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ABSTRACT

In recent years, the increasing availability of spectral li-

braries has opened a new path toward solving the hyperspec-

tral unmixing problem in a semi-supervised fashion. The

spectrally pure constituent materials (called endmembers) can

be derived from a (potentially very large) spectral library and

used for unmixing purposes. The advantage of this approach

is that the results of the unmixing process do not depend on

the availability of pure pixels in the original hyperspectral

data nor on the ability of an endmember extraction algorithm

to identify such endmembers. However, resulting from the

fact that spectral libraries are usually very large, this approach

generally results in a sparse solution. In this paper, we inves-

tigate the sensitivity of sparse unmixing techniques to certain

characteristics of real and synthetic spectral libraries, includ-

ing parameters such as mutual coherence and spectral similar-

ity between the signatures contained in the library. Our main

goal is to illustrate, via detailed experimental assessment, the

potential of using spectral libraries to solve the spectral un-

mixing problem.

Index Terms— Hyperspectral imaging, spectral unmix-

ing, sparse regression, spectral libraries.

1. INTRODUCTION

Spectral unmixing aims at estimating the fractional abun-

dances of pure spectral signatures (also called endmembers)

in each mixed pixel collected by an imaging spectrometer

[1]. The linear mixing model [2] assumes that the observed

(measured) spectrum of a pixel can be expressed as a linear

combination of the spectra of the endmembers present in

the respective pixel. It can be expressed mathematically as

follows:

yi =

q∑

j=1

mi,jαj + ni, (1)
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where yi is the measured value of the reflectance at spectral

band i, mij is the reflectance of the j-th endmember at spec-

tral band i, αj is the fractional abundance of the j-th end-

member, and ni represents the error term for the spectral band

i (i.e. the noise affecting the measurement process). If we as-

sume that the hyperspectral sensor used in data acquisition

has L spectral bands, Eq. (1) can be rewritten in compact

matrix form as:

y = Mα + n, (2)

where y is an L × 1 column vector (the measured spectrum

of the pixel), M is an L× q matrix containing q pure spectral

signatures (endmembers), α is a q × 1 vector containing the

fractional abundances of the endmembers, and n is an L ×
1 vector collecting the errors affecting the measurements at

each spectral band. Two constraints are usually applied to

the fractional abundances collected in α, arising from their

physical meaning: they can not be negative (the abundance

non-negativity or ANC constraint) and they should sum to

one (the abundance sum-to-one or ASC constraint).

In many situations, the identification of endmember sig-

natures in the original data (e.g., by a certain algorithm de-

veloped for this purpose [3]) may be challenging due to in-

sufficient spatial resolution, mixtures happening at different

scales, and unavailability of completely pure spectral signa-

tures in the scene. Quite opposite, the spectral unmixing prob-

lem can be tackled in semi-supervised fashion, i.e. we may

look for the endmembers in a large dictionary available a pri-

ori, called spectral library and denoted by A, containing p
members. As a result, Eq. (2) can be rewritten as follows:

y = Ax + n (3)

where x is the new vector of fractional abundances. As the

number of endmembers q is much smaller than the number p
of spectra contained in A, the vector of fractional abundances

x is sparse. This characteristic of the solution is exploited by

so-called sparse unmixing algorithms, which enforce it ex-

plicitly as opposed to other non-sparse algorithms which do

not explicitly enforce the sparsity of the solution.

In this paper, we investigate the sensitivity of sparse un-

mixing techniques to certain characteristics of real and syn-



thetic spectral libraries, including parameters such as mutual

coherence and spectral similarity between the signatures con-

tained in the library. The remainder of the paper is organized

as follows. Section 2 presents the unmixing algorithms con-

sidered in our study. Section 3 presents our detailed experi-

mentation, focused on comparing the unmixing results pro-

vided by those algorithms using different spectral libraries

in a simulated environment (with and without enforcing the

ASC and ANC constraints). Finally Section 4 concludes with

some remarks and hints at plausible future research lines.

2. SPECTRAL UNMIXING ALGORITHMS

In finding sparse solutions to the unmixing problem, we

would like to solve the following optimization problem:

(P0): min
x

‖x‖0 subject to Ax = y, (4)

where ‖x‖0 represents the l0 norm of x, which simply counts

the non-zero components of x. Unfortunately, this is an NP-

hard optimization problem. Under certain conditions [4, 5, 6],

the l0 norm can be replaced by the l1 norm, leading to the

convex optimization problem

(P1): min
x

‖x‖1 subject to Ax = y. (5)

In the presence of perturbations due to noise and modeling

erros, the optimization problem (5) is very often replaced with

(P δ
1 ): min

x
‖x‖1 subject to ‖y − Ax‖2 ≤ δ, (6)

where δ is a majorizer for the Euclidian norm of the pertur-

bation n present in the observation model y = Ax + n, i.e.,

‖n‖2 ≤ δ.

With the above general definitions in mind, we describe

next the two spectral unmixing algorithms considered in

our study, namely, the classical orthogonal matching pur-

suit (OMP) [7], and SUnSAL [8], a novel sparse unmixing

algorithm which uses variable splitting and augmented La-

grangian methods.

2.1. Orthogonal Matching Pursuit (OMP)

OMP [7], developed as an alternative to matching pursuit [9],

is an iterative technique which searches, at each iteration, for

the spectral signature from A which best explains a prede-

termined residual. In the first iteration, the initial residual is

equal to the observed spectrum of the pixel, the vector of frac-

tional abundances is null and the matrix of indices of selected

endmembers is empty. Then, at each iteration the alforithm

finds the member of A which is best correlated to the actual

residual, adds this member to the endmembers matrix, up-

dates the residual and computes the estimate of x using the

selected endmembers. The algorithm finalizes when a stop-

ping criterion is satisfied. A member from A can not be se-

lected more than once, as the residual is orthogonalized with

respect to the members already selected. In this work, we use

OMP to solve the unconstrained problem in Eq. (6).

2.2. Sparse Unmixing via variable Splitting and Aug-

mented Lagrangian (SUnSAL)

SUnSal [8] exploits the alternating direction method of mul-

tipliers (ADMM) [10] in a way similar to recent work [11].

The algorithm computes the solution of the following opti-

mization problem:

min
x

1

2
‖Ax− y‖2

2 + λ‖x‖1. (7)

The objective function in (7) is composed of two terms. The

first one measures the lack of fitness to the observed data y

and the second one measures the lack of sparsity of a can-

didate solution. The parameter λ, called regularization pa-

rameter, controls the relative weight between the two terms.

Problems P1 and P δ
1 can be made equivalent to (7) for a suit-

able choice of λ. We can optionally incorporate the ANC and

ASC constraints in (7). We will denote by SUnSAL+ a vari-

ant of SUnSAL which incorporates the ANC constrained.

2.3. Adapting OMP and SUnSAL to non-negative signals

By enforcing the ANC constraint, the optimization problem

(5) becomes

(P+
1 ) : min

x
‖x‖1 subject to Ax = y x ≥ 0. (8)

Since in our problems matrix A contains only nonnegative

entries, it can be converted into (see [5] for details)

(P+
1 ): min

z
‖z‖1 subject to Dz = y z ≥ 0, (9)

where D ≡ AW−1 and z ≡ Wx, with W ≡ diag(wT ),
wT ≡ hTA, and h a column vector such that w > 0. From

the writing (9), it follows that hTD = [1, . . . , 1] ≡ 1T and

then 1T z = c, with c = hTy. We conclude, therefore, that

the problem (9) automatically enforces the equality constraint

1T z = c. For this reason, we do not impose the ASC con-

straint.

To take errors into account, we consider a relaxation of

the optimization (9) similar to that of (6):

(P δ+
1 ) : min

z
‖z‖1 subject to ‖Dz−y‖2 ≤ δ z ≥ 0 (10)

Hereinafter, the variants of OMP and SUnSAL dedicated

to solve the optimization (10) will be denoted by OMP+D and

SUnSAL+D, respectively.

3. RESULTS IN SIMULATED ENVIRONMENT

In our experiments, we used seven spectral libraries: a hypo-

thetical one, generated as a collection of spectra containing



i.i.d. Gaussian entries, and six libraries assembled using real

signatures from the U.S. Geological Survey (USGS)1 and the

NASA Jet Propulsion Laboratory’s Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER)2

spectral libraries. The libraries, denoted by A1 . . . A7, were

built as follows. A1 contains 498 spectral signatures selected

from the USGS library. A2 is a subset of A1 obtained by

retaining only the signatures which sufficiently differentiate

between them (i.e. with spectral angle greater or equal than

three degrees). A3 is a subset of A1 obtained in the same

way as A2, but enforcing spectral angle greater or equal than

six degrees. A4 is a collection of 500 spectral signatures

extracted from the ASTER library. A5 and A6 are subsets of

A4 generated in similar fashion to A2 and A3. Finally, A7

contains i.i.d. Gaussian entries. In order to get sparsest solu-

tions, the mutual coherence [12] of the spectral library µ(A)
should be as small as possible. This figure is shown in Table

1 for all libraries along with the number of signatures, the

wavelength range, and the number of signatures with angles

s ≤ 5◦ and with angles in the interval 5◦ ≤ s ≤ 10◦.

Table 1. Internal characteristics of the libraries.
Spectral library A1 A2 A3 A4 A5 A6 A7
Description USGS USGS USGS ASTER ASTER ASTER i.i.d.

pruned 3◦ pruned 6◦ pruned 3◦ pruned 6◦ Gaussian

Number of 498 342 159 500 449 385 448

spectra

Minimum wavelength 0.4 0.4 0.4 3 3 3 -

(wmin) in µm

Maximum wavelength 2.5 2.5 2.5 12 12 12 -

(wmax) in µm

Mutual coherence 0.99998 0.9986 0.9945 1 0.9986 0.9944 0.2822

µ(A)

Spectral angle 303 144 0 92 41 0 0

s ≤ 5◦

Spectral angle 140 136 98 184 132 109 0

5◦ ≤ s ≤ 10◦

From Table 1, it can be seen that the considered libraries

are highly coherent, which imposes a very low bound on the

sparsity of the solution. Even pruning the libraries does not

improve the mutual coherence significantly. This difficulty is

attenuated by the highly sparse mixtures we typically have in

hyperspectral applications. Library A7 has the lowest mutual

coherence. We then foresee that this library yields the best

unmixing results. With these observations in mind, the con-

sidered algorithms were tested both in a noiseless and in a a

noisy environment. Since the perturbations in the linear mix-

ing model are mostly modeling erros, thus, highly corrected,

we generate the noise from low-pass filtering i.i.d. Gaus-

sian random samples using a normalized cut-off frequency

of 5π/L. The signal-to-noise ratio (SNR ≡ ‖Ax‖2

2
/ ‖n‖2

2
)

was set to 30dB. We considered five sparsity levels (or car-

dinalities) k of the mixtures: 1, 5, 10, 15 and 20. For ev-

ery possible combination of library, noise and cardinality, we

generated 100 samples, with the fractional abundances fol-

lowing a Dirichlet distribution. The quality of the recon-

struction of a spectral mixture was measured using the recon-

struction SNR: RSNR ≡ E[‖x‖2
2]/E[‖x− x̂‖2

2], measured

in dBs: RSNR(dB) ≡ 10 log10(RSNR). The parameters used

1Available online: http://speclab.cr.usgs.gov/spectral-lib.html
2Available online: http://speclib.jpl.nasa.gov

in the tests were hand tuned to near optimal performance,

by running the considered algorithms for large sets of pos-

sible values of the parameters on test data sets containing a

small number of samples (5) corresponding to every possi-

ble combination. As a general observation after completing

this task, it can be said that the parameters used for SUnSAL

and its variants, for a certain level of noise, exhibit very small

variations compared to the ones used for OMP and OMP+D

(which require fine-tuning). This means that, in a real sce-

nario, the probability to find near-optimal parameters for the

sparse technique is much higher than the one corresponding

to the non-sparse technique.

Fig. 1 plots RSNR(dB) for all the methods and libraries,

both for the observations affected and not affected by noise.

Because A7 contains negative entries, the curves for SUn-

SAL+D and OMP+D obtained with library A7 were disre-

garded. From the results plotted in Fig. 1, we highlight the

following aspects:

a) the values RSNR tend to decrease as k increases and as

the minimum spectral angle decreases. This is more visible in

the presence of noise;

b) in the absence of noise, SUnSAL+D produces values

of RSNR larger that 30dB for k ≤ 20, allowing a high quality

unmixing. SUnSAL+, with RSNR larger that 10 dBs for most

of the cases also ensures useful unmixings. Generally, OMP

performs better than OMP+D for k = 1, but both methods

yield low values of RSNR for k ≥ 10, except for library A7;

c) in the presence of noise, the values of RSNR are, as ex-

pected, lower than in the absence of noise. In general terms,

SUnSAL yields close to the best performance. Note that, for

A1 and A4, which are the most coherent libraries, leading to

the most difficult unmixing problem, the sparse technique, in

all variants, outruns the non-sparse one, both in noiseless and

noisy environment. We would say that unmixing is possible

for k ≤ 10. For larger values of k, the value of RSNR ap-

proaches 0dBs, situation in which the unmixing is very poor.

4. CONCLUSIONS

This paper analized the influence of the internal characteris-

tics of spectral libraries on the accuracy of (semi-supervised)

sparse unmixing algorithms. Two relevant indicators were in-

spected: the mutual coherence of the library and the spec-

tral dissimilarity of the signatures contained in the library.

Our experiments indicate that pruning the libraries (by en-

forcing a minimum spectral angle between the signatures),

although increasing very little the mutual coherence of real

libraries, leads to improvements in the sparse unmixing algo-

rithms in noisy environments. Further experiments should be

conducted with real hyperspectral data sets in order to gener-

alize the aforementioned observations to practical hyperspec-

tral analysis scenarios.
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Fig. 1. Plots of the RSNR values obtained for the dif-

ferent methods applied to the simulated data in noiseless

(SNR=+inf) and noisy (SNR=30dB) environments.
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