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ABSTRACT

This paper introduces a new supervised Bayesian approdwipéo-

spectral image segmentation. The algorithm mainly consistwo

steps: (a) learning, for each class label, the posteridyainitity dis-

tributions, based on a multinomial logistic regression eip¢b) seg-
menting the hyperspectral image, based on the posteribapility

distribution of the image of class labels built on the ledrpéxel-

wise class distributions and on a multi-level logistic pemcoding
the spatial information. Aiming at reducing the costs ofladgg

large training sets, we use active label selection basedhethe

posterior marginals of the complete mogebvided by Belief prop-
agation. A comparison of the proposed method with statiefart
competitors shows its effectiveness.
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the advantage over the SVMs of learning the class probpaloiig-
tributions themselves. Effective Sparse multinomial $tigiregres-
sion (SMLR) methods are available [13,14]. These ideas baeea
applied to hyperspectral image classification [3, 15—-1@{lieg to
state-of-the-art performance.

In order to improve the classification accuracies obtaingd b
SVMs and MLR-based techniques, a recent trend is to integr-
tial contextual information with spectral information iygerspec-
tral data interpretation [3, 8, 10]. These methods expioia way or
another, the continuity, in probability sense, of neigligiabels: it
is very likely that, in an hyperspectral image, two neiglhibgpixels
have the same label.

In this paper, we introduce a new Bayesian segmentation ap-
proach which exploits the spatial contextual informatiod anple-

Index Terms— Hyperspectral image segmentation, multinomial ments active learning. The algorithm implements two maépst

logistic regression, spatial information, Markov randoeidj active
label selection, belief propagation.

1. INTRODUCTION

In recent years, with the development of remote sensingosgns
hyperspectral images are widely available. The speciaiacheris-
tics of hyperspectral data sets bring difficult processingplems.

a) learning the posterior class probability distributidiysestimat-
ing, with the LORSAL algorithm [18], the parameters of an MLR
model; b)segmenting the hyperspectral image by inferrgim-
age class labels from a posterior distribution built on tharhed
MLR model and on a multi-level logistic (MLL) prior. Activeabel
selection [19, 20] based on the posterior marginals of tmepdete
model, provided by the Belief propagation (BP) algorithjm-
plemented. In comparison with our previous method [21], netibe

For example, the Hughes phenomenon [1] comes out as the da@gtive learning depends only on the spectral informationpoesent

dimensionality increases. In order to get an acceptabksitiea-
tion accuracy, large amount of training samples are reduisich
may be quite difficult, expensive, or sometimes impossiblggeit.
These difficulties have fostered the development of newsifiea-
tion methods, which are able to deal with ill-posed clasaifon
problems, in particular, high dimensional datasets anidduirtrain-
ing samples [1]. For instance, several machine learningnigoes
have been applied to extract relevant information from hgjpectral
data sets [2,3]. However, although many progresses havenhage,
the difficulty in learning high dimensional densities frontiraited
number of training samples is still an active area of researc
Possible approaches which are capable to circumvent thik ki

of difficulties are the discriminative approach, which leathe class
distributions in high dimensional spaces by inferring tbeitdaries
between classes in the feature space [4,5]. For instaneesui-
port vector machines (SVMs) [6] are among the state-ofatti@lis-
criminative techniques in ill-posed classification prabte Due to
their ability to deal with large input spaces efficiently angroduce
sparse solutions, SVMs have been successfully used forspee
tral supervised and semi-supervised classification witfitdid train-
ing samples [7—11]. The multinomial logistic regressiorL@®) [12]
also shows high quality while dealing with ill-posed prabke with
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active leaning approach uses both spectral and spatiahiatton
leading to better performances, as shown in Section 4.

The remainder of the paper is organized as follows. Section 2
formulates the problem. Section 3 describes the proposawagh.
Section 4 illustrates the active selection approach. Geé&tireports
segmentation results based on real hyperspectral dataseitsm-
parison with state-of-the-art competitors are also inetudrinally,
section 6 concludes with some remarks.

2. PROBLEM FORMULATION

First, let us define the following notations used in this pape

S={1,...,n} Set of integers indexing the pixels of an image
L={1,...,K} Set of K class labels

X = (X1,...,%Xpn) € RAxn Image of featurel-dimensional vectors
y=Wi,...,yn) €L" Image of class labels

@)
With the above definitions in place, the goal of classificai®
to assign a label; € £ to eachi € S, based on the vectat;,
resulting in an image of class labsts We call this assignmentla-
beling The goal of segmentation is, based on the observed image
to compute a partitios = U;S; of the setS such that the pixels in
each element of the partition share some common propertgxfo
ample to represent the same type of land cover. Notice thah @
labelingy, the collectionS, = {i € S|y; = k},fork=1,..., K



is a partition ofS. On the other way around, given the segmentationwhich is able to solve problems far from the reach of the SMLR

Sk, fork=1,..., K, theimage{y; |y: = k if i € Sk, i € S}is

a labeling. There is, therefore, a one-to-one relation betwabel-
ings and segmentations. Nevertheless, in this paper, winederm
classification when there is no spatial information and sagation
when the spatial prior is being considered.

Inference in a Bayesian framework is often carried out byimax

mizing the posterior distributidn
2

wherep(x|y) is the likelihood functioni(e., the probability of fea-
ture image given the class labels) arig) is the prior over the image
of labels. Assuming conditional independency of the fesigiven

the class labels.e, p(x|y) = [[:Z] p(x:|y:), then the posterior
probability p(y|x), as a function of7, may be written as

p(y|x) o< p(x|y)p(y),

plylx) =
(3)

wherea(x) = [['ZF p(x:)/p(x) is a factor not depending gn In
this paper we assume, without loss of generality, thiat) = 1/K.
The maximum a posteriori (MAP) segmentation is then given by

y = arg max { <Zp (yilx:) ) + 10gp(>’)} :

4)

3. PROPOSED APPROACH

In the present approach, the probability distributigiig;|x;) are
modeled with the MLR [12], which writes as

(k) )
exp(w'™h(x;

> k1 exp(w®h(x;))
whereh(x;) = [hi(xi),..., hi(x:)]" is a vector ofl fixed func-

tions of the input feature vectors, often termed featuretove as
well; w is the regressors, and = [w®@" .. wE"D"]T; pe-

algorithm introduced in [13].
The prior probability distributiop(y) is the MLL MRF [17]

chi

p(y) = E € g ) (6)
whereZ is a normalizing constant,~ j denotes first order neigh-
boring sites(y) is the unit impulse functidh andy > 0 is a pa-
rameter controlling the likelihood that two neighboringeds belong
to the same class. Note that the pairwise interaction té{ms-y;)
attach higher probability to equal neighboring labels tt@other
way around. In this way, the MLL prior promotes piecewise stho

segmentations.

The MAP segmentation is finally given by

=it}
g
7

The minimization (7) is a hard combinatorial optimizatiaolp-
lem. However, given that the pairwise interaction term amrigght
hand side of (4) is a metric, we apply theExpansion graph cut

based algorithm [22], which yields exact results in binamglgems
and very good approximations otherwise.

y = arg min {Z log p(yi|x:, w

4. ACTIVE LEARNING

In order to reduce the size of the training set, we implemetivex
query selection. The basic idea of active learning is thatesh-
tively enlarging the training set by requesting an experirteeach
iteration, label feature vectors from the set of unlabeé&adire vec-
tors{x;, i € Sy}, whereSy is the set of unlabeled image pixels.
The relevant question is, of course, what samples shoultidseo.
In this paper, following [19], we iteratively select the &lwhich
contains the maximum information with respect to the actaat
dom vector of MLR regressots:

8)

ok
i = arg max [ (w;y;
g max (Wi i),

whereI(X;Y) stands for the mutual information between the ran-

cause the density (5) does not depend on ‘translations orethe rdom vectorsX andY. Using the Laplace approximatigriw|x) ~

gressorsv®) | we takew™) = 0. Functionh may be lineari(e.,
h(x;) = [1,zi1,...,zi.4)" , Wherez; ; is thej-th component ok;)
or nonlinear. Kernels,e, h(x;) = [1, Kxx; - Kx,x]", Where
Kx; x; = K(x;,x;) andK(-, -) is some symmetric kernel function,
are a relevant example of the nonlinear case, which arelyanged
because they tend to improve the data separability in thefmamed
space. In this paper, we use a Gaussian Radial Basis FuRIi)
K(x,z) = —exp (|[x — z||*/(20?)) kernel, which is widely used
in hyperspectral image classification [9]. From now drgenotes
the dimension oh(x).

We formulate the inference of vecterparameterizing the MLR
(5) as in [13]. GiverD;, = {(xi,, Yi1 ), - - -» (Xip, Yiy )}, @ training
set, we compute a MAP estimate of the veatobased on a Lapla-
cian prior. This prior promotes sparseness on the compsiéni,
forcing many components to be zero. In this way the machine-co
plexity is controlled thus ensuring generalization caligbiTo com-
pute the MAP estimate ab, we use the LORSAL algorithm [18],

1To keep the notation simple, we ysg) to denote both continuous prob-
ability densities and discrete probability distributioosrandom variables.
The meaning should be clear from the context.

N(w|@,H™ "), whereH is the posterior precision matrix, and as-
suming that the MAP estimate remains unchanged after including
y;, then we have (see [19, 20] for more details)

> - 9)

A straightforward calculus leads us to the conclusion that
I(w;y;) is maximized wherp; = 1/K, i.e, for class labelgy;
with maximum entropy, which correspond to those near theséla
fier boundaries. In order to find the maximum entropy labels, w
use the belief propagation (BP) algorithm [5, 23] to compilite
marginal probability distributiong(y;|x, @) from the joint proba-
bility distributionp(y|x, @). In this way, we are implicitly including
the spatial information, what produces considerable ivgments
with respect to a scenario in which the active learning idamly
on spectral information, as we have done in our previous @itk

The pseudo-code for the proposed algorithm is presentedvbel

T(w;yix) ~ = log<1+prl |x,Dr,w )x*H X

i=1

%i.e, 6(0) = 1andé(y) =0, fory # 0



Algorithm 1 Supervised segmentation algorithm using active label

selection
1: while The stop criterion is not fulfilledio

Table 1. OA [%)] results over the subset and the complete AVIRIS
image. Size of the training set: 2073 labeled samples (20%eof

2: Learndt.he MLRsw parameterizing (y; |x;, w) by using LORSAL algorithm  ground truth containing 10366 samples samples) for the evimai
3 3‘33?{hé”,\9ﬂ‘|_‘|’_(§r)ib io(y) according 1 6). age; 878 labeled samples (20% of the ground truth conta#B9g
4:  Estimate the MAP solution using-Expansion graph cut based algorithm. samples samples) for the subset. Best results (Bold) ahtidtiged
5:  Compute the marginajs(y;|x, &) by using BP. for each problem.
6: Order the seSy; by decreasing entropy of labejs for i € Sy and label the
first p feature vectors.
7: end while Classifier Subset | Whole
Euclidean [27] 67.43 | 48.23
BLOOC+DAFE+ECHO [27] 93.50 82.91
Composite Kernel [2] 98.86 96.53
Composite Kernel using Wavelet smoothing [26] 98.96 97.85
Composite Kernel using PDE smoothing [26]| 98.83 93.62
LORSAL 96.05 | 84.51
Supervised sementation: LOSAL + MLL [17] | 98.11 94.36
LORSAL with active learning [21] 97.56 | 86.83
LORSAL + MLL with active learning [21] 98.70 | 97.89
Proposed LORSAL with active learning 97.62 86.94
Proposed LORSAL + MLL with active learning| 99.06 98.58

Fig. 1. (a) False color composition of the AVIRIS Indian Pines
scene. (b) Segmentation map with OA = 98.69%.

The active selection criterion described above considstone
labeling per iteration. Since we set> 1 in line 6 of the proposed
algorithm, we are labeling more than one sample per iterafitiis
is, of course, a sub-optimal procedure. Nevertheless, wed@ut
experimentally that it still leads to very good results wviile advan-
tage of being times faster. More, “ The stop criterion” mentioned
in Algorithm 1 stands for the criterion to exhaust the sujse al-

gorithm, i.e.,, the maximum number of iterations. In this paper, the

maximum size of the training set considered was used as ope st
criterion.

5. EXPERIMENTAL RESULTS

This section shows the effectiveness of the proposed méthiog
perspectral remote sensing image segmentation. In altiexpets,
the spectral vectors are normalized and the RBF scale pteaime
settoo = 0.6. The prior regularization parameter is sefte= 10.
Although these values for the parameters are not optimatebp
they lead to very good results and, of course, leave room fmem
improvements. In each experiment, the initial labeledrsetdiomly
selected from the ground truth image, is set to half of itd fimbue.
The active selection procedure takes 4 iterations. Eactealover-
all accuracy (OA) was obtained from 10 Monte Carlo runs.

in [2,17,21, 26, 27] for a final training set with 20% (2073 foe
whole image and 878 for the subset) of the ground truth. The pr
posed algorithm outperforms all the competitors. We woikld to
stress the gains over our previous work presented in [21].e4s
pected, the active learning based on the marginals of theleben
probability distributionp(y |x, w) is more informative than that just
based on the(y;|x:, w), which includes only spectral information.
For illustration purpose, Figurel (b) shows the segmemiatiap of
the full image with an OA of 98.69%. Effective result can be se
from this figure.

Table 2 presents the classification results as functionhef t
number of labeled samples over the subset image. We havepnot a
plied active selection for 3 and 5 labeled samples per clesause,
the initial training set would be very small, just 1 and 2 s&sper
class, respectively, what would lead to a poor initializatof the
active selection procedure. Anyway, the results producidowt
active selection are those of [17]. The results are compaitd
state-of-the-art classifiers [17, 18, 21, 25, 26]. Agair phnoposed
method outperforms the competitors in all cases, the adgann-
creasing as the size of the training set decreases. Thisisant
property when the acquisition of large training sets islgost

We stress that the performance of the proposed algorithm de-
pends on the size of samples which are actively selected raititeo
numberp of samples actively selected per iteration. For instance,
we run experiments over the subset with 50 labeled samptesaii
in which 45 samples are actively selected. An OA of 99.32%bis o
tained by the proposed segmentation algorithm with acelecsion.

uate the proposed algorithm. This image was collected ooethN
western Indiana in June of 1992 [24]. This scene is availabliee’,
containingl145 x 145 pixels and220 spectral bands in the range of
400-2500nm. Following [2, 21, 25, 26], two scenarios wenesud-
ered in our experiments. In the first experiment, the wholagenof
145 x 145 pixels, 16 classes ark24 spectral bands was considered,
as shown in Figure 1 (a). The second scenario is a subset @mne
sisting of pixels in columns [27-94] and rows [31-116]) wilize of
68 x 86 and contains 4 classes.

made experiments over the whole image with 20% of the ground
truth labels used as the training set, half of which were iclemed

for active selection, which is the same as experiment 1. Tiferd
ence is, we used 9 iterations to exhaust the training set. AfO
98.74% was obtained, which is a little better than 98.58%iaket

in experiment 1 using 4 iterations to exhaust the trainirig se

6. CONCLUSIONS

Table 1 shows the OA results from the proposed supervised al-

gorithm over both images in comparison with the results ishkd

Shttp://cobweb.ecn.purdue.edu/ biehl/MultiSpec/

This work has presented a new supervised approach for lpgeers
tral classification, which combines the spectral informatmodeled
with multinomial logistic regression, and spatial infotina, mod-



Table 2. OA [%] results as a function of the number of labeled sampérsclass in the subset. Best results (bold) are highligfetedach
problem.

number of labeled samples per class

Algorithms 3 5 10 15 20 25 30 100
Propose segmentation with active selectipn - - 9425 96.58 97.01 97.39 9749 98.70
LORSAL with Proposed active selection| - - 85.94 89.47 90.92 91.29 9249 96.32
Segmentation with active selection [21] - - 92.17 95.08 96.71 96.98 97.37 98.26
LORSAL with active selection [21] - - 84.05 88.01 90.56 91.15 92.11 96.14
Supervised segmentation [17] 82.80 87.51 9233 9437 9551 96.09 96.75 97.55
LORSAL 7401 7751 8343 86.88 8871 90.10 91.28 94.67
Wavelet [26] 73.65 78.78 82.90 85.74 86.85 87.69 88.68 92.59
PDE [26] 84.89 86.89 90.03 90.51 91.33 92,67 93.74 94.20
Semi-supervised algorithm [25] 66.73 67.13 71.32 79.49 82.04 83.12 84.99 86.44

eled with a multi-level logistic prior. Active query selem is con-
sidered. The results obtained in set of experiments usmg\WRIS
Indiana Pines data set are state-of-the-art, outperfgria com-

petitor algorithms [2, 21, 25, 26].
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