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1 Abstract

The paper proposes a new method for simultane-
ous estimation of the absolute phase (not simply
modulo-27), the backsattering coefficients, and the
correlation factor of a pair of complex synthetic aper-
ture radar (SAR) images. We adopt a Bayesian
framework. Therefore, we need the prior knowl-
edge concerning the images to be restored (phase,
backscattering coeflicients, and correlation factors)
and a suitable model for the observed image condi-
tioned on the images to be restored. We assume
as priors for the phase, the backscattering coeffi-
cients, and the correlation factors three independent
Markov random fields. The observation model takes
into account: the speckle noise of each SAR image,
the decorrelation mechanisms (spatial and tempo-
ral), and the system electronic noise. Based on these
models an iterative algorithm embodying a recursive
stochastic nonlinear filter is derived. A set of ex-
perimental results illustrate the effectiveness of the
proposed approach.

2 Introduction

SAR is a coherent system that produces high res-
olution images of the electric field backscatterd by
the surface being illuminated [1]. SAR images are
typically acquired by a single antenna. By using two
antennas separated by a baseline B, it becomes pos-
sible to interfere the two images in such a way that
the common scene reflectivity is canceled and the
geometric information contained in the scene topog-
raphy is retained in the phase difference. It is the so-
called interferometric synthetic aperture radar (In-
SAR).

In a SAR system, as in any coherent system, only
the principal values of the phase are available, as
computed from the argument of the received wave.
However, in InSAR applications, the objective is the
estimation of the absolute phase, and not simply its
modulo-27.

Classical phase unwrapping methods are either
of path following type or of least-squares type. In

both cases, the absolute phase determination is usu-
ally based on the following two-step procedure (e.g.,

[21, 3], [4], [5] [6],

1. determine the so-called wrapped-phase image
or interferogram, which is an estimate of the
modulo-27 phase values;

2. based on the interferogram uwnwrap the phase
(i.e., determine its absolute values) by adopt-
ing some heuristic or adhoc phase continuity
criterion.

In the path following schemes, phase is un-
wrapped through selected image patches. In the
presence of noise different patches between two
points may lead to different absolute phase differ-
ences. Heuristic rules are applied to resolve or mit-
igate this inconsistencies [2], [7] Typically, unwrap-
ping methods that do no rely on path following cast
the problem in the least-squares formalism [8]. Re-
cently, it has been shown that the least-squares so-
lution to phase unwrapping is equivalent to the so-
lution of the discretized Poisson equation with New-
mann boundary conditions. This solution can be
computed efficiently by using fast cosine or Fourier
transforms [9].

Due to decorrelation (temporal and spatial) and
no-return or low return areas, the modulo-27 phase
estimates corresponding to those areas might be ex-
tremely noisy. In an attempt to include this infor-
mation in the unwrapping procedures, the weighted
least-squares approach has been used [10], taking as
weights the correlation coefficients.

2.1 Proposed Approach

In this paper we propose a model based approach to
phase unwrapping that does not share the spirit of
the classical techniques. Absolute phase estimation
is addressed from a statistical point of view: SAR
images are described as random fields whose statis-
tical properties are built upon the physical mech-
anism of image generation. The probability of this
random fields is parametrized by the absolute phase,
the backscattering coefficients, and the correlation



factors. The Bayesian framework is adopted for the
joint estimation of this image parameters.

In the Bayesian approach a priori probabilities
of the fields to be estimated, supplies a suitable tool
to model smoothness constraints on those fields. In
this work prior knowledge is modelled by three inde-
pendent Gauss Markov random fields (GMRF), one
per parameter image.

Joint estimation of the three fields is imple-
mented by an iterative scheme that, at each iter-
ation, computes:

1. the joint estimation of the correlation and
backsacttering coefficient fields, using a
coordinate-wise ascent type algorithm;

2. the absolute phase image using a recursive
nonlinear estimator.

It should be stressed that the estimates of the
tree fields are interdependent according to the im-
age generation model. This is in contrast with the
unwrapping strategies, where each field is dealt with
independently, in an adhoc fashion.

The recursive stochastic nonlinear filtering part
of this work is on the vein of works [11], [12]. The
problem therein addressed is the estimation of the
absolute phase from noisy observations of its in-
phase and quadrature components. As shown latter,
part of the estimation procedure herein considered,
is cast exactly in this way.

3 Observation Model

For a given InSAR geometry, the terrain elevation
is obtained from the phase ¢ = @2 — ¢1 [13], where
¢1 and ¢ are the propagation path phases read by
the two antennas. Phase ¢ relates, in a noisy and
nonlinear way, with the observed SAR images (in-
terferometric pair).

Denote x; and z2 as the complex amplitudes (in-
phase and quadrature components packed into com-
plex numbers) of the backscattered field read by each
antenna at a given pixel. These amplitudes are given
by
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where z;, ¢ = 1,2, is the complex amplitude orig-
inated by the scatterers illuminated by aperture i,
and n; is the respective electronic noise.

Assuming that the surface being illuminated is
rough compared to the wavelength, that there are no
strong specular reflectors, and that there are a large
number of scatterers per resolution cell, then the
complex amplitude z; are circularly symmetric and
Gaussian [14]. Noises n; are independent of com-
plex amplitudes z;, and also circularly symmetric
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and Gaussian [15]. Complex amplitudes z; and 29
are different due to spatial and temporal decorrela-
tions. The former is originated by non-overlapping
portions or the aperture regions of each antenna;
the latter is originated by scatterer displacements.
We assume that E[|z1]?] = E[|z2|*] = 6 and that
E[2125] = a#?, where a stands for the correlation
factor between z; and z», also termed change pa-
rameter or degree of coherence [16]. We assume that
a € [0, 1], which is valid whenever the scatterer dis-
placements have an even distribution.

Defining = = [z1 x2]7, E[|n1| ] = 02, and assum-
ing that E[|n1|?] = E[|n2|*], the probablhty density
function of = is written as [16]
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where Q = E[zz!] is given by
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Let @;; = [71i; %2i;]7 denote the random vec-
tor of complex amplitudes associated to the pixel
(t,7) and x = {z45,4,j = 1,...,N} (we assume
without lack of generality that images are squared).
Define ¢ = {¢i;, 1,7 = 1,...,N}, 0 = {0;5, 4,5 =
1,...,N}, and & = {aj, 4,5 = 1,...,N}. Assum-
ing that the components of x are conditionally in-
dependent, then,

N
p(x|$,0,0) = [ pl@ijldij, 0, ).
=1

The conditional independence assumption is valid if
the resolution cells associated to any pair of pixels
are disjoint. Usually this is a good approximation,
since the point spread function (PSF) of the SAR
system is only slightly larger than the corresponding
inter-pixel distance [17]. Anyway, the correlation
introduced by the PSF can be modelled by assuming
that the observed vector is y = Bx, where B is the
associated blur matrix.

4 Prior Model

We assume that images 6, and « are independent
noncausal first order Gauss Markov random fields
(GMRF) [18] with the following probability density
functions:
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where AzY; = (2i; — xi-15), Axly = (255 — 2ij-1),
Zy and Z, are normalizing constants, and py and
i are smoothing controlling parameters. Priors (5)
and (6) favor smooth fields. Estimates of € and « re-
sult from the tradeoff between smoothness imposed
by (5) and (6), and from data adjustment imposed
by the observation mechanism trough pdf (3).

The image phase prior is modelled as an auto-
regressive (AR) process; specifically

(7)

where {u; ;} is a field of independent and identically
distributed (i.i.d) zero mean Gaussian variables of
variance o2. Parameters a; and ay are, typically set
to 1/2, i.e., pixel ¢; ; is the mean of ¢; j_1 and ¢;_1 ;
plus a random independent increment. Moreover,
prior p(¢) is also a first order GMRF with the same
structure of (5) and (6).

The underlying reasons for adopting the AR
model (7) are twofold:

Gij = Q105 j—1 + a2di—1,j + uij,

1. smoothness enforcement on the phase ¢ is pos-

sible by suitable choice of variance o2;

2. the pixel being updated depends only on those
pixels already updated (past). In this scenario,
a recursive stochastic filter can be applied to
determine phase ¢

The recursive stochastic filter demands a state-
space description of (7). Herein, we adopt the re-
duced order model (ROM) proposed in [19], where
the state vector contains only those pixels from
which ¢; ;41 depends. Assuming the lexicographi-
cal order

Pn(i,j) = Pijs (8)
where n(i,j) = iN + j, the ROM for (7) is
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where the w; ;’s are i.i.d unit variance zero mean
complex Gaussian variables.

5 Estimation Procedure

Since the posterior distribution of ¢, 8, and e,
given the observed data x, is known, one could think
of computing the maximum a posteriori probability
(MAP) estimates of those parameters according to

(¢,0,&)map = arg max p(¢, 0, alx).
0.«

(10)

However, this maximization would involve a high
computational burdeen unbearable in most prob-
lems. The main reason for this is due to the ob-
servation mechanism, which only allows phase to be
recovered modulo-27. In this situation a recursive
scheme is better suited than the batch one implicit
in (10).

Aiming at the joint estimatation of (¢, 0, ), we
propose an iterative procedure that at (¢ + 1)-th it-
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eration computes (6,a)**t! and ¢( ) according
to

(1) Batch MAP Estimator:

6,a) ) = argrgaxp(aﬁ(t), 0, alx) (11)
(2) Recursive Nonlinear Estimator:
§ = =N (2)

where ¢, is the first component of the state vector
v, modelled by (9), and
Vﬁf"‘l) = a,rgm‘a}nxp(v|(§,&)(t+1),xn) (13)
with {x,} ={z;,i=1,...,n}.
The iterative scheme is stopped when the dif-
ference (¢, 0, )Y — (p,0, @) reaches a preset
threshold.

5.1 Batch MAP Estimator

The maximizer (8,a)+Y, expressed in (11), is im-
plemented by a coordinate-wise ascent algorithm:
the posterior distribution p(¢*), 8, a|x) is first max-
imized with respect to 6,, for n = 1,...,N?,
and next maximized with respect to a,,, for n =
1,...,N. This two steps are repeated until the
difference of consecutive estimates reaches a preset
minimum value.

5.2 Recursive Nonlinear Estimator

To compute v, according to (13), p(v,|x,) must be
known for all n ((6,a)*+1) is omitted for shortness).
This is accomplished recursively in two steps:

Prediction

p(vn|xn_1) = /p(vnlvn—l)p(vn—1|xn—1)dvn—la

(14)
where p(v,|vp—1), reflecting (9), is Gaussian
with mean Av,_; + Ee,, and covariance ma-
trix BBT;

Filtering

(15)

P(Va|Xn) < p(Va|Xn—1)p(@n|Vn),



where p(x,|vy,) = p(z,|¢n), which, according
to observation model (3), takes the form

P(xn|dn) < exp {\, cos(dp —nn)},  (16)
with 20| |
_ 40p|T1nT2n
STTEr A
and
Nn = arg{xi, Tan }. (18)

Note that A,, given by (17), has the meaning of
a ratio between the correlated and the uncorrelated
signal power.

5.2.1 Nonlinear Filter Implementation

To implement operations (14) and (15), finite repre-
sentation operands are required. We adopt the strat-
egy followed in [11], [12]. Essentially, it consists in
representing the observation factor (16) as a train of
Gaussian terms centered on ngf) = np+2mifori € Z,
and with a common variance ,. This variance mini-
mizes the Kulback distance (defined in a 27-interval),
between p(x,|¢,) and the train of Gaussian terms.
The relation between this optimal variance v, and
the observation dependent parameter \, is provided
by a look-up table of solutions of the above men-
tioned minimization. For details see [20].

Assume that p(v,|x,—1) is Gaussian; straight
application of the filtering step would produce an
infinite number of Gaussian terms. We adopt the
following simplification: in multiplication (15) take
only the term of the Gaussian sum representa-
tion closest to E{¢1,|xn—1}. The resulting density
p(Vn|xy,) turns out to be also Gaussian, the mean of
which is taken as the optimal (MAP) estimate bin.
After this, prediction (14) is now implemented as
the usual Kalman-Bucy prediction step [21].

6 Experimental Results

Figure 1 displays two Gaussian phase elevations to
be estimated from an InSAR image pair. The maxi-
mum phase variation between two grid points is 0.35
rad. On the left elevation the signal power and the
correlation coefficient is set to 8 = 1 and a = 0.99,
respectively. On the right elevation, this parameters
are set to # = 10 and o = 0.7, respectively. The in-
dependent noise is taken to be zero, since the noise
due to decorrelation is, typicaly, the most serious
degradation effect in InSAR.

Figures 2 and 3 shows the interferogram n and
the A-image as given by expression (17). As ex-
pected, the interferogram correspondent to the right
elevation is much noisy than the interferogram cor-
respondent to the left elevation. The same pattern
is observed in the A-image displayed in Fig. 3.
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Figure 2: Interferometric image 7.
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Figure 3: Equivalent sample signal-to-noise ratio
A-image.
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Figure 4: Estimated phase absolute image.

Finally 4 exhibits the correctly unwrapped phase
on both elevations. The variance of the estimates on
the left is, as it would be expectable, smaller.

7 Concluding Remarks

The paper addressed the problem of InSAR abso-
lute phase image estimation from a Bayesian model-
based point of view. The adopted observation model
reflects the physics of the InSAR problem, whereas
the prior models allow smoothness enforcement.

Not only the phase, but also the backscattering
coefficients and the correlation factors are parame-
ters of the overall model. As a by-product of phase
unwrapping, the proposed algorithm also provides
estimated images of the other two fields.

The goal of this work is to develop estimation
methodologies independent, as much as possible, of
adhoc procedures.
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