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ABSTRACT

We present a new semi-supervised segmentation algorithm suited to
hyperspectral images, which takes full advantage of the spectral and
spatial information available in the scenes. We mainly focus on prob-
lems involving very few labeled samples and a larger set of unlabeled
samples. Amultinomial logistic regression(MLR) is used to model
the posterior class probability distributions, whereas amultilevel lo-
gistic level(MLL) prior is adopted to model the spatial information
present in class label images. The multinomial logistic regressors
are learnt using anexpectation maximization(EM) type algorithm,
where the class labels of the unlabeled samples are dealt with as
unobserved random variables. The expectation step of the EMalgo-
rithm is computed usingbelief propagation(BP). In the maximiza-
tion step of the EM algorithm, we compute themaximum a posterioi
estimate(MAP) estimate of the multinomial logistic regressors. For
the segmentation, we compute both the MAP solution and themaxi-
mizer of the posterior marginal(MPM) provided by the belief prop-
agation algorithm. We show, using the well-known AVIRIS Indian
Pines data, that both solutions exhibit state-of-the-art performance.

Index Terms— Semi-supervised classification, belief propaga-
tion, expectation maximization, hyperspectral segmentation, integer
optimization.

1. INTRODUCTION

The wide availability of hyperspectral images leads to new devel-
opments in the fields of image segmentation and classification [1].
The detailed information about spectral signatures provided by hy-
perspectral sensors has fostered the development of new algorithms
capable of properly handling the high dimensionality of thedata. In
hyperspectral remote sensing image classification, the acquisition of
labeled training data is costly and time consuming. In otherwords,
we are usually given an insufficient set of labeled pixels to develop
the classifier. Thus, the classification problem is challenging as the
size of the labeled pixels is typically very small. The difficulties in
learning high dimensional densities from a limited number of train-
ing samples, known as the Hughes phenomenon, is one of the ma-
jor problems related with the analysis of this type of data and, al-
though progresses have been made, it remains an active area of re-
search [2,3].

In classification problems, discriminative approaches (which
learn the class probability distributions in high dimensional spaces
by inferring the boundaries between classes in the feature space [4]),
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have been proved to be successful in dealing with small classdis-
tances, high dimensionality, and limited training sets [5]. Thesup-
port vector machines(SVMs) [6] and the MLR [7] are among the
state-of-the-art discriminative techniques to classification. Due to
their ability to deal with large input spaces efficiently andto produce
sparse solutions, SVMs have been successfully used for supervised
and semi-supervised classification of hyperspectral data [5, 8]. The
MLR, compared with SVMs, has the advantage of being able to
learn the class probability distributions. Thesparse multinomial
logistic regression(SMLR) [9] and thefast sparse multinomial lo-
gistic regression(FSMLR) [10] are effective algorithms to estimate
multilogistic regressors. More recently, the introduction of thelogis-
tic regression via splitting and augmented Lagrangian(LORSAL)
algorithm [11] has fostered processing of larger data sets and num-
ber of classes. These ideas have been applied to hyperspectral image
classification problems [12–14].

Recently, the incorporation of spatial information has been an
active area of research in order to improve the accuracy of hyper-
spectral classification and segmentation techniques [8, 10, 15, 16].
Available approaches exploit, in a way or another, the continuity (in
probability sense) of neighboring labels, i.e. in hyperspectral im-
ages, it is likely that two neighboring pixels have the same label.
However, in most hyperspectral imaging applications the acquisition
of labeled samples is very hard and/or expensive, while unlabeled
samples are easier to obtain and use. This observation is currently
fostering active research towards the integration of labeled and unla-
beled samples in hyperspectral data classification [8,12–14,17].

In this paper, we present a new semi-supervised algorithm which
exploits both the spatial and the spectral information in the inter-
pretation of remotely sensed hyperspectral data. In our proposed
technique, an MLR is used to model the posterior class probability
distributions, while an MLL prior is adopted to describe theclass
labels. The main contributions of this work to the state-of-the-art in
hyperspectral classification can be summarized as follows:

• the integration of both spectral and spatial information toin-
fer the posterior class probability distributions.

• the integration of both labeled and unlabeled samples to learn
the parameters of the complete model.

• the development of an EM algorithm using BP to estimate
marginals, which enables the inclusion of the unlabeled sam-
ples and also provides a segmentation output.

The remainder of the paper is organized as follows. Section
2 formulates the problem. Section 3 presents the proposed ap-
proach. Section 4 reports segmentation results on a real hyperspec-
tral dataset, in comparison with state-of-the-art competitors. Finally,
Section 5 concludes with some remarks and future work.



2. PROBLEM FORMULATION

LetL ≡ {1, . . . ,K} denote a set ofK class labels,S ≡ {1, . . . , n}
a set of integers indexing then pixels of an image,x ≡ (x1, . . . ,xn)
an image ofd-dimensional feature vectors,y ≡ (y1, . . . , yn)
an image of labels,DL ≡ {(yi1 ,xi1), . . . , (yiL ,xiL)} a set
of labeled samples,YL ≡ {yi1 , . . . , yiL} the set of labels in
DL, XL ≡ {xi1 , . . . ,xiL} the set of feature vectors inDL,
XU ≡ {xiL+1

, . . . ,xiL+U
} the set of unlabeled feature vectors,

andYU ≡ {yiL+1
, . . . , yiL+U

} the set of random variables associ-
ated with the unlabeled class labels.

With the above definitions in mind, the goal of image segmen-
tation (and of classification) is to estimatey having observedx. In
a Bayesian framework, this estimate is usually carried out by maxi-
mizing the posterior distribution1

p(y|x) ∝ p(x|y)p(y),

wherep(x|y) is the likelihood function (i.e., the probability of fea-
ture image given of class label imagey) andp(y) is the prior overy.
Assuming conditional independency of the features given the labels,
i.e, p(x|y) =

∏
i p(xi|yi), then the posteriorp(y|x), as a function

of y, may be written as

p(y|x) =
1

p(x)
p(x|y)p(y)

= α(x)
∏

i

p(yi|xi)

p(yi)
p(y),

(1)

where α(x)
∏i=n

i=1 p(xi)/p(x) is a factor not depending ony.
Herein, we assume, without loss of generality, thatp(yi) = 1/K.

3. PROPOSED APPROACH

In this section we go briefly through the MLR details, describe the
MLL prior, present the EM algorithm to infer the multilogistic re-
gressors, and present the MPM and MAP algorithms.

3.1. The multinomial logistic regression

In this paper, the posterior class probability distribution p(yi|xi) is
modeled with the MLR [7]

p(yi = k|xi,ω) ≡
exp(ω(k)h(xi))∑K

k=1 exp(ω
(k)h(xi))

, (2)

whereh(xi) ≡ [h1(xi), ..., hl(xi)]
T is a vector ofl fixed func-

tions of the input, often termed features;ω denotes the regressors

andω ≡ [ω(1)T , ...,ω(K−1)T ]T ; because the density (2) does not
depend on translations on the regressorsω

(k), we takeω(K) = 0.
It should be noted that the functionh may be linear (i.e., h(xi) =
[1, xi,1, ..., xi,d]

T , wherexi,j is thej-th component ofxi) or nonlin-
ear. Kernels,i.e., h(xi) = [1, Kx,x1

, ..., Kx,xl
]T , whereKxi,xj

=
K(xi,xj) andK(·, ·) is some symmetric kernel function, are a rel-
evant example of the nonlinear case. Kernels have been largely
used as they tend to improve the data separability in the transformed
space. Herein, we use a Gaussian Radial Basis Function (RBF)
K(x, z) ≡ − exp(‖x−z‖2/(2σ2)) kernel, which is widely used in
hyperspectral image classification [5]. From now on,d denotes the
dimension ofh(x).

1To keep the notation simple, we usep(·) to denote both probability den-
sities or distributions of random variables.

3.2. The Multi-Level Logistic spatial prior

In the vein of [10, 12, 18], we assume thatp(y), the prior on the
image class labels is the isotropic MLL

p(y) =
1

Z
e

µ
∑

i∼j

δ(yi − yj)

, (3)

whereZ is a normalizing constant, the notationi ∼ j stands for
neighboring pixels,δ is the unit impulse function2, andµ > 0 is
a parameter controlling the likelihood that two neighboring pixels
have the same class label. Note that the pairwise interaction terms
δ(yi−yj) attach higher probability to equal neighboring labels than
the other way around. In this way, the MLL prior promotes piece-
wise smooth segmentations.

3.3. EM type algorithm to learn the multilogistic regressors

The proposed approach uses the information of both labeled and un-
labeled samples to learn the vector of regressorsω. Since our ap-
proach is semi-supervised, this estimation is based on a small set of
labeled samples(YL,XL) and a larger set of unlabeled samplesXU .
Assuming a priorp(ω) for the logistic regressors, we have

p(ω,y|x) = p(YL,YU |x,ω)p(ω). (4)

Having in mind expression (1), we may write

p(ω,y|x) = α(x)p(YL|XL,ω)p(YU |XU ,ω)p(ω)c(y) (5)

wherec(y) depends only ony.
To compute the MAP estimate ofω, we set forth an EM algo-

rithm, where the set of random variablesYU is treated as missing
data. At iterationt, the E-step and M-step are then given by

E-step:

Q(ω|ω̂t) ≡ E[log p(ω,y|x)|ω̂t] (6)

= lL(ω) + E[log p(YU |XU ,ω)|ω̂t] + log p(ω)

+ logα(x) + log c(y) (7)

M-step:
ω̂t+1 ≡ argmaxQ(ω|ω̂t), (8)

where

lL(ω) =
L∑

i=1

(
K∑

k=1

y
(k)
ij

ω
(k)

xij − log
K∑

k=1

exp(ω(k)
xij )

)
. (9)

If the components ofy are independent, the termα(x) present in
(7) does not depend onω and thus can it be discard in the M-step. It
happens that, in hyperspectral image segmentation, the components
of y are dependent and thereforeα(x) does depend onω. Neverthe-
less, we still discard it, as it is impossible to compute exactly and we
have heuristic evidence that its inclusion does not yield noticeable
improvements in the estimates of the vectorω.

By noting thatp(YU |XU ,ω) has the structure of (9) with the
sum defined over the unlabeled samples and that the mean valuein
(6) is with respect to the random variablesYU , then we have

lU (ω) ≡ E[log p(YU |XU ,ω)|ω̂t] (10)

=

L+U∑

i=L+1

(
K∑

k=1

y
(k)
ij

ω
(k)

xij − log
K∑

k=1

exp(ω(k)
xij )

)

(11)

2i.e., δ(0) = 1 andδ(y) = 0, for y 6= 0



where
y
(k)
ij

≡ E[y
(k)
ij

|x, ω̂t] = p(yij = k|x, ω̂t). (12)

The computation of the conditional marginalsy(k)ij
is a combi-

natorial task and thus very hard solve exactly. Herein, we use BP
to compute an approximation. BP is an iterative algorithm inwhich
local messages are passed in graphical models [19]. For details of
the BP implementation in our graphic model, which is a first order
Markov random field, see [18,19].

As in [9], we adopt the Laplacian densityp(ω) ∝ exp(−λ‖ω‖1),
which enforces sparseness on the elements ofω and therefore gen-
eralization capability. The degree of sparseness is controlled by the
regularization parameterλ.

Finally, we note that, with the above approximations, the M-step
of the proposed EM algorithm is

ω̂t+1 = argmin
ω

{lL(ω) + lU (ω)− λ‖ω‖1} . (13)

which we solve very efficiently with LORSAL [11].

3.4. Energy minimization via graph cuts

As a result of the EM algorithm introduced in the previous section,
we get the posterior marginalsp(yi|x, ω̂t) from which we compute,
for each pixel, the maximum, thus obtaining the MPM segmentation.
In addition, we compute the MAP segmentation given by

ŷ = arg min
y∈Ln

{
∑

i

− log p(yi|xi, ω̂)− µ
∑

i,j

δ(yi − yj)

}
.

(14)
Optimization (14) is a combinatorial problem, involving unary and
pairwise interaction terms, which we solve to a very good approxi-
mation using the graph cutα-Expansion based algorithm [20].

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithms with a real hy-
perspectral data set. In all experiments, the spectral vectors are nor-
malized and the RBF scale parameter is set toσ = 0.6. The prior
regularization parameter is set toµ = 4. For the BP algorithm, we
consider the first-order neighborhood system [18]. Although these
are not optimal choices, they lead to very good results. The training
samples are randomly selected from the ground truth image. The
remaining samples are used as validation set. Each value of overall
accuracy (OA) is obtained from 10 Monte Carlo runs.

We use the well-known AVIRIS Indian Pines scene to evaluate
the proposed algorithm. This image was collected over Northwest-
ern Indian in June of 1992 [1]. The scene is available online3, and
contains145 × 145 pixels and220 spectral bands in the range of
400-2500nm. Following [16,21], A subset scene (consistingof pix-
els in columns [27-94] and rows [31-116]) with size of68× 86 and
4 classes was considered.

In Table 1, we present experimental results for following al-
gorithms: semi-supervised composite kernels [8]; semi-supervised
composite PDE [16]; semi-supervised composite wavelet [16];
MLR-EM, multilogistic regression parameterized with the regres-
sion vector obtained with the proposed EM algorithm; MPM-EM,
proposed MPM segmentation algorithm; MAP-EM, proposed MAP
segmentation algorithm; MLR, multilogistic regression obtained by
the LORSAL algorithm [11]. All of these algorithms use spectral

3http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/

and spatial information except the MLR classifier, which only uses
spectral information. From Table 1, we conclude the following:

• The inclusion of spatial information largely improves the
classification results just based on spectral information as
those with [12].

• The inclusion of unlabeled samples significantly improves the
segmentation results for very small sizes of the training set.
These gains decrease as the size of the training set increases.

• MAP segmentation is marginally better than the MPM seg-
mentation.

An important observation is that the advantages introducedby he
proposed semi-supervised algorithm are less relevant as the size of
the training set increases. This is expected, since the uncertainty of
the classifier boundaries decreases as the training set sizeincreases.
For example, using 100 labeled samples per class (L = 400), we
get an OA=98.87% forU = 0 and an OA=98.89% forU = 7L,
i.e., there is no noticeable gain. This is to be contrasted with the use
of just 5 labeled samples per class (L = 20), in which we get an
OA=84.23% forU = 0 and an OA=91.54% forU = 7L, i.e., a gain
of 7.31%. To give a broader picture of the gains in using unlabeled
samples, for small training set sizes, we plot in Figure 1 overall accu-
racy (OA) results as a function of the number of unlabeled samples
using just 3 labeled samples per class.
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Fig. 1. Overall accuracy (OA) as a function of the unlabeled samples
with L = 12, that is, 3 labeled sample per class.

Meanwhile, in order to shown the high performance of the pro-
posed supervised algorithms, we report the minimum (min), maxi-
mum (max), and average (mean) over 10 runs for the case of 3 la-
beled samples per class. As we can see, even the minimum OA of
the proposed MAP and MPM algorithm is comparable with those ob-
tained by the competitors. This property is definitely relevant when
the acquisition of medium to large training sets is costly. The true
fact is that the proposed approach yields very competitive results
with regards to other state-of-the-art approaches. Eitherwe obtain
comparable results with less training samples or we obtain better re-
sults with the same size of the training set. For instance, with just
10 labeled samples per class (L = 40) andU = 7L unlabeled sam-
ples, both of the proposed MAP segmentation and MPM algorithm
obtained OAs comparable with those presented in [8, 16] using 100
labeled samples per class (L = 400). For illustrative purposes, Fig-
ure 2 show the classification and segmentation maps obtainedusing
L = 12 (3 per class), andU = 102.

5. CONCLUSIONS

This paper introduced a new semi-supervised hyperspectralimage
segmentation algorithm in which the final segmentation is inferred



Table 1. OA [%] results as a function of the number of labeled samplesin the subset Indiana Pines image.L denotes the number of labeled
samples.U denotes the number of unlabeled samples. The best results (in bold typeface) are highlighted for each problem.

Number of labeled samples per class

Algorithms
3

5 10 15 20 25 30 100
min max mean

MPM-EM (U = 0) 59.99 84.04 73.14 84.06 89.49 93.91 94.61 95.85 96.05 98.82
MPM-EM (U = 7L) 78.13 88.47 84.59 91.25 93.01 95.19 96.36 97.02 97.21 98.88

MAP-EM (U = 0) [12] 59.21 84.84 73.49 84.23 90.09 95.07 94.88 96.24 96.34 98.87
MAP-EM (U = 7L) 80.32 88.81 85.32 91.54 93.23 96.08 96.52 97.08 97.46 98.89
MLR [12] (U = 0) 55.42 79.23 69.07 77.99 83.97 88.85 88.91 90.42 90.52 94.91

MLR-EM (U = 7L) 70.85 85.71 80.74 86.66 89.13 92.88 91.96 94.19 94.43 96.46
Composite Wavelet [16] 73.65 78.78 82.90 85.74 86.85 87.69 88.68 92.59

Composite PDE [16] 84.89 86.89 90.03 90.51 91.33 92.67 93.74 94.20
Composite kernels [8] 66.73 67.13 71.32 79.49 82.04 83.12 84.99 86.44

Ground truth MLR-EM: 82.38% MPM-EM: 88.72% MAP-EM: 89.34%

Fig. 2. Classification results obtained by the proposed algorithmfor
the subset image withL = 12 (3 per class),U = 102.

from a posterior probability distribution, taking into account both
the spectral information (through a multinomial logistic regression),
and the spatial information (through a multilevel logisticMarkov
random field). The parameters of the complete model are inferred,
from labeled and unlabeled samples, via Bayesian inferenceusing
expectation maximization and belief propagation tools. The reported
experimental results exhibit state-of-the-art performance. We high-
light the excellent segmentation result obtained with justa few train-
ing samples per class. As future work, we will address inference
on the the model hyperparameters aiming at more adaptiveness, and
will produce a more comprehensive experimental characterization.
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