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1Institute for Systems and Robotics - Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, {ezamanizadeh, jpg}@isr.ist.utl.pt
2Instituto de Telecomunicações - Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, jose.bioucas@lx.it.pt

Abstract: Underwater acoustic channels often exhibit extensive time dispersion due to multipath, necessitat-
ing the development of powerful algorithms at the receiver and transmitter for reliable performance in digital
communication systems. Such Impulse Responses (IR) are often sparse, a property that has been exploited to
improve the performance of adaptive receivers by zeroing small and jitter-prone estimated coefficients. In time-
varying channels, responses may be described by (2D) Delay-Doppler Spread Functions (DDSF), which have
more parameters than IRs but are even sparser. Motivated by (i) demonstrated significant sparsification gains by
simple coefficient truncation at receivers, and (ii) recent developments in compressive sensing algorithms, this
work examines the performance of algorithms for `2− `1 Basis Pursuit (SpaRSA, TwIST) as tools for estimating
sparse DDSFs. Their ability to solve a large-scale regularized least-squares problem without explicitly building a
dictionary matrix is key for efficiently handling DDSFs. Their performance is compared to matching pursuit ap-
proaches (MP, OMP), which have been used previously for similar purposes. The above basis pursuit algorithms
are shown to provide better accuracy than MP/OMP with lower computational complexity in both simulated and
real data, and therefore it is argued that they merit consideration for inclusion in the signal processing chains of
digital receivers.

Index Terms: Delay-Doppler Spread Function (DDSF), SpaRSA, TwIST, Basis Pursuit, Matching Pursuit,
Sparse Estimation, Underwater Acoustic Channels, Underwater Communications

1 Introduction

As in other wireless channels, digital transmission of in-
formation through the ocean by acoustic means must over-
come challenges such as multipath propagation and channel
time variations. However, the relatively slow propagation
speed of acoustic waves in the ocean and significant inter-
action with the boundaries of the medium through surface
and bottom reflections induce distortions in waveforms that
can be much more severe than those observed in wireless
radio channels. For example, delay spreads can easily reach
several tens of milliseconds, and even relatively slow mo-
tions of the transmitter/receiver or surface waves can cause
waveform compression/expansion and broadband Doppler
spreading [1]. Moreover, the delays of surface-reflected ar-
rivals can also fluctuate rapidly over intervals of a few sec-
onds due to wave motion [2]. Finally, the approximately
quadratic dependence of attenuation with frequency means
that underwater acoustic channels are severely bandlimited
over typical operating ranges [1, 3].

Time-varying channels may be described by Delay-Doppler
Spread Functions (DDSF), a generalization of the concept
of time-invariant channel impulse response to the time-fre-
quency plane that adds a Doppler dimension [4]. The chan-
nel output is viewed as a sum of replicas of the input signal,
each associated with a given delay and Doppler shift that
are assumed constant over an averaging interval [2]. This
type of black-box approach has the advantage of capturing
the channel structure and its dynamics without physically

modeling the channel, but it does lead to a large increase in
the number of parameters to be estimated if no prior knowl-
edge exists on where energetic regions are located in the
delay-Doppler plane. Receivers which rely on DDSFs for
improved performance in the presence of channel variations
therefore require strategies for estimating relevant coeffi-
cients in the delay-Doppler plane, while simultaneously re-
jecting contributions from small coefficients whose statisti-
cal fluctuations would lead to unacceptably high output jit-
ter.

For sufficiently large bandwidths many short-range and me-
dium-range underwater channels exhibit sparse IRs or DD-
SFs, as the received signal is mostly formed by contribu-
tions from a small number of resolvable multipath arrivals
that match the assumptions in the black-box models men-
tioned above [5]. In the time invariant case this property
has been used, e.g., in [6] (single-carrier modulation) and
[7] (OFDM) to obtain significant performance gains at the
receiver simply by thresholding least-squares estimates of
channel coefficients. Most DDSFs of real underwater chan-
nels are particularly sparse, featuring extended delay spreads,
yet with most of the coefficient energy localized in several
small regions [2]. Exploiting sparsity is a key insight for
attaining a generic delay-Doppler representation of under-
water channels with manageable complexity and relatively
short observations, as shown in early work by Li and Preisig
[2] using matching pursuit (MP) and orthogonal matching
pursuit (OMP) methods.

Estimation of sparse time-varying channels through basis
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pursuit (BP) techniques developed for compressive sensing
has recently drawn interest in wireless communications sce-
narios [8, 9]. According to the original BP principle, a signal
is decomposed into a superposition of possibly highly re-
dundant dictionary signals, and an optimal set of weights is
found such that the resulting coefficient vector has minimum
`1 norm [10]. Among several variations of BP that have been
proposed [11], we examine recently developed compressive
sensing algorithms for `2 − `1 pursuit, where the cost func-
tion to be minimized is a weighted sum of a least-squares
term that measures goodness of fit and an `1 term that acts
as a regularizer to induce solutions where many coefficients
become zero. Specifically, we focus on Sparse Reconstruc-
tion by Separable Approximation (SpaRSA) [12] and Two-
step Iterative Shrinkage/Thresholding (TwIST) [13], two el-
egant methods for solving unconstrained `2 − `1 optimiza-
tion problems with complex variables and data. SpaRSA
is a framework for the general problem of iteratively min-
imizing the sum of a smooth convex function and a nons-
mooth regularizer. TwIST is an improved version of the It-
erative Shrinkage/Thresholding (IST) algorithm, exhibiting
a much faster convergence rate for ill conditioned and ill-
posed problems. Both methods avoid explicitly building the
dictionary matrix, but rather use operators (typically FFT-
based) for projecting onto dictionary elements or generating
an output vector from a set of weights. This allows them to
efficiently handle very large-scale problems, a property that
is extremely valuable for DDSF estimation.

BP methods, among others, have been considered in [14]
for sparse channel estimation in underwater OFDM systems.
The resulting channel estimates were then used to design
frequency-domain equalizers to counter the effect of inter-
carrier interference caused by time variations. Equalizers
based on sparse methods consistently outperformed those
relying on conventional least-squares (LS) estimates, and
BP methods were found to be the most robust in experi-
mental data collected over diverse environmental conditions.
Our work focuses specifically on DDSF estimation for single-
carrier modulation, not on receiver design issues. Compared
to previously used methods for DDSF estimation such as
MP and OMP, it is shown that both SpaRSA and TwIST can
provide a clear image of the DDSF faster. We examine the
accuracy/complexity tradeoff as the desired level of sparse-
ness is modified through the weight of the `1 regularizer.
BP methods are found to be faster and produce more com-
pact DDSF representations in the delay-Doppler plane than
MP/OMP. The performance of the various methods is evalu-
ated in simulation and using data from an at-sea experiment
conducted in Norway, in September 2007.

The paper is organized as follows. Section 2 introduces the
sparse DDSF estimation problem which we want to solve.
Section 3 describes the MP and OMP methods for sparse
estimation. Section 4 describes the BP framework and dis-
cusses some specific aspects of SpaRSA and TwIST. Section
5 provides numerical results on DDSF estimation perfor-
mance and complexity using both simulated and real data.
Finally, Section 6 outlines the main conclusions and pro-

vides directions for future research.

Notation: Superscripts (·)T , (·)H stand for transpose and
conjugate transpose (hermitian), respectively. `p norms are
denoted by

∥∥·∥∥
p
, and `2 is assumed when the argument p is

omitted.

2 Problem Formulation

In this section we formulate the DDSF estimation problem.
All signals and channel responses are represented by their
complex baseband envelopes.

In a noiseless time-varying continuous-time channel the in-
put signal, x(t), and the output, y(t), may be related through
the input delay spread function g [4]

y(t) =
∫ ∞
−∞

x(t− τ)g(t, τ) dτ . (1)

The channel is represented as a continuum of nonmoving
scintillating scatterers, where g(t, τ) is the contribution at
time t from a scatterer providing delays in the range [τ, τ +
dτ ]. Time variations in g are quite structured when caused
by a small number of Doppler shifts, such that it becomes
more convenient to Fourier transform g along the t variable
and thus express (1) through the DDSF1 U

y(t) =
∫∫

R2
U(τ, ν)x(t− τ)ej2πν(t−τ) dτdν , (2)

U(τ, ν) = Ft {g(t, τ)} ej2πντ . (3)

In an ideal discrete path model, which approximates the
characteristics of many real underwater acoustic channels,
the DDSF is represented as a set of impulses in the delay-
Doppler plane

U(τ, ν) =
Np∑
p=1

αpδ(τ − τp)δ(ν − νp) . (4)

Practical systems have an essentially finite number of de-
grees of freedom that enables a sampled representation of
(2), where the coarseness of the delay and Doppler grids,
∆τ and ∆ν, is dictated by the reciprocal of the input signal
bandwidth, and the reciprocal of its duration, respectively.
The reader is referred to [4, 15, 8] for details. We thus adopt
the discrete-time input-output model

y(n) =
∑
k,l

uk,lxl(n− k) , xl(n) = x(n)ej2πνln , (5)

where the sampling frequency, fs, is a multiple of the input
signal bandwidth and νl = l

Tfs
for an input block of du-

ration T . Below, suitable ranges for the delay and Doppler
indices in (5) are chosen from an empirical analysis of each
data set. With correct delay and Doppler sampling the dis-
crete-time DDSF u will retain the sparsity properties of its
continuous-time counterpart.

1Our DDSF definition is slightly different from Bello’s [4] to simplify
the specification of the forward and adjoint operators in MP/BP methods.
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The channel model (5) is linear in the DDSF coefficients,
and may be written in matrix form as

y = Xu , (6)

where y denotes a vector of M observed samples, u holds
the DDSF coefficients to be determined, and X is the known
dictionary matrix. The p-th column of X is a vector, xp, of
M input samples, delayed relative to y and Doppler shifted
as required for the p-th element of u according to (5). As in
[2] we assume that the observed block is sufficiently short
(lasting for about 1 second) so that the channel coefficients
in u can be considered constant. The problem of DDSF esti-
mation is to obtain the coefficient vector given the dictionary
matrix and a noisy version of the observation vector y in (6).

For realistic choices of the delay and Doppler grids under
the assumed signal bandwidth the dictionary matrix will be
very large, making it inconvenient and slow to operate on it
explicitly. However, the sparse identification methods under
consideration only require that matrix products of the form
Xu or XHy be calculated, and for blocks of contiguous ob-
served samples this can be done very efficiently due to the
special structure of X, which is the (column-wise) concate-
nation of convolution matrices for the signals xl(n) in (5).
Specifically:

• [Forward mapping] To generate Xu perform time-
invariant filtering of xl(n) with the subset of elements
of u pertaining to Doppler frequency νl, then add over
l. Naturally, the FFT can be used for filtering.

• [Adjoint mapping] To generate the vector XHy cross-
correlate the sequences y(n) and xl(n), for all l, re-
stricted to the samples contained in y and X. Each
element of the desired vector, xHp y, is given by the
crosscorrelation for a specific Doppler index and lag.
The FFT should be used to efficiently compute these
crosscorrelations, except when the range of delays con-
sidered in the DDSF is extremely short.

The modified DDSF definition adopted in (2)–(3) directly
supports the above procedures for forward and adjoint map-
ping with no need for further postprocessing.

3 Basic and Orthogonal Matching Pursuit
Methods

Matching Pursuit is an elegant method introduced by Mal-
lat and Zhang [16], which iteratively decomposes a signal
into a linear expansion of waveforms that are selected from
a redundant dictionary. This section reviews the algorithms
for DDSF estimation through basic MP and OMP, follow-
ing a similar notation to [2]. Both MP and OMP sequen-
tially select dominant taps of the DDSF that maximize the
projection of the residual observation vector onto the corre-
sponding symbol vector and then calculate tap coefficients

according to some criteria. The difference is that MP cal-
culates each tap coefficient directly from the projection re-
gardless of the previous history, while OMP obtains a joint
LS solution for the coefficients of all the selected taps [2].

At each iteration, t, MP selects one column of X that corre-
lates best with the approximation residual from the previous
iteration, rt−1, [16]

p = arg max
s/∈It−1

∣∣xHs rt−1

∣∣2∥∥xs∥∥2 , (7)

where It−1 is the index set of all previously selected columns.
The initial residual is the observation vector, r0 = y. Then
up, which is the element of u associated with the dictionary
column xp, can be computed as

up =
xHp rt−1∥∥xp∥∥2 . (8)

Finally, the residual vector and index set are updated for the
next iteration as

rt = rt−1 − upxp , It = It−1 ∪ p . (9)

The stopping criterion can be based on thresholding of
∣∣up∣∣

or
∥∥rt∥∥. When the same dictionary matrix is repeatedly ap-

plied to different observation vectors, the online computa-
tion of inner products can be eliminated by precomputing a
table with all inner products between columns of the dictio-
nary matrix.

OMP improves upon MP by recognizing that the correlation
between selected columns of X as iterations progress should
be taken into account to produce a LS estimate for the cor-
responding subset of coefficients in u [2]. A basic approach
would be to explicitly minimize

∥∥y −XIt
uIt

∥∥ at each it-
eration, where XIt

denotes the set of selected columns of
X, but this would be computationally burdensome. A better
option is to recursively update a QR factor of XIt

and only
solve for the DDSF coefficients at the end, as described be-
low. The same criterion of MP is used to choose a new col-
umn of X at each iteration.

1. Initialize r0 = y and QI0 = RI0 = ∅

2. While the stopping criterion is not met:

a) Select column p as in (7)

b) Update the QR factor2 of XIt
= QIt

RIt

c) Project the residual onto q, the new column of
QIt , as zp = qHrt−1 and store the coefficient

d) Update It and rt = rt−1 − zpq

3. Return uIt
= R−1

It
zIt

, where zIt
holds all sequen-

tially stored residual projections

2We first build QIt =
ˆ
QIt−1 xp

˜
and RIt =

»
RIt−1 0

0T 1

–
, then

apply the Gram-Schmidt procedure to xp to reorthogonalize the basis.
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Figure 1: Sparse DDSF estimation for simulated channel using various pursuit algorithms. (a)–(b) True DDSF and time-varying
channel impulse response. (c) MP (d) OMP (e) SpaRSA (f) TwIST. Although all methods detect some nonzero taps, SpaRSA
and TwIST provide a clearer picture of the DDSF. Their running time is also significantly lower than for MP and OMP.

4 Basis Pursuit Methods

Finding sparse approximate solutions to large underdeter-
mined linear systems of equations is relevant in several prob-
lems in signal/image processing and statistics [11]. In sig-
nal processing recent achievements in compressive sensing
(CS) have sparked enormous interest in such techniques for
solving various linear inverse problems. We are mainly con-
cerned with solving unconstrained `2-`1 optimization prob-
lems of the form

min
u

1
2

∥∥y −Xu
∥∥2

2
+ τ

∥∥u∥∥
1
, (10)

where the first term measures how well the candidate solu-
tion fits the observed data, in the LS sense, while the sec-
ond one is a regularizer which acts as a surrogate for the

intractable `0 norm, and tends to penalize more heavily vec-
tors u with many nonzero components. The so-called reg-
ularization parameter τ controls the relative weight of the
two terms [13]. We note that many variants of (10) exist in
the literature, e.g., keeping only one of the terms in the cost
function and including the other one as a constraint under a
prescribed bound [11].

In most reported applications of (10) the data matrix X is
fat, i.e., there are fewer observations than unknowns, and
the regularizer is essential for obtaining a well-posed opti-
mization problem. This is not necessarily the case in DDSF
estimation, where data blocks may be large enough to en-
able even conventional LS estimation. The `1 regularizer
then acts simply as a device for automatically setting to zero
small coefficients, whose contribution to improve the fit to
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Figure 2: Sparse DDSF estimation for real channel. (a) MP (b) OMP (c) SpaRSA (d) TwIST. In this case all solutions have
adequate support in the delay-Doppler plane.

observations is marginal, but which would nonetheless be
retained by a pure LS estimator.

Unlike OMP, (10) does not lead to a LS solution for u over
the set of identified nonzero taps, although the overall shapes
are usually similar up to a scaling factor. The practical im-
plementations for the BP methods described in Sections 4.1
and 4.2 therefore provide an option for a postprocessing de-
biasing step, where a true OMP-type LS solution is calcu-
lated. Debiasing is included in the running times reported in
Section 5.

4.1 Sparse Reconstruction by Separable
Approximation (SpaRSA)

SpaRSA is a general framework for numerically solving an
unconstrained optimization problem of the form [12]

min
u
f(u) + τc(u) , (11)

where f is a smooth function and c is the sparsity-inducing
regularizer which, in state of the art CS methods, is non-
quadratic and nonsmooth (typically the `1 norm appearing
in (10)). It is an iterative method that at each step solves an
optimization subproblem with an approximation for f that is
separable in the unknowns, interpolating the gradient infor-
mation and using a diagonal approximation to the Hessian.
Simple and efficient algorithms result when the regularizer
is also separable, i.e., it is a sum of functions of the individ-
ual components of its argument, c(u) =

∑
i ci(ui), as is the

case for the `1 norm. For the `1 regularizer in the real field
SpaRSA repeatedly evaluates simple so-called soft threshold
functions of the form3 soft(u, a) = sign(u) max{

∣∣u∣∣−a, 0}
for each component of u, where a depends on the current
step and regularization parameters. It is through the max
operation that small elements of u are set to zero.

The SpaRsa framework also yields efficient solution tech-
niques for other regularizers, such as the nonconvex `0 norm
and group-separable regularizers. It readily generalizes to
the case in which the data is complex rather than real, which
is highly desirable for working with complex baseband rep-
resentations of digital communications signals. Experiments
with CS problems show that this approach is competitive
with the fastest known methods for the standard `2 − `1
problem, as well as being efficient on problems with other
separable regularization terms.

The regularization parameter τ , which is usually set by trial
and error, provides an adjustable control to specify the de-
sired level of sparsity in the solution. As a rule of thumb τ
should approximately equal the maximum squared `2 norm
of the dictionary matrix columns. Section 5 assesses the
computational complexity (running time) vs. accuracy as a
function of this parameter.

3In the complex case this becomes soft(u, a) =
max{

˛̨̨
u

˛̨̨
−a,0}

max{
˛̨̨
u

˛̨̨
−a,0}+a

u.
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Figure 3: Sparse DDSF estimation for real channel. (a) MP (b) OMP (c) SpaRSA (d) TwIST. In this case the coverage of MP
and OMP in the delay-Doppler plane seems too disperse.

4.2 Two-step Iterative Shrinkage/
Thresholding Algorithm (TwIST)

Iterative shrinkage/thresholding (IST) algorithms attempt to
minimize the cost function (11) for f(u) = 1

2

∥∥y −Xu
∥∥2

through the recursion

ut+1 = (1− β)ut + βΨτ

(
ut + XH(y −Xut)

)
, (12)

where Ψτ is the shrinkage function, a componentwise non-
linearity that reduces the range of the elements of u and thus
induces sparsity by setting small coefficients to zero [17].
When c(u) =

∥∥u∥∥
1

in (11), Ψτ coincides with the soft
threshold function defined in Section 4.1. In (12) 0 < β ≤ 1
is a parameter which changes the convergence rate of the
IST method. Setting β = 1 defines the original IST algo-
rithm.

The convergence rate of IST algorithms depends on the lin-
ear observation operator Xu, becoming very slow when it
is ill-conditioned or ill-posed. Two-step iterative shrink-
age/thresholding algorithms overcome this shortcoming by
implementing a modified version of IST where ut+1 de-
pends explicitly on ut and ut−1. The resulting algorithms
exhibit a much faster convergence rate than IST for ill con-
ditioned and ill-posed problems [13]. The TwIST recursion
is given by

ut+1 = (1−α)ut−1+(α−β)ut+βΨτ

(
ut+XH(y−Xut)

)
,

(13)

where α and β are algorithm parameters that determine the
convergence rate and should be adjusted for each specific
optimization problem. Like SpaRSA, this algorithm can
readily be applied to the complex case.

5 Performance Assessment

In this section we compare the performances of the sparse
DDSF estimation methods in single-carrier (QPSK) trans-
missions over simulated and real underwater channels.

5.1 Simulation Results

The transmitted signal is a QPSK packet at 2.4 kbaud, with
5.5 kHz carrier frequency, 4.5 kHz bandwidth, root-raised-
cosine (RRC) pulse shapes (88% rolloff), and total duration
1 s. The source and receiver are located 1.1 km apart, at 30
m depth, and approaching each other with relative speed 1
m/s. The bottom is sandy (1600 m/s, 2 g/cm3, 0.8 dB/λ),
at 110 m depth. The received signal, sampled at 4 times
the symbol rate (fs = 9.6 kHz), is computed with an on-
line ocean acoustic simulator developed by the University
of Algarve4.

Figure 1 shows the DDSF estimation results for this chan-
nel. As in [14] we use sub-symbol delay resolution ∆τ =
1/fs ≈ 10−4 s, whereas the Doppler step is ∆ν = 0.2

4http://www.ua-net.eu/projects/simulator/
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Figure 4: Running time for DDSF estimation methods. (a) Variable sparsity, with fixed problem size. (b) Variable problem size,
with fixed regularization parameters/stopping criteria.

Hz. The DDSF has a total of 324 × 26 coefficients, so
the (implicit) dictionary matrix X has 9600 × 8424 entries.
From the figure it is clear that all methods capture the effec-
tive support region for the DDSF reasonably well, although
SpaRSA and TwIST provide more compact representations
that better match the true DDSF shown in Figure 1a. Be-
sides, the running times for BP methods are significantly
shorter than those form MP and OMP to estimate the same
number of non-zero taps.

5.2 Experimental Results

The UAB’07 sea trial was carried out in Norway during the
first two weeks of September 2007. The transmitter was sus-
pended from a fixed platform 10 m from shore, at a depth
of about 5 m. The receiver (hydrophone #8 of a 16-element
vertical array) was suspended from a drifting buoy at a depth
of about 35 m. The communication range was approxi-
mately 800 m, the bottom depth gradually increasing from
10 m at the transmitter to about 100 m at the receiver lo-
cation. Several modulation formats were transmitted with
carrier frequency 5.5 kHz and variable bandwidth. In this
work we focus on QPSK packets (type Q1) at 1 kbaud, with
1.5 kHz bandwidth, RRC pulse shapes (50% rolloff), and to-
tal duration 3 s. Each packet is flanked by a pair of start/stop
LFM markers to be detected by cross-correlation for packet
synchronization and coarse Doppler compensation through
resampling. The Doppler axis in DDSF plots already ac-
counts for this preprocessing. Each DDSF is estimated based
on a time window of 1 s centered on the received signal.

Experimental results are presented in Figures 2 and 3. De-
spite the fact that the most energetic taps of the DDSF are
detected by all methods in the packet shown in Figure 2,
the results for BP methods are more concentrated. Simi-
larly to the simulation results of Figure 1, these seem more
physically plausible. Results for a second packet, in Figure
3, demonstrate a case with stronger Doppler spread, where

MP and OMP identify many scattered points that make it
even more difficult than previously to grasp the shape of the
DDSF, while BP methods provide a much more clear pic-
ture.

The run times for the four methods as a function of the
number of nonzero taps5 for estimating a fixed-size DDSF
are shown in figure 4a. Since MP methods search for the
highest projection for each new selected tap, the run time
for MP and OMP is directly dependent on the number of
nonzero taps. On the other hand, BP methods estimate the
sparse vector jointly by solving a single optimization prob-
lem, which makes them less dependent on the number of
nonzero taps. It is clear that in all situations BP algorithms
are significantly faster than MP methods with no sacrifice in
accuracy. Figure 4b shows the dependency of elapsed time
for variable-size DDSF estimation as the Doppler resolution
increases. Although getting higher DDSF resolution obvi-
ously implies greater computational cost in all algorithms,
the elapsed time for MP and OMP grows significantly faster
than for SpaRSA and TwIST.

6 Conclusion

In this paper we assessed the performance of two basis pur-
suit algorithms (SpaRSA and TwIST) for sparse DDSF es-
timation, comparing them with well established matching
pursuit methods (MP and OMP). Numerical results using
both simulated and real data showed that BP methods lead
to more compact support in the delay-Doppler plane and a
clearer picture of the DDSF. Moreover, this improvement
over MP and OMP was attained with both significantly lower
computational effort and more favorable scaling of com-
plexity as a function of the problem size and number of
nonzero entries in the DDSF.

5These were obtained by varying the number of iterations in MP/OMP
or the value of the regularization parameter τ in BP methods.
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Run times for BP methods on the order of 10 seconds seem
amenable to improvements in algorithmic and software effi-
ciencies that could ensure real-time or near real-time opera-
tion. No major differences were encountered between algo-
rithms in the same class; MP and OMP performed similarly,
possibly because the columns of our dictionary matrix are
not strongly correlated. SpaRSA and TwIST also showed
comparable performance, such that a choice between them
for practical implementation could end up being dictated
by considerations such as parallelizability and suitability to
mapping onto low-level processor operations. Future work
will address the problem of quantifying the disparity be-
tween DDSFs.
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