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ABSTRACT have been proved to be successful in dealing with small cless
tances, high dimensionality, and limited training sets [bhe sup-
port vector machine¢SVMs) [6] and the MLR [7] are among the
state-of-the-art discriminative techniques to clasdiiice Due to
their ability to deal with large input spaces efficiently angbroduce

sparse solutions, SVMs have been successfully used fonssipe

We present a new semi-supervised segmentation algoritheuso
hyperspectral images, which takes full advantage of thetsgdeand
spatial information available in the scenes. We mainly $omoiprob-
lems involving very few labeled samples and a larger set latheied
samples. Amultinomial logistic regressio(MLR) is used to model  ang semi-supervised classification of hyperspectral dg@j[ The

the posterior class probability distributions, whereasutilevel lo-  \j R, compared with SVMs, has the advantage of being able to
gistic level(MLL) prior is adopted to model the spatial information |eam the class probability distributions. Tisparse multinomial
present in class label images. The multinomial logistiaesgors |qgistic regression(SMLR) [9] and thefast sparse multinomial lo-
are learnt using aexpectation maximizatiofEM) type algorithm, — gjstic regression(FSMLR) [10] are effective algorithms to estimate
where the class labels of the unlabeled samples are dedltasit myjtilogistic regressors. More recently, the introduntif thelogis-
unobserved random variables. The expectation step of thal§® ¢ regression via splitting and augmented Lagrang@@®RSAL)
rithm is computed usingelief propagation(BP). In the maximiza-  gigorithm [11] has fostered processing of larger data sedsham-

tion step of the EM algorithm, we compute tiaximum a posterioi  per of classes. These ideas have been applied to hyperdpectge
estimate MAP) estimate of the multinomial logistic regressors. For ¢|assification problems [12—14].

the segmentation, we compute both the MAP solution andidve- Recently, the incorporation of spatial information hasrbea

mizer of the posterior margingMPM) provided by the belief prop-  active area of research in order to improve the accuracy péihy
agation algorithm. We show, using the well-known AVIRISignl  gpectral classification and segmentation techniques [8,3,0.6].
Pines data, that both solutions exhibit state-of-the-arfopmance.  ayailable approaches exploit, in a way or another, the coiit (in

Index Terms— Semi-supervised classification, belief propaga-Probability sense) of neighboring labels, i.e. in hypecsze im-

tion, expectation maximization, hyperspectral segméariainteger ~ ages, it is likely that two neighboring pixels have the saatgel.
optimization. However, in most hyperspectral imaging applications tlugigsition

of labeled samples is very hard and/or expensive, whilehatéal
samples are easier to obtain and use. This observation risntiyr
fostering active research towards the integration of kdbahd unla-
beled samples in hyperspectral data classification [8,4,2-71.

In this paper, we present a new semi-supervised algorithitchwh
exploits both the spatial and the spectral information i ithter-
pretation of remotely sensed hyperspectral data. In oupgsed
technique, an MLR is used to model the posterior class pilityab
distributions, while an MLL prior is adopted to describe ttlass
labels. The main contributions of this work to the statetw-art in
hyperspectral classification can be summarized as follows:

1. INTRODUCTION

The wide availability of hyperspectral images leads to newett
opments in the fields of image segmentation and classifitftip
The detailed information about spectral signatures peavidy hy-
perspectral sensors has fostered the development of newithigs
capable of properly handling the high dimensionality of da¢a. In
hyperspectral remote sensing image classification, theisitiqn of
labeled training data is costly and time consuming. In othenrds,

we are usually given an insufficient set of labeled pixelsewetbp
the classifier. Thus, the classification problem is challemngs the
size of the labeled pixels is typically very small. The diffiiies in
learning high dimensional densities from a limited nhumbferain-

ing samples, known as the Hughes phenomenon, is one of the ma-

jor problems related with the analysis of this type of datd, aai-

e the integration of both spectral and spatial informatiointo
fer the posterior class probability distributions.

e the integration of both labeled and unlabeled samples ta lea
the parameters of the complete model.

e the development of an EM algorithm using BP to estimate

though progresses have been made, it remains an activefar®a o
search [2, 3].

In classification problems, discriminative approachesi¢ivh
learn the class probability distributions in high dimemsibspaces
by inferring the boundaries between classes in the feapaeeq4]),

marginals, which enables the inclusion of the unlabeled- sam
ples and also provides a segmentation output.

The remainder of the paper is organized as follows. Section
2 formulates the problem. Section 3 presents the proposed ap
proach. Section 4 reports segmentation results on a real$ygc-
tral dataset, in comparison with state-of-the-art contpegti Finally,
Section 5 concludes with some remarks and future work.
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2. PROBLEM FORMULATION

LetL ={1,..., K} denote asetak class labelsS = {1,...,n}
aset of integers indexing thepixels of an imagex = (x1,...,Xn)
an image ofd-dimensional feature vectorsy = (y1,...,Yn)

an image of labelsDr. = {(yi,,Xiy),---,
of labeled samplesy. = {vi,...
DL, XL = {Xi17---
XU = {xiL+17"'
andYu = {Yip11»---
ated with the unlabeled class labels.

(yiL y Xip, )} a set

,xi, } the set of feature vectors iy,

,yi; } the set of labels in

,Xiy . + the set of unlabeled feature vectors,
,Yi. v} the set of random variables associ-

3.2. The Multi-Level Logistic spatial prior

In the vein of [10, 12, 18], we assume thaty), the prior on the
image class labels is the isotropic MLL

7
p(y) = E € g ) (3)
where Z is a normalizing constant, the notatien~ ; stands for

neighboring pixelsy is the unit impulse functioh andp > 0 is
a parameter controlling the likelihood that two neighbgrivixels

With the above definitions in mind, the goal of image segmenave the same class label. Note that the pairwise interatetions

tation (and of classification) is to estimatehaving observec. In
a Bayesian framework, this estimate is usually carried gunbxi-
mizing the posterior distributidn

p(ylx) o p(x|y)p(y),

wherep(x|y) is the likelihood functioni(e., the probability of fea-
ture image given of class label imaggandp(y) is the prior ovely.
Assuming conditional independency of the features giveridhels,

i.e, p(x|y) = I, p(x:|y:), then the posteriop(y|x), as a function
of y, may be written as
1
x) = —px
p(ylx) p(x)p( ly)p(y)

e @)
= ax]] piiﬂi) Loy).

where a(x) [T:=7 p(xi)/p(x) is a factor not depending og.
Herein, we assume, without loss of generality, fiat) = 1/K.

3. PROPOSED APPROACH

In this section we go briefly through the MLR details, deseribe
MLL prior, present the EM algorithm to infer the multilogistre-
gressors, and present the MPM and MAP algorithms.

3.1. The multinomial logistic regression

In this paper, the posterior class probability distribotigy; |x;) is
modeled with the MLR [7]

exp(w™h(x:))
S, exp(w®h(x;))’

hi(x:)]" is a vector ofl fixed func-

p(yi = klx;,w) = 2

whereh(x;) = [h1(xi), ...,

tions of the input, often termed features;denotes the regressors
w®=D" T pecause the density (2) does not

andw = [w®",
depend on translations on the regressofs, we takew ™) = 0.
It should be noted that the functidnmay be lineari(e., h(x;) =
1, 2i1,...,z:a]", wherez; ; is thej-th component ok;) or nonlin-
ear. Kemelsi.e, h(x;) = [1, Kxx;, .-, Kx.x,| ", WhereKy, », =

d(y: — y;) attach higher probability to equal neighboring labels than
the other way around. In this way, the MLL prior promotes piec
wise smooth segmentations.

3.3. EM type algorithm to learn the multilogistic regressors

The proposed approach uses the information of both labeleédia-
labeled samples to learn the vector of regressarsSince our ap-
proach is semi-supervised, this estimation is based on & set&f
labeled sample§)r, X1) and a larger set of unlabeled samplés.
Assuming a priop(w) for the logistic regressors, we have

plw,ylx) = pVr, Vulx,w)p(w). 4
Having in mind expression (1), we may write
a(x)p(Vr| XL, w)p(VulXu,

wherec(y) depends only oly.

To compute the MAP estimate aof, we set forth an EM algo-
rithm, where the set of random variablgs is treated as missing
data. At iteration, the E-step and M-step are then given by

w)p(w)e(y) (5)

plw,ylx) =

E-step:
Qwl@:) = Ellogp(w,ylx)|w:] (6)
= Ip(w)+ Ellog p(Vu|Xu, w)|@:] + log p(w)
+log a(x) + log c(y) (M
M-step:
Wit1 = argmax Q(w[@e), (8)
where

L /K K
= Z (Z ygf)w(k)x — logZexp(w(k)xij )> .9
i=1

k=1 k=1

If the components of are independent, the tem{x) presentin
(7) does not depend an and thus can it be discard in the M-step.
happens that, in hyperspectral image segmentation, thpauents
of y are dependent and thereferéx) does depend o@. Neverthe-
less, we still discard it, as it is impossible to compute dyand we
have heuristic evidence that its inclusion does not yieltcerable
improvements in the estimates of the vector

t

K (xi,x;) andK (-, -) is some symmetric kernel function, are arel- By noting thatp()u|Xv,w) has the structure of (9) with the
evant example of the nonlinear case. Kernels have beenlyargesum defined over the unlabeled samples and that the meaninalue
used as they tend to improve the data separability in thefbamed  (6) is with respect to the random variab¥s, then we have
space. Herein, we use a Gaussian Radial Basis Function (RBF) N
K(x,2z) = —exp(||x —z||?/(20?)) kernel, which is widely used in lv(w) = Ellog p(Yu|Xu, w)|w:]
hyperspectral image classification [5]. From now drenotes the L+U [/ K

: - _ 75
dimension ofh(x). = Z Z Ui

i=L+1

(10

— log Z exp(w xLJ )(11)

1To keep the notation simple, we usé) to denote both probability den-
sities or distributions of random variables.

%i.e, 6(0) = 1andé(y) =0, fory # 0



where
—(k k ~ ~
yi ) = E[yz(J) |X, wt] = p(yij = k‘|X,w;:).

J

(12)

The computation of the conditional margin@,%‘) is a combi-
natorial task and thus very hard solve exactly. Herein, weRB
to compute an approximation. BP is an iterative algorithrwinich
local messages are passed in graphical models [19]. Fadtsdeta
the BP implementation in our graphic model, which is a firsteor
Markov random field, see [18, 19].

Asin [9], we adopt the Laplacian densjijw) o< exp(—A||w]|1),
which enforces sparseness on the elements ahd therefore gen-
eralization capability. The degree of sparseness is déetdrby the
regularization parametex.

Finally, we note that, with the above approximations, thetelp
of the proposed EM algorithm is

Wir = argmin {lz () + v (w) = Allw|[1}. (13)

which we solve very efficiently with LORSAL [11].

3.4. Energy minimization via graph cuts

As a result of the EM algorithm introduced in the previoustisec

we get the posterior marginagl$y; |x, @) from which we compute,
for each pixel, the maximum, thus obtaining the MPM segntenta
In addition, we compute the MAP segmentation given by

y = arg min {Z —log p(yalxs, &) — 1y 6(y: — yj)} :
i %)

(14)
Optimization (14) is a combinatorial problem, involvingam and
pairwise interaction terms, which we solve to a very goodraxip
mation using the graph cut-Expansion based algorithm [20].

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed algorithms withah y-
perspectral data set. In all experiments, the spectrabkeere nor-
malized and the RBF scale parameter is set te 0.6. The prior
regularization parameter is setto= 4. For the BP algorithm, we
consider the first-order neighborhood system [18]. AlthHotlgese
are not optimal choices, they lead to very good results. Tdirihg

samples are randomly selected from the ground truth imadee T

remaining samples are used as validation set. Each valueecdlb
accuracy (OA) is obtained from 10 Monte Carlo runs.

We use the well-known AVIRIS Indian Pines scene to evaluatethe acquisition of medium to large training sets is costlie True

the proposed algorithm. This image was collected over Nartit-
ern Indian in June of 1992 [1]. The scene is available ofjiaad

contains145 x 145 pixels and220 spectral bands in the range of

400-2500nm. Following [16,21], A subset scene (consisbifgix-
els in columns [27-94] and rows [31-116]) with sizeG® x 86 and
4 classes was considered.

In Table 1, we present experimental results for following a

gorithms: semi-supervised composite kernels [8]; sermestised

composite PDE [16]; semi-supervised composite wavelei; [16

MLR-EM, multilogistic regression parameterized with thegres-

sion vector obtained with the proposed EM algorithm; MPM-EM
proposed MPM segmentation algorithm; MAP-EM, proposed MAP

segmentation algorithm; MLR, multilogistic regressiortabed by
the LORSAL algorithm [11]. All of these algorithms use spatt

Shttp://cobweb.ecn.purdue.edu/ biehl/MultiSpec/

and spatial information except the MLR classifier, whichyomées
spectral information. From Table 1, we conclude the folloyvi

e The inclusion of spatial information largely improves the
classification results just based on spectral informatisn a
those with [12].

e The inclusion of unlabeled samples significantly improves t
segmentation results for very small sizes of the trainirtg se
These gains decrease as the size of the training set insrease

e MAP segmentation is marginally better than the MPM seg-
mentation.

An important observation is that the advantages introdbgdte
proposed semi-supervised algorithm are less relevanteasizk of
the training set increases. This is expected, since thertanuty of
the classifier boundaries decreases as the training sehsizases.
For example, using 100 labeled samples per class=(400), we
get an OA=98.87% fol/' = 0 and an OA=98.89% fot/ = 7L,
i.e, there is no noticeable gain. This is to be contrasted wihuge
of just 5 labeled samples per clads & 20), in which we get an
OA=84.23% forU = 0 and an OA=91.54% fol/ = 7L, i.e,, a gain
of 7.31%. To give a broader picture of the gains in using uslkedh
samples, for small training set sizes, we plot in Figure Talaccu-
racy (OA) results as a function of the number of unlabeledpas
using just 3 labeled samples per class.

L =12 (3 per class)

¢ —— MAP-EM
b

-#- MPM-EM
. - ©-MLR-EM

Overall Accuracy (%)

70

100 200 3
The number of unlabeled sample: U

Fig. 1. Overall accuracy (OA) as a function of the unlabeled sample
with L = 12, that is, 3 labeled sample per class.

Meanwhile, in order to shown the high performance of the pro-
posed supervised algorithms, we report the minimum (mirgxim
mum (max), and average (mean) over 10 runs for the case of 3 la-
beled samples per class. As we can see, even the minimum OA of
the proposed MAP and MPM algorithm is comparable with thdse o
tained by the competitors. This property is definitely ratgwhen

fact is that the proposed approach yields very competitgeilts
with regards to other state-of-the-art approaches. Eitfeeobtain
comparable results with less training samples or we obttitebre-
sults with the same size of the training set. For instanct) just
10 labeled samples per clags £ 40) andU = 7L unlabeled sam-

| ples, both of the proposed MAP segmentation and MPM algarith

obtained OAs comparable with those presented in [8, 16gusid
labeled samples per class & 400). For illustrative purposes, Fig-
ure 2 show the classification and segmentation maps obtasieg
L = 12 (3 per class), an@ = 102.

5. CONCLUSIONS

This paper introduced a new semi-supervised hyperspeniege

segmentation algorithm in which the final segmentation fisried



Table 1. OA [%] results as a function of the number of labeled samipleéke subset Indiana Pines imagedenotes the number of labeled
samplesl/ denotes the number of unlabeled samples. The best resulisI¢i typeface) are highlighted for each problem.

Number of labeled samples per class
Algorithms ) 3 5 10 15 20 25 30 100
min max mean
MPM-EM (U = 0) 59.99 84.04 73.14| 84.06 89.49 9391 9461 9585 96.05 98.82
MPM-EM (U = 7L) 78.13 88.47 8459 91.25 93.01 9519 96.36 97.02 97.21 98.88
MAP-EM (U = 0)[12] | 59.21 84.84 73.49 84.23 90.09 95.07 94.88 96.24 96.34 98.87
MAP-EM (U = 7L) 80.32 88.81 85.32 | 91.54 9323 96.08 96.52 97.08 97.46 98.89
MLR [12] (U = 0) 55.42 79.23 69.07| 77.99 8397 8885 8891 9042 90.52 9491
MLR-EM (U = 7L) 70.85 85.71 80.74| 86.66 89.13 92.88 91.96 94.19 9443 96.46
Composite Wavelet [16] 73.65 78.78 8290 8574 86.85 87.69 88.68 92.59
Composite PDE [16] 84.89 86.89 90.03 90.51 91.33 92.67 93.74 94.20
Composite kernels [8] 66.73 67.13 71.32 79.49 82.04 8312 8499 86.44

MAP-EM: 89.34%

MLR-EM: 82.38% MPM-EM: 88.72%

Ground truth

Fig. 2. Classification results obtained by the proposed algorftirm
the subset image with = 12 (3 per class) = 102.

from a posterior probability distribution, taking into aemt both
the spectral information (through a multinomial logistgression),
and the spatial information (through a multilevel logiskitarkov
random field). The parameters of the complete model arerader
from labeled and unlabeled samples, via Bayesian inferesirgy
expectation maximization and belief propagation toolse fidported
experimental results exhibit state-of-the-art perforoganwe high-
light the excellent segmentation result obtained with gfgw train-
ing samples per class. As future work, we will address imfege
on the the model hyperparameters aiming at more adaptiseaed
will produce a more comprehensive experimental charaeteon.
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