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1900-118, Lisboa, Portugal

Antonio Plaza

Department of Technology of Computers and
Communications, University of Extremadura,

E-10071 Caceres, Spain

ABSTRACT

This paper introduces a new supervised Bayesian approach tohyper-
spectral image segmentation. The algorithm mainly consists of two
steps: (a) learning, for each class label, the posterior probability dis-
tributions, based on a multinomial logistic regression model; (b) seg-
menting the hyperspectral image, based on the posterior probability
distribution of the image of class labels built on the learned pixel-
wise class distributions and on a multi-level logistic prior encoding
the spatial information. Aiming at reducing the costs of acquiring
large training sets, we use active label selection based on the the
posterior marginals of the complete modelprovided by Belief prop-
agation. A comparison of the proposed method with state-of-the-art
competitors shows its effectiveness.

Index Terms— Hyperspectral image segmentation, multinomial
logistic regression, spatial information, Markov random field, active
label selection, belief propagation.

1. INTRODUCTION

In recent years, with the development of remote sensing sensors,
hyperspectral images are widely available. The special characteris-
tics of hyperspectral data sets bring difficult processing problems.
For example, the Hughes phenomenon [1] comes out as the data
dimensionality increases. In order to get an acceptable classifica-
tion accuracy, large amount of training samples are required, which
may be quite difficult, expensive, or sometimes impossible to get.
These difficulties have fostered the development of new classifica-
tion methods, which are able to deal with ill-posed classification
problems, in particular, high dimensional datasets and limited train-
ing samples [1]. For instance, several machine learning techniques
have been applied to extract relevant information from hyperspectral
data sets [2,3]. However, although many progresses have been made,
the difficulty in learning high dimensional densities from alimited
number of training samples is still an active area of research.

Possible approaches which are capable to circumvent this kind
of difficulties are the discriminative approach, which learns the class
distributions in high dimensional spaces by inferring the boundaries
between classes in the feature space [4, 5]. For instance, the sup-
port vector machines (SVMs) [6] are among the state-of-the-art dis-
criminative techniques in ill-posed classification problems. Due to
their ability to deal with large input spaces efficiently andto produce
sparse solutions, SVMs have been successfully used for hyperspec-
tral supervised and semi-supervised classification with limited train-
ing samples [7–11]. The multinomial logistic regression (MLR) [12]
also shows high quality while dealing with ill-posed problems, with
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the advantage over the SVMs of learning the class probability dis-
tributions themselves. Effective Sparse multinomial logistic regres-
sion (SMLR) methods are available [13,14]. These ideas havebeen
applied to hyperspectral image classification [3, 15–17] leading to
state-of-the-art performance.

In order to improve the classification accuracies obtained by
SVMs and MLR-based techniques, a recent trend is to integrate spa-
tial contextual information with spectral information in hyperspec-
tral data interpretation [3,8,10]. These methods exploit,in a way or
another, the continuity, in probability sense, of neighboring labels: it
is very likely that, in an hyperspectral image, two neighboring pixels
have the same label.

In this paper, we introduce a new Bayesian segmentation ap-
proach which exploits the spatial contextual information and imple-
ments active learning. The algorithm implements two main steps:
a) learning the posterior class probability distributionsby estimat-
ing, with the LORSAL algorithm [18], the parameters of an MLR
model; b)segmenting the hyperspectral image by inferring the im-
age class labels from a posterior distribution built on the learned
MLR model and on a multi-level logistic (MLL) prior. Active label
selection [19, 20] based on the posterior marginals of the complete
model, provided by the Belief propagation (BP) algorithm, is im-
plemented. In comparison with our previous method [21], where the
active learning depends only on the spectral information, our present
active leaning approach uses both spectral and spatial information
leading to better performances, as shown in Section 4.

The remainder of the paper is organized as follows. Section 2
formulates the problem. Section 3 describes the proposed approach.
Section 4 illustrates the active selection approach. Section 5 reports
segmentation results based on real hyperspectral datasets; in com-
parison with state-of-the-art competitors are also included. Finally,
section 6 concludes with some remarks.

2. PROBLEM FORMULATION

First, let us define the following notations used in this paper:

S ≡ {1, . . . , n} Set of integers indexing then pixels of an image
L ≡ {1, . . . ,K} Set ofK class labels
x = (x1, . . . ,xn) ∈ R

d×n Image of featured-dimensional vectors
y = (y1, . . . , yn) ∈ Ln Image of class labels

(1)

With the above definitions in place, the goal of classification is
to assign a labelyi ∈ L to eachi ∈ S , based on the vectorxi,
resulting in an image of class labelsy. We call this assignment ala-
beling. The goal of segmentation is, based on the observed imagex,
to compute a partitionS = ∪iSi of the setS such that the pixels in
each element of the partition share some common property, for ex-
ample to represent the same type of land cover. Notice that, given a
labelingy, the collectionSk = {i ∈ S | yi = k}, for k = 1, . . . ,K



is a partition ofS . On the other way around, given the segmentation
Sk, for k = 1, . . . , K, the image{yi | yi = k if i ∈ Sk, i ∈ S} is
a labeling. There is, therefore, a one-to-one relation between label-
ings and segmentations. Nevertheless, in this paper, we usethe term
classification when there is no spatial information and segmentation
when the spatial prior is being considered.

Inference in a Bayesian framework is often carried out by maxi-
mizing the posterior distribution1

p(y|x) ∝ p(x|y)p(y), (2)

wherep(x|y) is the likelihood function (i.e., the probability of fea-
ture image given the class labels) andp(y) is the prior over the image
of labels. Assuming conditional independency of the features given
the class labels,i.e, p(x|y) =

∏i=n

i=1 p(xi|yi), then the posterior
probabilityp(y|x), as a function ofy, may be written as

p(y|x) =
1

p(x)
p(x|y)p(y)

= α(x)

i=n∏

i=1

p(yi|xi)

p(yi)
p(y),

(3)

whereα(x) ≡
∏i=n

i=1 p(xi)/p(x) is a factor not depending ony. In
this paper we assume, without loss of generality, thatp(yi) = 1/K.
The maximum a posteriori (MAP) segmentation is then given by

ŷ = arg max
y∈Ln

{(
n∑

i=1

p(yi|xi)

)

+ log p(y)

}

. (4)

3. PROPOSED APPROACH

In the present approach, the probability distributionsp(yi|xi) are
modeled with the MLR [12], which writes as

p(yi = k|xi,ω) =
exp(ω(k)h(xi))∑K

k=1 exp(ω
(k)h(xi))

, (5)

whereh(xi) = [h1(xi), ..., hl(xi)]
T is a vector ofl fixed func-

tions of the input feature vectors, often termed features vectors as

well; ω is the regressors, andω = [ω(1)T , ...,ω(K−1)T ]T ; be-
cause the density (5) does not depend on translations on the re-
gressorsω(k), we takeω(K) = 0. Functionh may be linear (i.e.,
h(xi) = [1, xi,1, ..., xi,d]

T , wherexi,j is thej-th component ofxi)
or nonlinear. Kernels,i.e., h(xi) = [1,Kx,x1

, ..., Kx,xl
]T , where

Kxi,xj
= K(xi,xj) andK(·, ·) is some symmetric kernel function,

are a relevant example of the nonlinear case, which are largely used
because they tend to improve the data separability in the transformed
space. In this paper, we use a Gaussian Radial Basis Function(RBF)
K(x, z) = − exp

(
‖x− z‖2/(2σ2)

)
kernel, which is widely used

in hyperspectral image classification [9]. From now on,d denotes
the dimension ofh(x).

We formulate the inference of vectorω parameterizing the MLR
(5) as in [13]. GivenDL ≡ {(xi1 , yi1), . . . , (xiL , yiL)}, a training
set, we compute a MAP estimate of the vectorω based on a Lapla-
cian prior. This prior promotes sparseness on the components ofω,
forcing many components to be zero. In this way the machine com-
plexity is controlled thus ensuring generalization capability. To com-
pute the MAP estimate ofω, we use the LORSAL algorithm [18],

1To keep the notation simple, we usep(·) to denote both continuous prob-
ability densities and discrete probability distributionsof random variables.
The meaning should be clear from the context.

which is able to solve problems far from the reach of the SMLR
algorithm introduced in [13].

The prior probability distributionp(y) is the MLL MRF [17]

p(y) =
1

Z
e

µ
∑

i∼j

δ(yi − yj)

, (6)

whereZ is a normalizing constant,i ∼ j denotes first order neigh-
boring sites,δ(y) is the unit impulse function2, andµ > 0 is a pa-
rameter controlling the likelihood that two neighboring pixels belong
to the same class. Note that the pairwise interaction termsδ(yi−yj)
attach higher probability to equal neighboring labels thanthe other
way around. In this way, the MLL prior promotes piecewise smooth
segmentations.

The MAP segmentation is finally given by

ŷ = arg min
y∈Ln

{
∑

i∈S

− log p(yi|xi,ω)− µ
∑

i∼j

δ(yi − yj)

}
.

(7)
The minimization (7) is a hard combinatorial optimization prob-

lem. However, given that the pairwise interaction term on the right
hand side of (4) is a metric, we apply theα-Expansion graph cut
based algorithm [22], which yields exact results in binary problems
and very good approximations otherwise.

4. ACTIVE LEARNING

In order to reduce the size of the training set, we implement active
query selection. The basic idea of active learning is that ofitera-
tively enlarging the training set by requesting an expert to, in each
iteration, label feature vectors from the set of unlabeled feature vec-
tors{xi, i ∈ SU}, whereSU is the set of unlabeled image pixels.
The relevant question is, of course, what samples should be chosen.
In this paper, following [19], we iteratively select the label which
contains the maximum information with respect to the actualran-
dom vector of MLR regressorsω:

i∗ = arg max
i∈SU

I(ω; yi), (8)

whereI(X;Y) stands for the mutual information between the ran-
dom vectorsX andY. Using the Laplace approximationp(ω|x) ≃
N (ω|ω̂,H−1), whereH is the posterior precision matrix, and as-
suming that the MAP estimatêω remains unchanged after including
y∗
i , then we have (see [19,20] for more details)

I(ω;yi∗) ≃
1

2
log

(

1 +
K∏

i=1

p(yi∗ |x,DL, ω̂)xT
i∗H

−1
xi∗

)

. (9)

A straightforward calculus leads us to the conclusion that
I(ω;yi) is maximized whenpi = 1/K, i.e., for class labelsyi
with maximum entropy, which correspond to those near the classi-
fier boundaries. In order to find the maximum entropy labels, we
use the belief propagation (BP) algorithm [5, 23] to computethe
marginal probability distributionsp(yi|x, ω̂) from the joint proba-
bility distributionp(y|x, ω̂). In this way, we are implicitly including
the spatial information, what produces considerable improvements
with respect to a scenario in which the active learning is based only
on spectral information, as we have done in our previous work[21].

The pseudo-code for the proposed algorithm is presented below.

2i.e., δ(0) = 1 andδ(y) = 0, for y 6= 0



Algorithm 1 Supervised segmentation algorithm using active label
selection
1: while The stop criterion is not fulfilleddo
2: Learn the MLRsω parameterizingp(yi|xi,ω) by using LORSAL algorithm

according to (5).
3: Use the MLL priorp(y) according to (6).
4: Estimate the MAP solution usingα-Expansion graph cut based algorithm.
5: Compute the marginalsp(yi|x, ω̂) by using BP.
6: Order the setSU by decreasing entropy of labelsyi for i ∈ SU and label the

first p feature vectors.
7: end while

(a) (b)

Fig. 1. (a) False color composition of the AVIRIS Indian Pines
scene. (b) Segmentation map with OA = 98.69%.

The active selection criterion described above considers just one
labeling per iteration. Since we setp > 1 in line 6 of the proposed
algorithm, we are labeling more than one sample per iteration. This
is, of course, a sub-optimal procedure. Nevertheless, we found out
experimentally that it still leads to very good results withthe advan-
tage of beingp times faster. More, “ The stop criterion” mentioned
in Algorithm 1 stands for the criterion to exhaust the supervised al-
gorithm, i.e., the maximum number of iterations. In this paper, the
maximum size of the training set considered was used as the stop
criterion.

5. EXPERIMENTAL RESULTS

This section shows the effectiveness of the proposed methodin hy-
perspectral remote sensing image segmentation. In all experiments,
the spectral vectors are normalized and the RBF scale parameter is
set toσ = 0.6. The prior regularization parameter is set toµ = 10.
Although these values for the parameters are not optimal choices,
they lead to very good results and, of course, leave room for more
improvements. In each experiment, the initial labeled set,randomly
selected from the ground truth image, is set to half of its final value.
The active selection procedure takes 4 iterations. Each value of over-
all accuracy (OA) was obtained from 10 Monte Carlo runs.

The well-known AVIRIS Indian Pines scene was used to eval-
uate the proposed algorithm. This image was collected over North-
western Indiana in June of 1992 [24]. This scene is availableonline3,
containing145 × 145 pixels and220 spectral bands in the range of
400-2500nm. Following [2, 21, 25, 26], two scenarios were consid-
ered in our experiments. In the first experiment, the whole image of
145×145 pixels, 16 classes and224 spectral bands was considered,
as shown in Figure 1 (a). The second scenario is a subset scene(con-
sisting of pixels in columns [27-94] and rows [31-116]) withsize of
68× 86 and contains 4 classes.

Table 1 shows the OA results from the proposed supervised al-
gorithm over both images in comparison with the results published

3http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/

Table 1. OA [%] results over the subset and the complete AVIRIS
image. Size of the training set: 2073 labeled samples (20% ofthe
ground truth containing 10366 samples samples) for the whole im-
age; 878 labeled samples (20% of the ground truth containing4393
samples samples) for the subset. Best results (Bold) are highlighted
for each problem.

Classifier Subset Whole
Euclidean [27] 67.43 48.23

BLOOC+DAFE+ECHO [27] 93.50 82.91
Composite Kernel [2] 98.86 96.53

Composite Kernel using Wavelet smoothing [26] 98.96 97.85
Composite Kernel using PDE smoothing [26] 98.83 93.62

LORSAL 96.05 84.51
Supervised sementation: LOSAL + MLL [17] 98.11 94.36

LORSAL with active learning [21] 97.56 86.83
LORSAL + MLL with active learning [21] 98.70 97.89

Proposed LORSAL with active learning 97.62 86.94
Proposed LORSAL + MLL with active learning 99.06 98.58

in [2, 17, 21, 26, 27] for a final training set with 20% (2073 forthe
whole image and 878 for the subset) of the ground truth. The pro-
posed algorithm outperforms all the competitors. We would like to
stress the gains over our previous work presented in [21]. Asex-
pected, the active learning based on the marginals of the complete
probability distributionp(y|x,ω) is more informative than that just
based on thep(yi|xi,ω), which includes only spectral information.
For illustration purpose, Figure1 (b) shows the segmentation map of
the full image with an OA of 98.69%. Effective result can be see
from this figure.

Table 2 presents the classification results as functions of the
number of labeled samples over the subset image. We have not ap-
plied active selection for 3 and 5 labeled samples per class because,
the initial training set would be very small, just 1 and 2 samples per
class, respectively, what would lead to a poor initialization of the
active selection procedure. Anyway, the results produced without
active selection are those of [17]. The results are comparedwith
state-of-the-art classifiers [17, 18, 21, 25, 26]. Again, the proposed
method outperforms the competitors in all cases, the advantage in-
creasing as the size of the training set decreases. This is a relevant
property when the acquisition of large training sets is costly.

We stress that the performance of the proposed algorithm de-
pends on the size of samples which are actively selected and on the
numberp of samples actively selected per iteration. For instance,
we run experiments over the subset with 50 labeled samples intotal,
in which 45 samples are actively selected. An OA of 99.32% is ob-
tained by the proposed segmentation algorithm with active selection.
In regarding to number of samples actively selected per iteration, we
made experiments over the whole image with 20% of the ground
truth labels used as the training set, half of which were considered
for active selection, which is the same as experiment 1. The differ-
ence is, we used 9 iterations to exhaust the training set. An OA of
98.74% was obtained, which is a little better than 98.58% obtained
in experiment 1 using 4 iterations to exhaust the training set.

6. CONCLUSIONS

This work has presented a new supervised approach for hyperspec-
tral classification, which combines the spectral information, modeled
with multinomial logistic regression, and spatial information, mod-



Table 2. OA [%] results as a function of the number of labeled samplesper class in the subset. Best results (bold) are highlightedfor each
problem.

number of labeled samples per class

Algorithms 3 5 10 15 20 25 30 100
Propose segmentation with active selection - - 94.25 96.58 97.01 97.39 97.49 98.70
LORSAL with Proposed active selection - - 85.94 89.47 90.92 91.29 92.49 96.32
Segmentation with active selection [21] - - 92.17 95.08 96.71 96.98 97.37 98.26

LORSAL with active selection [21] - - 84.05 88.01 90.56 91.15 92.11 96.14
Supervised segmentation [17] 82.80 87.51 92.33 94.37 95.51 96.09 96.75 97.55

LORSAL 74.01 77.51 83.43 86.88 88.71 90.10 91.28 94.67
Wavelet [26] 73.65 78.78 82.90 85.74 86.85 87.69 88.68 92.59

PDE [26] 84.89 86.89 90.03 90.51 91.33 92.67 93.74 94.20
Semi-supervised algorithm [25] 66.73 67.13 71.32 79.49 82.04 83.12 84.99 86.44

eled with a multi-level logistic prior. Active query selection is con-
sidered. The results obtained in set of experiments using the AVIRIS
Indiana Pines data set are state-of-the-art, outperforming the com-
petitor algorithms [2,21,25,26].
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