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Tel: +351 1 8418466; fax: +351 1 8418472

Email: edias@beta.ist.utl.pt

ABSTRACT

This paper proposes a new method for the efficient
computation of the Fisher information matrix of zero-
mean complex stationary Gaussian processes. Its com-
plexity (measured by the number of floating point op-
erations) is smaller than the fastest previously available
procedure. The key idea exploited is that the Fisher in-
formation matrix depends only on the sum of the diago-
nals of the inverse covariance matrix derivative (with re-
spect to the model parameters), rather than on the whole
matrix. To obtain the referred sum, a new efficient tech-
nique, built upon the Trench algorithm for computing the
inverse of a Toeplitz matrix, is presented.

1 INTRODUCTION

The Cramér-Rao bound (CRB) [1], [2] plays an important
rule in parameter estimation:

(a) The CRB is, for the class of unbiased estimators, a
lower bound on the error variance;

(b) The CRB is attainable by maximum likelihood esti-
mators, at least asymptotically;

(c) Very often, the variance of a particular estimator is
not known; resorting to the CRB is, in this case, a
usual procedure.

The CRB is obtained from the Fisher information ma-
trix; given a finite sample size N , the computation of the
Fisher information matrix of a zero-mean complex sta-
tionary Gaussian process includes matrix inversions and
matrix multiplications [3] (not to mention the computa-
tion of the derivatives). Therefore, the total complexity,
measured in floating point operations (flops) is O(N3), if
the number of parameters is independent of N . Should
the number of parameters be proportional to N , the men-
tioned complexity grows to O(N4).

1.1 Previous Work

The normalized Fisher information matrix of a zero-mean
(or with mean independent of the parameter vector) com-
plex stationary Gaussian process tends, with the sample

size, to Whittle’s formula [4]. Zeira and Nehorai [5] gener-
alized this result for non zero-mean processes. Whittle’s
formula, despite leading to closed and simple expressions
with light complexity (ARMA processes are a relevant
example), does not fit accurately the Fisher information
matrix for small sample sizes [6].

As it was pointed before, the complexity in computing
the Fisher information matrix varies between O(N3) and
O(N4). Such a complexity is not tolerable in many appli-
cations, and has fostered research towards more efficient
algorithms; namely:

1. Porat and Friedlander [7], based on the Levinson-
Durbin algorithm for computing the orthogonal
polynomials of a Toepliz matrix, proposed an algo-
rithm for the exact computation of the Fisher infor-
mation matrix. The algorithm computes the infor-
mation matrices for all orders between 1 and N in
O(N2) flops;

2. Giannella [8], Porat and Friedlander [6], and Tuan
[9], based on the Gohberg-Semencul decomposition,
proposed methods for AR(p) processes;

3. Mélard and Klein [10] introduced an algorithm for
ARMA processes; it takes advantage of the state
equation associated to the rational transfer func-
tion, jointly with the Chandrasekhar [11] recur-
sion, used for the computation of the likelihood
function. The algorithm complexity is, roughly,
O(N(p+q)2 max(p, q+1)2); despite its slow growing
rate with the sample size (linear with N), the term
(p+ q)2 max(p, q + 1)2 is, frequently, too penalizing.

1.2 Proposed Approach

We begin by showing that in zero-mean (complex or
not) stationary Gaussian processes, the Fisher informa-
tion matrix depends only on the sum of the diagonals
(from now on we refer to diagonal sum) of the inverse
covariance matrix derivative (with respect to the model
parameters), and not on the whole matrix. With this fact
in mind, it is then proved (based on the Trench algorithm
[12] for determining the inverse of a Toeplitz matrix) that
the diagonal sum of the referred matrix can be computed
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with O(N lnN) complexity. On computing the diagonal
sum, it is necessary to solve a Toeplitz system; by using
the preconditioned conjugate gradient (PCG) technique
(see [13] and [14]), this has O(N lnN) complexity. The
total complexity of the method is therefore O(N lnN).

2 PROBLEM FORMULATION

Let Y = {y(t), t ∈ �} be a zero-mean complex sta-
tionary Gaussian process and Y = [Y1, . . . , YN ]T , with
Yi = y(iTp) for i = 1, . . . , N , a random vector. We assume
that the random variable y(t) = yr(t) + jyi(t) verifies

E{y(t)y(s)} = 0, (1)

for all t, s ∈ �. Property (1) allows writing the p.d.f. of
Y as [15, p. 77]

py(Y = y; θ) =
1

πN |Ry(θ)| exp
[
−yHR−1

y (θ)y
]
, (2)

where θ stands for the parameter vector, and Ry(θ) =
E{YYH} is a positive definite Hermitian Toeplitz and
differentiable (with respect to θ) matrix, for θ ∈ Θ ⊂ �p,
with p ∈ {1, 2, . . .}. Under this conditions, the Fisher
information matrix J = [Jkl] is given by (see, e.g. [15, p.
144])

Jkl(θ) = tr{R−1
y R(k)

y R−1
y R(l)

y } (3)

= −tr{R(k)
y R−(l)

y }, (4)

where A(i) e A−(i) denote ∂A/∂θi and ∂A−1/∂θi, respec-
tively.

If J−1(θ) exists, the covariance matrix of any unbiased

estimator θ̂(Y) obeys to (see e.g. [16, cap. 15.7])

V(θ) = E{(θ̂ − θ)(θ̂ − θ)H} ≥ J−1(θ), (5)

where A ≥ B means that matrix A−B is positive semide-
fined.

Computing J , according to (3), requires three multipli-
cations and one inversion involving N -matrices (square
matrices of size N); both operations have O(N3) com-
plexity. If the number of parameters is proportional to
N , the total complexity in computing J grows to O(N4).
Nevertheless, if the matrix to invert is Toeplitz, the appli-
cation of the Trench algorithm [12] reduces the complexity
of this operation to O(N2). The total complexity is, still,
O(N3) if the number of parameters is independent of N ,
or O(N4) if the number of parameters is proportional to
N .

3 EFFICIENT COMPUTATION OF
tr{AδB−1}

The computation of the Fisher information matrix is, nor-
mally, based on expression (3). However, the results next

presented take advantage of expression (4); the latter has
the structure tr{AδB−1} (symbol δ denotes the derivative
in order to any parameter vector component), where A
and B are Hermitian and Toeplitz N -matrices. As a step
towards computing tr{AδB−1}, the operator tr{AB−1}
is considered firstly.

Denoting A = [aij ] = [aj−i] and B−1 = [bij ], it follows
that

tr{AB−1} =

N∑
i,j=1

aijbji (6)

=

N−1∑
τ=−N+1

aτ

∑
i(τ)

bi+τ,i (7)

=

N−1∑
τ=−N+1

aτ b−τ , (8)

where b−τ = b
∗
τ and

bτ =



N−τ∑
i=1

bi,i+τ τ = 0, . . . , N − 1

N∑
i=1−τ

bi,i+τ τ = −N + 1, . . . , 0.

(9)

According to (8), tr{AB−1} depends on aτ and on bτ

(sum of the elements of B−1 along diagonal τ).

3.1 Sum of Diagonals of B−1

Toeplitz matrices belong to the larger class of persymmet-
ric matrices: the N -matrix BN = [bij ] is persymmetric
if it is symmetric about its northeast-southwest diagonal,
i.e., if bij = bN−j+1,N−i+1 for i, j = 1, . . . , N . In an equiv-
alent form BN = ENBT

NEN , where EN = [δN−i+1,j ] is
the permutation matrix. Note that E−1

N = EN . The in-
verse of a persymmetric matrix is, if it exits, given by
B−1

N = ENB−T
N EN , thus, also persymmetric.

Consider the partition

B−1
N =

[
BN−1 Er
rHE r0

]−1

=

[
B′ ν
νH γ

]
, (10)

with E = EN−1, r = [r−1, . . . , r−N+1]
T . Vector [νT , γ]T ,

the last column of B−1
N , is given by (see, e.g. [17, p. 130]){
ν = γEα∗

γ =
1

r0 + rHα∗ ,
(11)

where α∗ is the solution of the Yule-Walker equation
BT

N−1α
∗ = −r. Matrix B′ is given by

B′ = BN−1 +
ννH

γ
. (12)
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By working out expression (12), one is led to (see, e.g.
[17, p. 130])

bij = bN−j,N−i +
1

γ

(
νiν

∗
j − νN−jν

∗
N−i

)
. (13)

Matrix B′ is persymmetric; its element bij verifies
bN−j,N−i = bi+1,j+1 for i, j = 1, . . . , N − 1; replacing
bN−j,N−i by bi+1,j+1 in (13), it follows that

bi+1,j+1 = bij +
1

γ

(
νN−jν

∗
N−i − νiν

∗
j

)
, (14)

for i, j = 1, . . . , N − 1. Setting j = i + τ , defining νN =
γ, and noting that b1,i = νN+1−i for i, j = 1, . . . , N , it
follows that

bi+1,i+1+τ = bi,i+τ +
1

γ
(νN−i−τν

∗
N−i − νiν

∗
i+τ ) , (15)

valid for i = 1, . . . , N − τ − 1, when τ ≥ 0, and for
i = 1 − τ, . . . , N − 1, when τ ≤ 0. Expressions (14)
or (15) generate recursively, from vector ν, elements bij

along each matrix diagonal. The diagonal sum bτ is, after
simple but lengthy manipulation of (15), given by

γbτ =

N−τ∑
i=1

(iνiν
∗
i+τ + νiν

∗
i+τ (i+ τ) − νiν

∗
i+τ ), (16)

where ν∗
N = γ.

The determination of bτ , for τ = 1, . . . , N − 1, using
(16), has O(N2) complexity. Notice, however, that each
term in the sum (16) defines a convolution which can be
computed using the fast Fourier transform (FFT) with
O(N lnN) complexity. For this purpose, define the se-

quences {u′
i} e {ν′

i}, with i ∈ {...,−1, 0, 1, . . .}, as periodic
extensions (of period 2N) of sequences {1, . . . , N,0T

N} and

{ν1, . . . , νN ,0T
N}, respectively. Sum (16), using entities u

′
i

and ν
′
i , assumes the form

γbτ =

2N∑
i=1

(u
′
iν

′
iν

′∗
i+τ + ν

′
iν

′∗
i+τu

′
i+τ − ν

′
iν

′∗
i+τ ) (17)

= (u
′
−iν

′
−i) � ν

′∗
i + ν

′
−i � (ν

′
iu

′
i)

∗ −Nν
′
−i � ν

′∗
i ,

(18)

where symbol � means convolution of length 2N . Denot-
ing the FFT and its inverse by DF e DF−1, respectively,
and using FFT properties (convolution, time symmetry
and conjugation), expression (18) is given by

γbτ = DF−1
{
Re

(
DF [(u

′′
i ν

′
i )]DF∗[ν

′
i ]
)}∣∣∣

(−τ)
, (19)

with u
′′
i = 2u

′
i −N .

The number of flops needed to implement (19) is,
approximately, 3N ln 2N (corresponding to 3 FFTs of
size 2N). The number of flops necessary to solve the
system BT

N−1α
∗ = −r is, using the PCG method, of

max(p, q)3N ln2 N in the case of ARMA(p, q) processes
and of O(N lnN) otherwise (see [13] and [14]). Conse-
quently, the complexity in computing bτ for |τ | ≤ N − 1
is, in any case, of O(N lnN).

3.2 Sum of Diagonals of δB−1
N

Based on the results of the previous section, a technique
for efficient computation of the diagonal sum of δB−1

N is
now developed.

Differentiating both members of (19), one gets

δ(γbτ ) = δγ bτ + γ δbτ

= DF−1
{
Re

(
DF [u

′′
i δν

′
i ]DF∗[ν

′
i ]

+ DF [u
′′
i ν

′
i ]DF∗[δν

′
i ]
)}∣∣∣

(−τ)
, (20)

where the following facts were used:

(a) δu
′′
i = 0;

(b) DF e DF−1 are linear operators;

(c) δRe(g) = Re(δg).

Equation (20) allows obtaining δbτ = γ−1(δ(γbτ )− δγ bτ )
(note that γ > 0, since it is the principal diagonal of
a positive defined matrix) from γ, δγ, bτ , and from se-

quences {u′′
i ν

′
i}, {ν

′
i}, {u

′′
i δν

′
i} and {δν′

i}. It is thus nec-

essary to compute terms DF [u
′′
i δν

′
i ] and DF [δν

′
i ], in ad-

dition to DF [ν
′
i ] and DF [u

′′
i ν

′
i ], intervening in the ex-

pression of bτ . Therefore, let alone the complexity of
(δν1, . . . , δνN−1, δγ), the number of flops to determine
δbτ , for |τ | ≤ N − 1, is, roughly, 6N ln2 2N .

Finally, it is necessary to determine the vector
δ [νT , γ]T . Given that

δBN

[
ν
γ

]
= [0, . . . , 0, 1]T , (21)

we can write

δBN

[
ν
γ

]
+ BN δ

[
ν
γ

]
= 0N . (22)

Hence, the vector δ [νT , γ]T is the solution of the system

BN

{
δ

[
ν
γ

]}
= −δBN

[
ν
γ

]
. (23)

Matrix δBN is Toeplitz; thus, the product at the right
hand of (23) can be embedded in a circular convolution
and computed by FFT; the number of flops involved in
this operation is, approximately, 3N/2 ln2 3N . On the
other hand, the solution of the linear Toeplitz system (23)
has O(N lnN) complexity, in agreement to what was pre-
sented above.

3.3 Exact Computation of J

Define Ry(θ) = [ri−j ] = [r−τ ], for i, j = 1, . . . , N , and rτ

as bτ in (9) replacing B by Ry. With this notation, the
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element (k, l) of the Fisher information matrix is given by

Jkl = −
N−1∑

τ=−N+1

r
(k)
−τ r

(l)
−τ (24)

= −
N−1∑

τ=−N+1

r(k)
τ r(l)

τ . (25)

Determining Jkl given by (25) has the complexity of com-

puting {r(l)
τ (θ), |τ | ≤ N − 1}, which, according with the

method presented in the previous section is of O(N lnN).

3.4 Approximate Computation of J

Given that R−1
y and R

(k)
y exist for θ ∈ Θ, it follows that

R
−(k)
y = −R−1

y R
(k)
y R−1

y and, consequently, the terms
rτ (θ)) are differentiable in Θ. Define ul as

ul = (0, . . . , 0︸ ︷︷ ︸
l−1

, 1, 0, . . . , 0︸ ︷︷ ︸
p−l

).

Invoking the differentiability of rτ , it follows that

Jkl = −
N−1∑

τ=−N+1

r(k)
τ

rτ (θ + ∆ul) − rτ (θ)

∆
+ o(∆),

(26)

where o(∆) is an infinitesimal of order greater than ∆.
Sequences {rτ (θ + ∆ul), |τ | ≤ N − 1} and {rτ (θ), |τ | ≤
N −1} are given by the method presented above (Section
3.1) with complexity O(N lnN). Increment ∆ must be
carefully chosen, in order to have negligible error in the
results given by (26).

4 CONCLUSION

Two new algorithms (one exact and another approximate)
for computing the Fisher information matrix of zero-mean
stationary complex Gaussian processes were presented.
Both methods have O(N lnN) complexity being, there-
fore, faster than the method of Porat and Friedlander [7],
which has O(N2) complexity.

The central idea exploited is that the Fisher informa-
tion matrix depends on the sum of diagonals of the inverse
covariance matrix derivative (in order to the parameter
vector) and not on each single element. The computa-
tion of the referred sum is carried out by a technique here
introduced, which has O(N lnN) complexity.
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