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Abstract. Linear unmixing decomposes a hyperspectral image into a
collection of reflectance spectra of the materials present in the scene,
called endmember signatures, and the corresponding abundance fractions
at each pixel in a spatial area of interest.
This paper introduces a new unmixing method, called Dependent Com-
ponent Analysis (DECA), which overcomes the limitations of unmixing
methods based on Independent Component Analysis (ICA) and on geo-
metrical properties of hyperspectral data.
DECA models the abundance fractions as mixtures of Dirichlet densities,
thus enforcing the constraints on abundance fractions imposed by the
acquisition process, namely non-negativity and constant sum. The mix-
ing matrix is inferred by a generalized expectation-maximization (GEM)
type algorithm. The performance of the method is illustrated using sim-
ulated and real data.

1 Introduction

Spaceborn and airborne hyperspectral sensors acquire images of ground surface
radiances in hundreds of narrow contiguous bands simultaneously [1]. The radi-
ances, collected in a spectral vector, are mixtures of spectra from the substances
present in the respective pixel coverage.

Given a set of mixed hyperspectral vectors, linear unmixing aims at estimat-
ing the number of reference substances, also called endmembers, their spectral
signatures, and their abundance fractions.

Linear spectral unmixing considers that a mixed pixel is a linear combination
of endmember signatures weighted by the correspondent abundance fractions [2].
Under this model, the observations from a scene are in a simplex whose vertices
correspond to the endmembers.
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Several approaches such as vertex component analysis (VCA) [3], pixel purity
index (PPI) [4], and N-FINDR [5] have exploited geometric features of hyper-
spectral mixtures to determine the smallest simplex containing the data. Those
methods assume the presence in the data of at least one pure pixel of each
endmember. This is a strong requisite that may not hold in some data sets.

Independent Component Analysis (ICA) has recently been proposed as a
tool to blindly unmix hyperspectral data [6–8]. However, ICA applicability is
compromised by the statistical dependence existing among abundances [9]. This
dependence results from the constant sum constraint imposed on the abundance
fractions by the acquisition process [2]. In ICA jargon, sources are not indepen-
dent. Thus, the central assumption of ICA is not satisfied.

This paper proposes a new method to blindly unmix hyperspectral data,
termed dependent component analysis (DECA), where abundance fractions are
modelled by a mixture of Dirichlet densities, thus automatically enforcing source
nonnegativity and constant sum constraints. DECA is in the vein of works [10,
11] replacing independent sources represented by Mixtures of Gaussians (MOGs)
with mixtures of Dirichlet (MODs) sources. The mixing matrix is inferred by a
generalized expectation-maximization (GEM) type algorithm. Compared with
the geometric based approaches, the advantage of DECA is that there is no
need to have pure pixels in the observations.

The paper is organized as follows. Section 2 describes the fundamentals of
the proposed method. Sections 3 and 4 illustrate aspects of the performance of
DECA approach with experimental data and real data, respectively. Section 5
ends the paper by presenting a few concluding remarks.

2 Statistical Modelling and Unmixing Algorithm

Assuming the linear observation model, each pixel r of an hyperspectral image
can be represented as a spectral vector in RL (L is the number of bands) and is
given by r = Ms, where M ≡ [m1,m2, . . . ,mp] is a L × p mixing matrix (mi

denotes the ith endmember signature), p is the number of endmembers present
in the covered area, and s = [s1, s2, . . . , sp]T is the abundance vector containing
the fractions of each endmember (notation (·)T stands for vector transposed).

To be physically meaningful [2], abundance fractions are subject to nonneg-
ativity and constant sum constraints, i.e., {s ∈ Rp : sj ≥ 0,

∑p
j=1 sj = 1}. Note

that only p − 1 components of s are free, i.e., sp = 1 −∑p−1
j=1 sj . Therefore the

spectral vectors are in a p− 1 dimensional simplex in RL.
Usually the number of endmembers is much lower than the number of bands

(p ¿ L). Thus, the observed spectral vectors can be projected onto the signal
subspace. The identification of the signal subspace improves the SNR, allows a
correct dimension reduction, and thus yields gains in computational time and
complexity [12]. Let Ep be a matrix with orthonormal columns, spanning the
signal subspace. The coordinates of the spectral vector r with respect to Ep are

x ≡ ET
p r

= ET
p Ms

= As, (1)
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where A is a p × p square mixing matrix and x = [x1, x2, . . . , xp]T is a p × 1
vector. Let’s assume that W ≡ A−1 exists. Then, we have s = Wx.

Consider that each vector x represents one particular outcome of a p-dimensional
random variable X = [X1, . . . , Xp]T . Given a set of N independent and identi-
cally distributed samples X = {x(1), . . . ,x(N)}, then, we may write the likelihood
of the unmixing matrix W and of the set of parameters θ as

LN (W,θ) ≡ 1
N

log pX(X|W, θ)

= T [log pX(x|W, θ)]
= T [log pS(s|θ)] + log | detW|, (2)

where we have used the fact that pX(x) = pS(s)| det(W)| and T[x] ≡ 1/N
∑N

i=1 x(i),
i.e., T[x] is the sample average of x.

Assume that the abundance fractions follow a K-component Dirichlet finite
mixture given by

pS(s|θ) =
K∑

q=1

εq

Γ (
∑p

j=1 θqj)∏p
j=1 Γ (θqj)

p∏

j=1

s
θqj−1
j

︸ ︷︷ ︸
D(s|θq)

, (3)

where the complete set of parameters θ needed to specify the mixture contains
the mixing probabilities ε1, . . . , εK and the q-component Dirichlet parameters
θq = {θq1, . . . , θqp}, for q = 1, . . . , K, i.e., θ = {ε1, . . . , εK ,θ1, . . . , θK}. Replac-
ing expression (3) in to (2), it follows that

LN (W,θ) = T

[
log

K∑
q=1

εqD(s|θq)

]
+ log(| detW|). (4)

The maximum likelihood (ML) estimate
(
Ŵ, θ̂

)
= arg maxW,θ LN (W,θ) can

not be found analytically [13]. The usual choice for obtaining the ML estimates of
the parameters is the EM framework [14], which relies on the so-called incomplete
data and missing data. In our setup, X denotes the incomplete data and Z ={
z(1), . . . , z(N)

}
the missing data, a set of N labels indicating which component

has produced each sample. Each label z(i) =
[
z
(i)
1 , . . . , z

(i)
K

]
is a binary K-vector,

where only one component zi
q is set to one indicating which mode produced the

i-sample. The complete log-likelihood is then

LC(W, θ) =
1
N

log [pX,Z(X ,Z|θ)]

= T

[
K∑

q=1

zq log εqD(s|θq)

]
+ log (| detW|) . (5)

The EM algorithm iterates between the E-step and the M-step [14, 15]:
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– E-step: Computes the conditional expectation of the complete log-likelihood,
given the samples and the current estimate θ̂(t). The result is the so-called
Q-function

Q(θ, θ̂
(t)

) = T

[
K∑

q=1

E
[
zq| s, θ̂

(t)
]

︸ ︷︷ ︸
β

(t)
q

log
[
ε(t)q D

(
s|θ(t)

q

)]]
+ log (|detW|) , (6)

where

β(t)
q (s) =

ε̂
(t)
q D

(
s|θ̂(t)

q

)

∑K
l=1 ε̂

(t)
l D

(
s|θ̂(t)

l

) . (7)

– M-step: Updates the parameter estimates according to

θ̂
(t+1)

= arg max
θ

{
Q

(
θ, θ̂

(t)
)}

. (8)

Maximization of expression (8) is still a hard optimization problem. Instead

of computing θ(t+1), we maximize Q(θ, θ̂
(t)

) with respect to θj , for j =
1, . . . , p, resulting in the following learning rules for the mixing probabilities
and for the mixture of Dirichlet source parameters:

ε(t)q = T
[
β(t)

q (s)
]
, (9)

θ̂
(t+1)
qj = psi−1


psi

(
p∑

l=1

θ̂
(t)
ql

)
+
T

[
β

(t)
q (s) log ŝ

(t)
j

]

T
[
β

(t)
q (s)

]

 , (10)

for q = 1 . . . , K and j = 1 . . . , p, respectively3.
The resulting algorithm is of the generalized expectation-maximization class
(GEM) [14]: the learning rule (9) maximizes Q-function with respect to ε

(t)
q ,

whereas expression (10) assures that the Q-function does not decrease (see
[16, 17] for details).

Since ∂Q/∂W = 0 is not a linear equation and cannot be solved analytically,
an iterative gradient type learning rule is derived for the unmixing matrix W:

W(t+1) = W(t) + τ (t)

(
∂Q

∂W

)(t)

, (11)

where τ (t) determines the learning rate on iteration t and
(

∂Q

∂wj

)(t)

= T

[
K∑

q=1

β(t)
q

(
(θ̂(t)

qj − 1)
ŝj

− (θ̂(t)
qp − 1)
ŝp

)
xT

]
+

[
W−T

]
j,:
−[

W−T
]
p,:

,

(12)
3 psi(·) and psi−1(·) denote the psi function (logarithmic derivative of the Gamma

function) and its inverse, respectively.
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where wj , for j = 1, . . . , p − 1 denotes the jth row of matrix W and
[
W−T

]
j,:

denotes the jth row of the inverse of W transposed.
The algorithm aimed at the maximization of the log-likelihood (5) imple-

ments a cyclic maximizer, which splits the estimation of W and θ into block
maximization operations. The resulting scheme is in the vein of works [10, 11],
replacing independent sources represented by MOGs with mixture of Dirich-
let sources. An approach based on the majorization maximization (MM) [15]
perspective leading to a similar algorithm can be found in [18].

3 Evaluation with Simulated Data

In this section DECA is tested in simulated scenes. The data is generated ac-
cording to expression (1), where three signatures where selected from the USGS
digital spectral library The scene is composed by 105 pixels partitioned into two
regions; region A has the half size of the region B. The abundance fractions
follow a Dirichlet distribution with θa = [9, 2, 9] and θb = [2, 15, 7] for regions
A and B of the scene, respectively. Pure pixels were removed from the data set
in order to illustrate the robustness of DECA to the absence of pure pixels.
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Fig. 1. (a) Scatterplot (bands λ = 827nm and λ = 1780nm) of the three endmem-
bers mixture: true endmembers (circles); VCA estimate (triangles); DECA estimate
(diamonds); (b) Dirichlet mixing probabilities.

In this experiment the number of modes is set to K = 5, the Dirichlet para-
meters are randomly initialized, and the mixing probabilities are set to εq = 1/K,
for q = 1, . . . , K. This setting reflects a situation in which no knowledge of the
size and the number of regions in the scene exists. Fig. 1(a) presents a scatter-
plot (bands λ = 827nm and λ = 1780nm) of the simulated scene, where dots
represent the pixels. The two clouds corresponds to the two regions A and B,
respectively. It is also presented the true endmembers (circles), the endmembers
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estimation (diamonds), and, for comparison purposes the endmembers estima-
tion by VCA (triangles). VCA is an iterative algorithm that searches for the
vertices of the simplex containing the data. Briefly, VCA projects the spectral
vectors onto a direction orthogonal to the subspace spanned by the endmembers
already determined. The new endmember signature corresponds to the extreme
of the projection. This procedure is repeated until the number of endmembers
is exhausted [3].

Estimates provided by the DECA algorithm are very close to the true end-
members. The algorithm searches for the smallest simplex that contains all data.
Whereas, VCA finds the most pure pixels in data (see triangles in Fig. 1(a)).
Since there is no pure pixels in data, VCA performs worse than DECA.

Fig 1(b), presents the evolution of the Dirichlet mixing probabilities (εq, for
q = 1, . . . , K) as function of the number of iterations of the algorithm. Note
that three modes tend to zero and the remaining modes have the values of 0.65
and 0.33, corresponding to the weight of the region B and region A respectively.
Table 1 presents the Dirichlet parameters and their estimates of the two modes.
Although the estimated values are near from the true parameter values, we
note that this does not have to happen necessarily, since the same distribution
can be modelled with different MODs. We note that the main purpose of the
DECA algorithm is the estimation of the unmixing matrix W and not the MOD
parameters.

Table 1. Estimated Dirichlet parameters.

region A B

θ 9 2 9 2 15 7

bθ 9.0 2.2 10.0 2.5 14.8 9.7

The result of the separation process is illustrated trough the product of the
unmixing matrix W and square mixing matrix A which is, in an ideal scenario,
the identity matrix Ip, apart from a permutation. In this experiment the obtained
product is

WA =




0.97 0.02 −0.02
0.03 0.93 −0.02
0.00 0.04 1.03


 . (13)

4 Experiments with Real Hyperspectral Data

In this section, the proposed method, DECA, is applied to real hyperspectral
data collected by the AVIRIS sensor over Cuprite, Nevada4. This site has been
extensively used for remote sensing experiments over the past years and its
geology was previously mapped in detail [19]. This site has become a standard
test site for comparison of unmixing and endmember extraction algorithms.

4 Available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 2. (a) Band 30 (wavelength λ = 667.3nm) of the subimage of AVIRIS cuprite
Nevada data set (rectangle denotes the image fraction used in the experiment);(b)-(d)
Alunite, Kaolinite, and Montmorillonite abundance fractions; (e)-(g) Alunite, Kaolin-
ite, and Montmorillonite spectra (solid line) and DECA estimated signatures (dotted
line).

Fig. 2 (a) presents the subimage (50×90 pixels and 224 bands) for this exper-
iment. Due to several degradation mechanisms normally found in hyperspectral
applications (namely signature variability, topography modulation, and noise),
the observed data is not on a simplex. To obtain a simplex, a projective projec-
tion of data onto a hyperplane yT u = 1 is implemented as a pre-processing step
(see [3] for more details). A visual comparison between the abundance fractions
estimates on the cuprite data set and the ground truth presented in [19] shows
that first, second, and third extracted endmembers are predominantly Alunite,
Kaolinite, and Montmorillonite, respectively (see Fig. 2 (b)-(d)).

A comparison of the estimated endmember signatures with laboratory spec-
trum is presented in Fig. 2. The signatures provided by DECA are scaled in
order to minimize the mean square error between them and the respective li-
brary spectra. The estimated signatures are very close to the laboratory spectra
reflectances.

5 Conclusions

Blind hyperspectral linear unmixing aims at estimating the number of endmem-
bers, their spectral signatures, and their abundance fractions at each pixel, using
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only the observed data (mixed pixels). Geometric approaches have been used
whenever pure pixels are present in data. In most cases, however, pure pixels
can not be found in data. In such cases, unmixing procedures become a difficult
task. ICA has been proposed has a tool to unmix hyperspectral data. However,
the source dependence present in hyperspectral data compromises the unmixing
results.

In this paper, a new method is proposed to blindly unmix hyperspectral data,
where abundance fractions are modelled as Dirichlet sources. This model forces
abundance fractions to be nonnegative and to have constant sum on each pixel.
The mixing matrix is inferred by an EM type algorithm. The main advantage
of this model is that there is no need to have pure pixels in the observations.

The performance of the proposed model is illustrated with simulated and
real hyperspectral data. Comparisons with pure pixel estimation methods are
conducted. The results achieved shows the effectiveness of DECA on hyperspec-
tral data unmixing. In future work, the proposed algorithm shall be improved
in order to account for sensor noise.
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