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ABSTRACT

This paper presents an algorithm based on sparse repitsefica
fusing hyperspectral and multispectral images. The oleskim-
ages are assumed to be obtained by spectral or spatial d&gred
of the high resolution hyperspectral image to be recoveiased
on this forward model, the fusion process is formulated a@sarse
problem whose solution is determined by optimizing an appro
ate criterion. To incorporate additional spatial inforioatwithin
the objective criterion, a regularization term is carsfudesigned,
relying on a sparse decomposition of the scene on a set afmfct
ies. The dictionaries and the corresponding supports veaobding
coefficients are learned from the observed images. Theljtoam
ally on these dictionaries and supports, the fusion prolitesolved
by iteratively optimizing with respect to the target imagsitg the
alternating direction method of multipliers) and the captoeffi-
cients. Simulation results demonstrate the efficiency epttoposed
fusion method when compared with the state-of-the-art.

Recent progress in sparse representations and dictiogamny-|
ing (DL) have offered new efficient tools to address the rrngtind
fusion problem. Indeed, the self-similarity, which is priaemt in
natural images, implies that the patches extracted fromralaim-
ages can be effectively represented with very few atoms rmgmi
from over-complete dictionaries [13—15]. More specifigaléarn-
ing the decomposition dictionary from the images themselie-
stead of resorting to predefined ones (e.g., wavelets), d@ntly
led to state-of-the-art results for numerous low-levelgmarocess-
ing tasks such as denoising. DL has also been investigatethtpze
multi-band images [16]. More recently, Lat al. proposed to solve
the pansharpening problem based on a DL strategy [17].

In this paper, we propose to fuse the HS and MS images within
a constrained optimization framework, by incorporatingrse reg-
ularization using dictionaries learned from the observedges. Af-
ter learning the dictionaries and the corresponding suppairthe
codes from these observed images, we define an optimizatim p

Index Terms— Image fusion, hyperspectral image, multispec-lem which is solved by optimizing alternately with respectthe

tral image, sparse representation, alternating direati@thod of
multipliers (ADMM).

1. INTRODUCTION

Fusion of multi-sensor images has been a very active rés¢apc
during recent years [1]. When considering remotely sensegjés,
an archetypal fusion task is the pansharpening, i.e., duaihigh
spatial resolution panchromatic (PAN) image and a low spegiso-
lution multispectral (MS) image. In recent years, hypecsfaé (HS)
imaging, acquiring a same scene in several hundreds ofguanis
spectral bands, has opened a new range of relevant apmtisatiich
as spectral unmixing [2] and classification [3]. To expldié tad-

vantages offered by different sensors, how to fuse HS, MSAdI P

images has been explored widely [4—6]. Note that the fusfdi®
and HS differs from pansharpening since both spatial andtispe
information is contained in multi-band images. Therefadot of
pansharpening methods, such as component substitutiamdi7iel-
ative spectral contribution [8] are inapplicable or inaéit for the
HS/MS fusion problem. To overcome the ill-posedness of tiseoh
problem, Bayesian inference provides a convenient waygtaaeize
the inverse problem by defining an appropriate prior digtitn for
the scene of interest. Following this strategy, variousredbrs have

target image and the sparse code. The optimization witheotsp
to the image is achieved by the split augmented Lagrangianksh
age algorithm (SALSA) [18], which is an instance of the ai&sging
direction method of multipliers (ADMM). By a suitable cheiof
variable splittings, SALSA enables us to decompose a huge no
diagonalizable quadratic problem into a sequence of catieols
and pixel decoupled problems, that can be solved efficiefitig es-
timation of the code is performed using a standard leastireqlLS)
algorithm which is possible because the support of the caddben
fixed a priori. The resulting fusion strategy is summarizedigo-
rithm 1.

The paper is organized as follows. Section 2 formulatesuhe f
sion problem within a constrained optimization framewor&ec-
tion 3 introduces the proposed sparse regularization andchéthod
used to learn the dictionary and the code support. The ariion
scheme proposed to solve the resulting optimization prolitede-
tailed in Section 4. Simulation results are presented irti@e&
whereas conclusions are reported in Section 6.

2. PROBLEM FORMULATION

In this paper, we consider the fusion of HS and MS images. The H

been implemented in the image domain [9-11] or in a transédrm image is supposed to be a spatially blurred and down-sanveied

domain [12].

sion of X corrupted by additive Gaussian noise whereas the MS im-
age is a spectrally degraded noisy versioXofAs a consequence,
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be written as follows [9, 19]

Yn = XBS + Ny

B (1)
Yuv = RX 4+ Ny



where

e X ¢ R™*™ is the full resolution unknown image with
bands and pixels,

Y € R™*™ andYy € R™*™ are the HS and MS images,
B € R™*™ is a cyclic convolution operator acting on the bands,

S € R"*™ is a downsampling matrix (with downsampling fac-
tor denoted ag),

R € R™ *™x stands for the spectral response of the MS senso
Ny € R™*™ andNy € R™*™ are the HS and MS noises.

Note thatB is a sparse symmetric Toeplitz matrix for a sym-
metric convolution kernel aned = n/d2. In this work, we as-
sume thaB, S andR are known. The elements of the matrid€s
andNy; are assumed to be independent zero-mean white Gaussi
noises with variances; ands2, respectively.

The imageX can be decomposed &= [x1, - -, z,], where
®; = [Ti1, -, Tim,]" isthemy x 1 vector, also named hyper-
pixel, corresponding to thah spatial location (with = 1,--- , n).
Because the HS bands are usually spectrally correlateti $heec-
tor x; usually lives in a subspace whose dimensiag is much
smaller thanm, [2]. This property has been extensively exploited
when analyzing HS data, in particular to perform spectrahiting.
More precisely, the image can be rewritterdas= VU whereV €
R™>*™x has normalized orthogonal columns adde R™**™ is

the projection ofX onto the subspace spanned by the columns of

V. Incorporating this decomposition of the HS imaHeinto the
observation model (1) leads to

Yu = VUBS + Ny
YM = RVU + NI\{'

@)

In this work, we assume that the signal subspace denoted a8
span {V} has been previously identified, e.g., obtained from the

available a priori knowledge regarding the scene of integgsrom

a principal component analysis (PCA) of the HS data. Thea, th
considered fusion problem is solved in this lower-dimenalsub-
space, by estimating the projected imdde The estimation of the
projected imagd®J from Yy and Y is herein addressed by solving
the inverse problem

1 Am
min 7 [V — VUBS|[} + 5[ Yar— RVU[; 4+ g (0), (3)

where the two first terms are linked with the MS and HS imagesu

(data fidelity terms) and the last term is a penalty ensurpwa
priate regularization. The parametgy, is equal to the ratio of the
noise variances; /sZ, that is supposed to be a priori known akg
is regularization parameter. Various regularizationgingl on/¢1, {2
or total variation [20] norms have been widely used to tatkle
ill-posed problem. In this work, we derive an appropriagutariza-
tion term exploiting a sparse representation of the targage on a
dictionary. More details are given in the next section.

3. DICTIONARY-BASED REGULARIZATION

The regularization proposed in this paper relies on theragsan
that the target imag® can be sparsely approximated on a given
dictionary. Based on the self-similarity property of nafumages,
modeling images with a sparse representation has been ghdven
very effective in many signal processing applications [Bsed on
these works, we propose to define the regularization terr@)atg

6(U) = S[[U-T D, A) [} @

whereD is the dictionary,A is the sparse code, ard is the ap-
proximation of U derived from the dictionary and the code. Gen-
erally, an over-complete dictionary is proposed as a basishie
image patches. In many applications, the dictionBryis fixed a
priori, and corresponds to various types of bases constiugsing
atoms such as wavelets [21] or discrete cosine transforffficieats
[22]. However, these bases are not necessarily well matichealt-
ural or remote sensing images since they do not necessdalyt a
to the nature of the observed images. As a consequenceinig@arn
the dictionary from the observed images instead of usindgiieed
bases generally improves signal representation [23]. Mueeisely,
the strategy advocated in this paper consists of learningti@iciary
D from the high resolution MS image to capture most of the gpati
information contained in this image. To learn a dictionamgni a
gﬁulti-band image, a popular method consists of searching €tic-
tionary whose columns (or atoms) result from the lexicobiegdly
vectorization of the HD patches [16, 24]. However, this strat-
egy cannot be followed here since the dictionary is learnethe
MS imageY,, € R"*" composed of1, bands to approximate
the target imag@J composed ofn, spectral bands. Conversely, to
capture most of the spatial details contained in each battted?1S
image, we propose to approximate each band of the targeeifdag
by a sparse decomposition on a dedicated dictionary. Inctise,
the regularization term (4) can be written as

m

6(U) = 33U~ LAY}

1=1

()

where
U, € R" is theith band (or row) ofU € R™**",

D, € R™*™ is the dictionary dedicated to th¢h band of
U (np is the patch size anda is the number of atoms) and
D= [Dlv"' 7D'r77,)\]y

A; € R"*" js theith band's coderfpa is the number of
patches associated with tite band) andA. = [A,,--- , A, ],

e L(-)isalinear operator that averages the overlapping patdhes o
each band to restore the target image.

Note that each column dD; is a basis element of sizg, (corre-
sponding to the size of a patch). The dictionary is supposduet
fixed before addressing the fusion problem. The learninggatore
sed to estimate the dictionary is detailed in the followpagagraph.

3.1. Dictionary learning and sparse coding

We propose to learn the set of dictionarl®s from a rough estima-
tion of U, constructed from the MS imadgéy: and HS imagéY i,
following the strategy used by Hardéal. [9] and Zhanget al. [12].
More precisely, assuming that the hyperpixels of the targageU
and MS data are jointly Gaussian distributed, the proksdinsity
function (pdf) of U conditionally uponY y is also Gaussian

n

p(UYa) = [T [2m)™

=1
1 T
X exp {_5 (U’Z - :uui\ym,i,) C

whereYy = [yrn.,l’ e

C

UilYm i

}71/2

(i)

Y] ANAU = [ug, - -

;i\ym,i
,un]. The con-
ditional meanuyy,, = E[U[Yu] = By, n}
can be computed using joint pgf(U, Y ) and approximated as

[I‘Lul\ym,l e



in [9]. It provides a first approximation of the target imageto be
restored. We propose to estimate the dictionalesntroduced in
(5) by applying a DL algorithm on the patchesof; . Many DL
methods have been studied in the recent literature. TheHeodse
are for instance based on K-SVD [14], online dictionary ié@g
(ODL) [15] or Bayesian learning [16]. In this study, we hawasid-
ered the ODL method to learn the set of over-complete diaties

D = [D;, - ,Ds, . Once the dictionaries are learned, the orthog-
onal matching pursuit (OMP) is adopted to estimate the spzode

A; for each band olU;. A maximum number of atoms, denoted
asnmax IS assumed to represent each patcfUef Generally, the
maximum number of atoms is much lower than the number of atom
in the dictionary, i.e.nmax < na. The positions of the non-zero ele-
ments of the codé ;, namely the suppof®; C N? i =1,--- iy

are also detected.

3.2. Re-estimation of the sparse code

Once the dictionarie® and codesA have been learned following
the procedure detailed in the previous paragraph, it cantbeeisting
to make the approximation in (5) more flexible for the fusiaskt
Interpreting the minimization problem in (3) as a standaeckimum

a posteriori estimation in a Bayesian framework, the raizd#ion
term (5) can be interpreted as a Gaussian prior distribdtiothe
target imageU, with hyperparameter® and A. Inspired by hier-
archical models frequently encountered in Bayesian infagewe
propose to include the codé within the estimation process. One
strategy would consist of defining a new regularization term

(UA) = 33 U~ LAY [} + ol |As]l,  ©)
=1

wherel.||o is thely counting function (oo norm) andu, is a reg-
ularization parameter. Thi-norm of codeA is naturally chosen to
enforce the sparsity of the code; € R"*"™ However, the re-
sulting optimization problem would become NP-hard. Coseby,
in this work, we propose to fix the suppoiis, to the values com-
ing from the sparse coding step detailed in the previousgpaph.

solved. The overall resulting scheme that includes legriin
andV is detailed in Algorithm 1. The alternate SALSA and LS
steps are detailed below.

Algorithm 1: Alternate Optimization
Input: Yu, Y, SNR,, SNR,,, m, (HS subspace
dimension) R, nmax (Number of maximum atoms
for the support of each image patch)
Output: X (high resolution HS image)

1 /* Estimate the conditional mean */

2 Approximatepyy,, usingYn and Yy following the
method of [9]

3 /* Online dictionary learning */

4 D < ODL(fyyy,)

5 /* Sparse image coding */

6 A < OMP(D, fiyy,, "imax)

7 [* Computing support */

8 Q+ A0

9 /* Computing subspace transform matrix */

10 V < PCA(YH, i)

11 [* Start alternate optimization */

12 for t =1,2,... to stopping ruledo

13 ﬂt S {U : L(U,Atfl) < L(ﬂtfl,Atfl)} )

/* solved with SALSA =*/

At S {A : L(ﬂt7A) < L(ﬁt,At71)} y

/+ solved with LS */

S

14

15

4.1. SALSA Step

After introducing the splittingy/; = UB, V; = UandV; = U

and the respective scaled Lagrange multipl@is G2, Gs, the aug-
mented Lagrangian associated with the optimizatiolJotondi-
tional onA can be written as

Therefore, th&p norm becomes a constant and the final regulariza-

tion term (5) reduces to

my

o(U,A) = % STU - LDiA) |2 st Aje, =0, (7)

whereA; \q, = {Ai(L,E) | (I,k) € Q:}. The resulting objective
criterion, which combines (7) with (3), is minimized using al-
ternate optimization procedure introduced in the follayvaection.

4. ALTERNATE OPTIMIZATION

With known D, € andV learned from the HS and MS data, the
problem (3) is a constrained quadratic optimization problgith
respect tdU and A.. However, this problem is difficult to solve due
to the large dimensionality d&J and due to the fact that the linear
operatorsV (-)BD andL(-) cannot be easily diagonalized. To cope
with this difficulty, we propose an optimization technigheatt alter-
nates optimization with respect 16 and A..

Conditional onA, the optimization with respect t&J can be
achieved efficiently with the SALSA algorithm [18]. Conditial on
U, the optimization with respect tA under the support constraint is
an LS problem for the non-zero elementsfAofwhich can be easily

L(U,V1,V2, V3, G1,G2,G3) =

%HYH ~VViS|2 + %HUB ~Vi-Gi3+
)\TmHYM ~RVVa | + 5[|U- V2 - Gaf +
VI

%HU(D,A) - V:s”i + gHU - V3 — G3H§,

The update oU is achieved with the SALSA algorithm [18], which
has a0 (n;+manlog (man)) computational complexity, wherne;;
is the number of iterations for SALSA.

4.2. LS step

The objective of this step is to solve the following optintiea prob-
lem with respect tA; (: = 1, - - - , m,) conditional onU;

min | U; - L(D;A))|[% st Aj\q, =0.

It is a standard LS problem, which can be solved analytically

tackle the support constraint efficiently, the optimizatiwith re-

spect toA; considers only the non-zero elementsAf, denoted
asA;qo, = {Ai(l,k) | (l,k) € Q;}, which allows the compu-
tational complexity of the algorithm to be generally rediide

O (nmaxnpnpa)-



5. SIMULATION RESULTS

This section studies the performance of the proposed spapse-
sentation based fusion algorithm. The reference imageicenesl
here as the high spectral and high spectral image is an HSiaag
quired over Moffett field, CA, in 1994 by the JPL/NASA airbern
visible/infrared imaging spectrometer (AVIRIS) [25]. BHimage is

of size128 x 128 and was composed @24 bands that have been
reduced tal 77 bands after removing the water vapor absorption and
noisy bands.

5.1. Simulation Scenario

We propose to reconstruct the reference hyperspectraleirfragn
two lower resolved images. First, we have generated a lpghtsal
low-spatial resolution HS image by applyinga< 5 Gaussian low-
pass filter on each band of the reference image and downsampli
every 4 pixels in both horizontal and vertical directions. al sec-
ond step, we have generatedidand MS image by filtering the
reference image with the LANDSAT reflectance spectral resps
[26]. The HS and MS images are both contaminated by zero-mean
additive Gaussian noises with the signal to noise ratiopréssed
in decibels) SNR = 10log (HE;IBSQ%) = 30dB (HS image) and

) nll%
SNR,, = 10log (”E:H;) = 30dB (MS image). A composite
color image, formed byFseIecting the red, green and blue ahd
the reference image is shown in the bottom right of Fig. 1. The
noise-contaminated HS and MS images are depicted in theetop |
and top right figures. (Note that the HS image has been integb

for better visualization and that the MS image has been aljspl age. (Middle left) MAP estimator [9]. (Middle right) WavelMAP

using an arbitrary color composition). . . estimator [12]. (Bottom left) Proposed DL-based fusion el
The parameters used for the proposed fusion algorithm havfaBottom right) Reference image
been specified as follows '

Fig. 1. Fusion results. (Top left) HS image. (Top right) MS im-

e The ODL algorithm has been run with patches of $ize6, and
with a maximum number of atomsnax = 4. These parameters Table 1. Performance of different MS + HS fusion methods: RMSE

have been selected by cross-validation. (in 1072), UIQI, SAM (in degree), DD (in 10%) and Time (in sec-
e The regularization parameter used in the ADMM method is ond)). .
0.05. Simulations have shown that the choiceofloes not Methods | RMSE | UIQI SAM DD | Time
affect significantly the fusion performance as long as the tw  Hardie 15.416 | 0.9770 | 8.1158 | 9.9937| 3.2
optimization steps have converged. Zhang | 13.892 | 0.9807 | 7.2929 | 8.9801| 74.4
e The regularization coefficient is; = 34s%. The choice of this Proposed| 12.632 | 0.9848 | 6.8994 | 8.189 | 747.0

parameter will be discussed in Sec. 5.3 and has been tuned by
cross-validation.

5.3. Selection of the regularization parameter\4

5.2. Comparison with other fusion methods In order to select an appropriate value)af we have tested the per-

This section compares the proposed method with two othte-efa ~ formance of the proposed algorithm when this parameteesafihe
the-art algorithms studied in [9] and [12] for the fusion oStand  results are displayed in Fig. 2. Obviously, whenis approaching
MS images. To evaluate the quality of the proposed fusiaat-str O (no regularization), the performance is relatively pdesch qual-
egy, different image quality measures are investigatedferlieg ity measure is convex with respect g. However, there is not a
to [12], we propose to use RMSE (root mean square error), SAMInique optimal value ol for all the quality measures. In terms of
(spectral angle mapper), UIQI (universal image qualityeijdand ~ RMSE, \q = 38s2 provides the best fusion results. The value of
DD (degree of distortion) as quantitative measures. Thenidiefn Aq that has been used for all simulations presented beforéeisted
of these indexes can be found in [1, 27). Larger UIQI and senall asAa = 34s7, which is not too far from the "optimal’ point in the
RMSE, SAM and DD indicate better fusion results. Fig. 1 showssense of RMSE.

that the proposed method offers competitive results coimgavith

the other two methods. Quantitative results are report&iie 1 6. CONCLUSIONS

which shows the RMSE, UIQI, SAM and DD for all methods. It _ . L ) )

can be seen that the proposed method always provides theebest 1NiS Paper proposed a new dictionary learning based fusiethou

sults for the considered quality measures (at the price dflaeh for the fusion of multispectral and hyperspectral imagessparse
computational complexity). regularization was introduced by considering that the ienaafches



0.1271] 0.9848|

(8]

% 0.1268| 6
E S 09848 [9]
0.1265
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Aa/sh Aa/sh [10]
6.9343]
0.0822; [11]
; 6.9183 8
0.082] [12]
6.9024
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Aa/st Aa/st
[13]
Fig. 2. Performance of the proposed fusion algorithm versus
(from left to right): RMSE, UIQI, SAM and DD.
[14]

of the target image can be represented by the atoms learoed fr

the observed images. The resulting cost function was siieglas- ~ [15]
suming that the code support has been estimated a prioridrgep
coding. The target image and the values of the code were ten d
termined by an alternate optimization technique. The médtigng di- [16]
rection method of multipliers was finally investigated tdveothe
optimization with respect to the unknown image projectetbam
lower dimensional subspace. Numerical experiments shadtetd
the proposed method is always competitive with other siftbre-
art fusion methods. Future work includes the estimatiorhefHlS
and MS degradation operators and the validation of the [mexbo
method on other datasets including real multispectral gpeispec-
tral images. Including the estimation of the regularizaparameter
into the optimization algorithm would also be interesting. [19]

(17]

(18]
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