ξi, θ̂t) are strictly
increasing. Part b) plots log p(θ̂t|y) as function of the total number of iterations
(12), parameterized by p (number of iterations (12) per O-step). Curves for p = 5
and for p = 11 are very close, whereas curve for p = 2 is well below the others.
This pattern of behavior was systematically observed and seems to indicate that
for p ≥ pmin, the evolution of log p(θ̂t|y) depends mainly on the total number
of iterations (12). A deep study of the balance between the number of inner and

1 From now on we refer to O-step instead of M-step, because Q(θ, θ̂t) is not maximized

with respect to θ, but only increased.



Fig. 1. a) Evolution of Q(ξi, θ̂t) − Q(θ̂t, θ̂t), for i = 1, 2, . . . , 11 and t = 0, 1, . . . , 10;

b) Evolution of log p(θ̂t|y) (up to a constant cte) parameterized with p (O-step itera-

tions).



Algorithm 1 Generalized Expectation Maximization Algorithm.
Initialization: θ̂0 {Wiener filter},
1: for t := 0 to StopRule do

2: {E-Step}
3: Dt := diag {E[(σ−2(z1), . . . , σ

−2(zN ))|θ̂t]}
4: {O-step (Increases Q(θ, θ̂t))}
5: ξ0 := θ̂t, Compute r0, ξ1 { see (10) }
6: for i := 1 to 4 do

7: ri = Atξi − y′

8: ξi+1 = αξi + (1− α)ξi−1 − βC−1
t ri

9: end for

10: θ̂t+1 = ξ5

11: end for

outer iterations is beyond the scope of this paper and should be addressed in
future work.

Algorithm 1 shows the pseudo-code for the proposed GEM scheme. The num-
ber of iterations of the O-step is set to 4. Given that C−1

t At = C−1
t σ2Dt +

C−1
t WHT HWT is positive definite, 0 ≤ λi(C−1

t σ2Dt) ≤ 1, for i = 1, . . . , N ,
and Ct, Dt, and WHT HWT are symmetric matrices, we have 0 < λi(C−1

t At) ≤
1 + λi(C−1

t WHT HWT ). Noting that 0 < λi(C−1
t ) ≤ 1 and that matrix W is

unitary, it follows that 0 < λi(C−1
t At) ≤ 1 + λN (HHT ). The approximation

λ̃1 = 0.01 and λ̃N = 1 + λN (HT H) was taken, for λ1(C−1
t At) and λN (C−1

t At),
respectively. It should be stressed that, although this approximation might be
rough, it assures that inequalities (11) are satisfied and is good enough to boost
the converge rate by an order of magnitude when comparing with the first order
iterative method obtained by setting α = 1 in (10) (see [25, ch. 5 ])).

We call attention for the following aspects of Algorithm 1:

– Unknown parameters: If there are unknown parameters in the observa-
tion model (e.g., observation noise σ2) or in the prior, they can be inferred
iteratively in the O-step.

– Computation of Dt: Matrix Dt depends on the type of prior. Below, we
list a generic diagonal element dt = E[σ2(z)|θt] of Dt for four priors (see



[19], [23], [20]):

Gaussian mixture dt =

∑n
i=1

P (z=i)
σ2

i
p(θt|z = i)

p(θt)
Laplacian prior dt = 2γ|θt|−1

Jeffreys prior dt = |θt|−2

Garrote prior dt =
−|θt|+

√
θ2

t + 4aσ2

2|θt|σ2

The denoising algorithm introduced in [20] is equivalent to the Garrote prior
with a = 3. The present formulation opens the door to adapting parameter
a to data.

– Translation-Invariant restoration: Translation- invariant (TI) wavelet-
based methods outperform the orthogonal DWT based ones, as the former
significantly reduce the blocky artifacts associated to the dyadic shifts in-
herent to the orthogonal DWT basis functions [26]. In the present setup,
replacing the orthogonal DWT with the TI-DWT does not alter the GEM
nature of the developed algorithm, as the optimization step still increment
the objective function Q(θ, θ̂t).

4 Experimental results

We now present a set of four experiments illustrating the performance of Al-
gorithm 1. Original images are cameraman (experiments 1, 2, and 3,) and lena
(experiment 4) both of size 256×256. Estimation results are compared with
state-of-the-art methods [10], [15], [16], [21], [12]. In all experiments, we employ
TI-DWT, with Haar wavelets (Daubechies-2), and the equivalent Garrote prior
with a = 3 as it yields the best results among priors compared in paper [16].
Noise is assumed unknown and the stopping rule is

‖x̂t+1 − x̂t‖2
‖x̂t‖2 < 2× 10−3σ2.

In the first experiment we take the setup of [16]: blur uniform of size 9 × 9
and signal-to-noise-ratio of the blurred image (BSNR) set to BSNR=40 dB. In
the second and third experiments we consider the setup of [16], [15]: point spread
function of blur hij = (1+ i2 +j2), for i, j = −7, . . . , 7, and noise variances set to
σ2 = 2 for experiment 2 and σ2 = 8 for experiment 3. Finally, in experiment 4,
we use the setup of [12]: 5×5 separarable blur filter with weights [1, 4, 6, 4, 1]/16
and noise of standard variance σ = 7.



Table 1. SNR improvements (ISNR) of the proposed algorithm (Algoritm 1) and

methods [10], [15], [16], [21], [12].

ISNR (dB)

Method Exp1 Exp2 Exp3 Exp4

Algoritm 1 8.10 7.47 5.17 2.73

Figueiredo & Nowak [16] 7.02 7.22 5.06 2.42

Neelamani et al. [21] 7.30 – – –

Banham & Katsaggelos [10] 6.70 – – –

Jalobeanu et al. [15] – 6.75 4.85 –

Liu & Moulin [12] – – – 1.08

Table 1 shows the signal-to-noise improvements (ISNR) of the proposed ap-
proach and methods [10], [15], [16], [21], [12], for the four experiments. Algorithm
1 outperforms the others in all experiments. The number of GEM iterations to
satisfy the stop criterion was 55, 10, 8, and 3, for the experiments 1, 2, 3, and
4, respectively.

Figure 2a) shows the cameraman image, part b) is a degraded version (blur
(9×9) uniform, BSNR=40 dB), and part c) is the restored image with Algorithm
1, corresponding to a ISNR of 8.1dB.

Figure 3a) shows the cameraman image, part b) is a degraded version (hij =
(1 + i2 + j2), for i, j = −7, . . . , 7, and noise variance set to σ2 = 8), and part c)
is the restored image with Algorithm 1, corresponding to a ISNR of 5.17dB.

Figure 4a) shows the lena image, part b) is a degraded version (blur with
weights [1, 4, 6, 4, 1]/16 and noise of standard variance σ = 7), and part c) is the
restored image with Algorithm 1, corresponding to a ISNR of 2.73dB.

5 Concluding remarks

We developed a new fast Bayesian wavelet-based algorithm to image deconvolu-
tion. To compute the MAP estimate, we adopted a GEM optimization algorithm
that employs a second order stationary iterative procedure to approximate the
M-step of the EM algorithm. The total complexity is O(N log N) (N is the num-
ber of image pixels). In a set of experiments the proposed methodology competes
with state-of-the-art methods.



Fig. 2. Camera-man: a) Original image; b) Blurred noisy image (blur (9× 9) uniform,

BSNR=40dB); c) Restored image with Algorithm 1 (ISNR = 8.1dB).



Fig. 3. a) Original image; b) Blurred noisy image (blur hij = (1 + i2 + j2), for i, j =

−7, . . . , 7, and noise variance set to σ2 = 8); c) Restored image with Algorithm 1 (ISNR

= 5.17dB).



Fig. 4. a) Original image; b) Blurred noisy image (separable blur filter ( blur with

with weights [1, 4, 6, 4, 1]/16 and noise of standard variance σ = 7); b) Restored imaged

Algorithm 1 (ISNR = 2.73dB).
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