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This paper addresses contour estimation on images modeled as piecewise homo-

geneous random �elds. It is therefore assumed that images are samples of random �elds

composed of a set of homogeneous, in a statistical sense, regions; pixels within each

region are assumed to be independent samples of a given random variable. Particular

attention is given to Gaussian, Rayleigh, and Poisson densities. The model just

described accurately �ts many class of problems on image modalities such as optical,

ultrasound, X-rays, emission tomography, and confocal microscopy, only to name a few.

The followed approach is Bayesian: contours are assumed to be non-causal Markov

random �elds. This description is appropriate to include a priori information such

as continuity, smoothness, elasticity, and rigidity. The selected estimation criterion is

the maximum a posteriori (MAP). In the present context, MAP estimation, although

simpler than others (e.g., minimum mean square error or minimum absolute error), leads

to a huge non-linear optimization problem. By using dynamic programming associated

to a multigrid resolution technique, quasi-optimal contour estimates are computed with

an acceptable complexity. A set of tests using synthetic and real images illustrates the

appropriateness of the proposed methodology.

1 Introduction

Boundary estimation/detection plays a key

role in image analysis, pattern recognition,

computer vision, computer graphics, and

computer-aided animation. Although the ap-

proaches to contour estimation are numer-

ous, almost all of them share the same spirit:

contours are obtained through the maximiza-

tion of objective functions composed of a

�This work was supported by Portuguese PRAXIS

XXI program, under project 2/2.1.TIT/1580/95

prior term, that favors contours with some at-

tributes (e.g., continuity, smoothness, elastic-

ity, and rigidity), and a data term, that mea-

sures the adjustment to data. As in many

other �elds, di�erent aspects of contour esti-

mation have been addressed either under the

energetic framework or under the Bayesian

framework.
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1.1 Energetic Viewpoint

Under the energetic viewpoint, data and prior

terms are interpretable as external energy

(e.g., potential) and internal energy (e.g., due

to contour tension and rigidity), respectively.

This perspective was introduced in the orig-

inal work of [Kass 1987], where the concept

of snake (or active contour, or deformable

model) was put out: \A snake is an energy-

minimizing spline guided by internal constraint

forces and in
uenced by image forces that pull

it towards features such as lines and edges".

Since its introduction, the initial concept of

snake has been modi�ed and improved in or-

der to adapt it to di�erent images classes and

to overcome some of its drawbacks: namely,

snake attraction by artifacts, snake degener-

ation, convergence and stability of the defor-

mation process, myopia (i.e., use of image

data only along the contour neighborhood),

initialization, and model parameters estima-

tion. References [Cohen 1993], [Zhu 1996], e

[Figueiredo 1997] are illustrative examples of

approaches to solve common problems with

di�erent snake techniques;

1.2 Bayesian Viewpoint

Under the Bayesian viewpoint, the objective

function referred to above and its data and

prior terms are interpretable as the poste-

rior contour probability, the likelihood func-

tion associated to the observation mechanism,

and the contour prior probability, respec-

tively; since the sought contour maximizes

the posterior probability it is interpretable

as the maximum a posteriori (MAP) esti-

mate. In many imaging problems (e.g., med-

ical imaging, synthetic aperture radar, syn-

thetic aperture sonar), the likelihood func-

tion can be derived from the knowledge of

the generation mechanism, [Figueiredo 1992],

[Dias 1996], rather than from other heuris-

tic and common sense arguments. A statis-

tical framework is therefore, in these cases,

the correct choice. Relevant advantages of the

Bayesian approach are the following:

1. it supplies an adequate framework for

the estimation of model parameters, e.g.,

noise power, parameters distributions,

blur coe�cients, etc.

2. it is not hampered by myopia of snake-

type approaches (due to local nature of

the potential energy), since the likelihood

function takes into account all image data.

1.3 Proposed Approach

In this paper we address contour estimation

under a Bayesian framework. We assume

that images are piecewise homogeneous ran-

dom �elds, and that contours to be estimated

are the boundaries of open connected sets.

Since the approach is Bayesian the likelihood

function and the prior must be speci�ed.

Likelihood Function

The likelihood function is derived from the im-

age observation mechanism. We assume that

pixels within each homogeneous region are in-

dependent and generated by a selected ran-

dom variable; both, the considered topolo-

gies and the image observation mechanism,

are representative of many problems in im-

age analysis, pattern recognition, computer vi-

sion, computer graphics and computer aided

animation. For example, coherent amplitude

images (e.g., ultrasound and synthetic aper-

ture radar and sonar images) are Rayleigh dis-

tributed [Wagner 1987], X-ray images are very

well approximated with a Gaussian distribu-

tion [Makovski 1983], and nuclear and confo-

cal microscopic images are Poisson distributed

[Snyder 1991]. We take as hypothesis that the

random variables associated with each pixel

are independent. It is the so-called conditional

independence property [Geman 1984]. In an

image system, this is a correct assumption if

the resolution volumes contributing to di�er-

ent pixels are disjoint. This is approximately

the case in most acquisition systems, since

there is no information gain in acquiring ex-

tremely correlated neighboring data. Never-

theless, we will show results in which a wrong
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independence assumption still leads to good

contour estimates.

Prior

Contours are assumed to be samples of non-

causal �rst order Markov random processes

[Geman 1984]; this class of processes supply a

powerful tool for modeling a priori knowledge

about contours such as continuity.

Estimation algorithm

Contour estimates are obtained according to

the MAP criterion. To solve the optimization

problem one is led to (joint estimation of con-

tours and of parameters), we adopt the itera-

tive multigrid dynamic programming (IMDP)

algorithm proposed in [Dias 1996]. According

to its name it embodies iterative, dynamic pro-

gramming, and multigrid concepts.

The methodology herein followed is in vein of

works [Dias 1996] and [Dias 1993] on the echo-

graphic imaging and [Figueiredo 1992] on X-

ray imaging. Main contribution of this work

are the following:

1. Generalization of referred methodology to

other image modalities;

2. Modi�cation of the estimation algorithm

aiming at a robust simultaneous parame-

ter and contour determination;

3. Robustness test against model mis-

matches.

The paper is organized as follows: Section 2

presents the proposed estimation method; Sec-

tion 3 describes the implementation algorithm

used; Section 4 shows some results of tests

made with synthetic and real images; Finally,

Section 5 presents the conclusion.

2 Bayesian Approach

Contour estimation is made under the

Bayesian framework. Given the vectors I and

r with, respectively, the image pixel intensi-

ties and a contour description, the a posteriori

probability P(rjI) is given by

P (r j I) =
P (I j r)P (r)

P (I)
; (1)

where P (r) represents a priori contour proba-

bility, P (I j r) represents the conditional prob-
ability of image given the contour (i.e., the im-

age observation mechanism) and P (I) repre-

sents the image probability.

By using the MAP estimation criterion,

the estimated contour is then given by

[Van Trees 1968]:

r̂MAP = argmax
r

fP (r j I)g

= argmax
r

fP (I j r)P (r)g :
(2)

So, to obtain the contour estimate r̂MAP it is

necessary to know the image observation mech-

anism P (I j r) and the a priori contour prob-

ability P (r). This paper considers three im-

age densities P (I j r): Rayleigh, Gaussian and

Poisson. These three densities covers a wide

set of images modalities, namely ultrasound,

confocal microscopy, X-ray and emission to-

mography. Examples of the �rst two modal-

ities are used as test images in this work.

2.1 Image and Contour Representa-

tion

Fig. 1 schematizes two contours represented in

a polar coordinate system. A two-dimensional

representation would be able to describe a

wider class of contours. However, we use the

polar system since it leads to simpler algo-

rithms and yet it is able to represent contours

on a large number of applications such as in-

travascular ultrasound, echocardiography, ven-

tricular X-ray, cells confocal microscopy, etc.

Image I is given in a cartesian coordinate

system. The image intensity of the pixel

at (x; y) is I (x; y). To obtain a polar sys-

tem representation we take M scan lines uni-

formly spaced, with angle �i =
2�i
M

with i =

0; : : : ;M � 1. Each scan line vector Ii =
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Figure 1: Adopted polar coordinate system

and pixels taken from a scan line.

[xi1; xi2; : : : ; xiNi
]T contains Ni pixels taken

along the ith scan line as illustrated in Fig 1.

The scan line crosses three homogeneous re-

gions. Region (0) and region (1) shares the

boundary denoted as rint, while region (1) and

(2) shares the boundary denoted as rext. Us-

ing the three region model we have, therefore,

two contours to be estimated: these contours

are denoted by matrix r �
�
rint; rext

�
; where

rint �
�
rinti

�
=
�
rint0 ; :::; rintM�1

�T
denotes the

distances from the inner contour point to the

coordinate center along the ith scan line, and

rint �
�
rinti

�
=
�
rint0 ; :::; rintM�1

�T
denotes the

distance from the outer contour.

2.2 Data Generation Probabilistic

Models

Pixel intensities, given contour positions and

distribution parameters, are assumed indepen-

dent; it is the so-called conditionally indepen-

dence [Geman 1984]. This hypothesis is cor-

rect if resolution volumes that contribute to

di�erent pixels are disjoint. As a result we

have,

P (I j r) =

M�1Y
i=0

P (Iij ri) ; (3)

where ri �
�
rinti ; rexti

�
; and

P (Iij ri) =

NiY
i=1

P (xijj ri;�i) ; (4)

where �i � f�i1;�i2; : : : ;�iNi
g is a vector of

parameters usually unknown. Since we are as-

suming images to be piecewise homogeneous,

the vector �i is constant within each region.

Therefore,

�ij =

8<:
�0i 1 � j � k

1
i

�1i k
1
i < j � k

2
i

�2i k
2
i < j � Ni

; (5)

with k
1
i and k

2
i being the order number of pix-

els in the ith scan line of the inner and outer

contours respectively (see Fig. 1). We now

give explicit expressions of the loglikelihood

function L (Iij ri; �i) � lnP (Iij ri; �i) for the

Rayleigh, Gaussian (1), Gaussian (2) and Pois-

son observation models:

Rayleigh Model

Take �ij � �ij �
q

2

�E[xij ]: We have

p (xij j �ij) =
xij
�2ij

exp

�
�

x2ij
2�2ij

�
; (6)

and

L(Iijri;�i) = 2k1i ln
�
�1i
�0i

�
+ 2k2i ln

�
�2i
�1i

�
+ 2Ni ln

�
1

�2i

�
� 1

2

"
k1iP
j=1

�
xij
�0i

�2
+

k2iP
j=k1i+1

�
xij
�1i

�2
+

NiP
j=k2i+1

�
xij
�2i

�2#
+ c

te(7)

where �0i � �
0
i , �

1
i � �

1
i , and �

2
i � �

2
i .

Gaussian Model (1)

Take �ij � (�ij ; �ij), where �ij = E[xij ], and

�
2
ij = var[xij]. We have

p (xij j �ij) =
1p

2��ij
exp

�
�1

2

�
xij��ij
�ij

�2�
;

(8)
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and

L(Iijri;�i) = k
1
i ln

�
�1i
�0i

�
+ k

2
i ln

�
�2i
�1i

�
+Ni ln

�
1

�2i

�
� 1

2

"
k1iP
j=1

�
xij��0i
�0i

�2
+

k2iP
j=k1i+1

�
xij��1i
�1i

�2
+

NiP
j=k2i+1

�
xij��2i
�2i

�2#
+ c

te(9)

where �0i = (�0i ; �
0
i ); �

1
i = (�1i ; �

1
i ); and �2i =

(�2i ; �
2
i ):

Gaussian Model (2)

This model is as in Gaussian (1), with the

restriction �
0
i = �

1
i = �

2
i = �i. We have

L(Iijri;�i) = �Ni ln (�i)�
1

2�2i

"
k1iP
j=1

�
xij � �

0
i

�2
+

k2iP
j=k1i+1

�
xij � �

1
i

�2
+

NiP
j=k2i+1

�
xij � �

2
i

�2#
+ c

te(10)

Poisson Model

Take �ij � �ij ; where �ij = E[xij ]. Then we

have

p (xij j �ij) =
e
��ij�

xij
ij

xij !
; (11)

and

L(Iijri;�i) = �k1i �
0
i �

�
k
2
i � k

1
i

�
�
1
i

�
�
Ni � k

2
i

�
�
2
i +

k1iP
j=1

xi ln�
0
i

+
k2iP

j=k1
i
+1

xi ln�
1
i +

NiP
j=k2

i
+1

xi ln�
2
i + c

te
;(12)

where �0i = �
0
i , �

1
i = �

1
i and �

2
i = �

2
i .

2.3 A priori Probability

In present work a priori contour probability is

modeled as a �rst order, non-causal, unidimen-

sional Markov random �eld [Jain 1989]. This

model is adequate to describe previous contour

information such as continuity: contour posi-

tions over near scan-lines should be also near.

A random vector r = [r1; : : : ; rNi
] is said to

be �rst order Markovian if

P (rijrj ; j 6= i) = P (rijrj ; j 2 Gi); (13)

for i 2 S = f0; : : : ;M � 1g. Sets Gi = fi �
1; i + 1g and G = fGi; i 2 Sg are termed the

neighborhood of i and the neighborhood system,

respectively [Geman 1984], [Besag 1974].

In order to obtain P(r) we use equiv-

alence between Gibbs distribution and the

Markov random �elds proved in the theorem

of Hammersley-Cli�ord [Besag 1974]. Accord-

ing this theorem can write

P (r) =
1

Z

exp

"
�
X
C2C

VC (r)

#
; (14)

where Z is a normalization constant and C
the so-called cliques set (see [Derin 1986, cap.

11]). In this case C is given by C = fig [
fi� 1; ig[fM � 1; 0g ; with i = 0; : : : ; M�1.
Function VC ( r ) � VC (ri; i 2 C) ; named the

clique potential should be chosen in order to

represent a priori knowledge about contours.

De�ne �i (r) �
3P

k=1

�
k
i (r) with �i (r) given

by �i (r) � Vfig (r)+Vfi�1;ig (r), where Vfig (r)

and Vfi�1;ig (r) represents potentials associ-

ated respectively, to cliques fig and fi� 1; ig :
We now introduce terms �ki with i = 1; 2; 3:

(a) - maximum distance limit between con-

tours (k=1),

�
1
i (r) =

�
0 ifRmin < r

ext
i � r

int
i < Rmax

1 ifRmin � r
ext
i � r

int
i � Rmax

;

(b) - term penalizing the distance between

two inner contour points (k=2)

�
2
i (r) = �1

�
r
int
i � r

int
i�1
�2
;

(c) - term penalizing the distance between

two outer contour points (k=3)

�
3
i (r) = �2

�
r
ext
i � r

ext
i�1
�2
;
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2.4 Complete model

From the a priori probability P (r) and data

generation model P (I j r;�) we have, �nally,

the a posteriori probability

P (r j I;�) / P (I j r;�)P (r)

=
M�1Q
i=0

P (Ii j ri;�i)P(r)
;

(15)

In (15) terms not depending on r were dis-

carded. Taking the natural logarithm from

(15) we obtain

	 (r j I;�) � ln [P (r j I;�)]

=
M�1P
i=0

L (Ii j ri;�i)�
P
C2C

VC (r) + c
te
:

(16)

The MAP estimation is then given by

r̂MAP = argmax
r

f	(r j I;�)g : (17)

Vectors �i are unknown and should be esti-

mated. We use following criterion:�
r̂MAP ;

b�� = argmax
r;�

f	(r j I;�)g : (18)

To obtain solution (18) use the recursive

scheme

r̂t+1 = argmax
r

n
	
�
r̂ j I; �̂

t
�o

(19)

b�t+1 = argmax
�

�
	
�
r̂tj I;�

�	
: (20)

It is straightforward to show that the so-

lutions of (18) are the only stationary points

of (19)-(20). Maximization (20) can be com-

puted analytically for each observation model.

For example, for the Gaussian (1) model, �̂
j
i

and (�̂
j
i )
2 are the sample mean and the sam-

ple covariance inside each region j, respec-

tively. Contrarily to the ease of (20), each

step of (19) is very demanding, since 	 is

a nonconvex function of r. A Bellman-Ford

type [Bellman 1957] algorithm, introduced in

[Dias 1996] therein called IMDP, is proposed

to achieve a sub-optimum solution.

Figure 2: Layered graph associated to the

function 	(rint)

3 Estimation Algorithm

Function 	 in equation (19) is to be maximized

with respect to r. Let 	(r) = 	(rint; rext) de-

note 	, with �̂
t
�xed.

Having in mind the de�nition of vectors k1i
and k2i , one can write

	(rint; rext) =

M�1X
i=0

ai(k
1
i�1; k

1
i ; k

2
i�1; k

2
i );

(21)

where

ai(k
1
i�1; k

1
i ; k

2
i�1; k

2
i ) = L(Iijri;�i)�

3X
k=1

�
k
i (r):

(22)

For a while admit also rext �xed. This

is equivalent to assuming k
2
i and k

2
i�1 �xed.

In this case we denote the term ai(�) in (22)

as ai(k
1
i�1; k

1
i ), and function 	(rint; rext) as

	(rint).

Maximization of 	(rint) is equivalent to

�nding the high cost path on a directed

graph with the set of nodes N = f(i; k)ji =
0; : : : ;M � 1; k = 1; : : : ; Nig. The cost be-

tween node (i; n) and the node (i � 1;m), is

ai(m;n); otherwise costs are �1. Notice that

due the cyclic nature of graph, cost a0 is also

de�ned.

Fig. 2 schematizes the graph and the costs

corresponding to the function 	(rint). It is

a layered graph (each layer corresponds to a
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Algorithm A0: Let reals bi;k and integers

ni;k be associated to nodes (i; k) 2 N . The

next recursive scheme provides, the high cost

path between node (0; n0) and node (0; j):

Initialization: i := 0; j := n0; b0;k := �1
(except b0;n0 := 0), k = 0; � � � ; N0;

For i = 1; � � � ;M � 1; 0

For k = 1; � � � ; Ni

jmax := arg max
j=1;:::;Ni�1

(ai(j; k) + bi�1;j)

bi;k := (ai(jmax; k) + bi�1;jmax)
ni;k := jmax

The solution rint = [rint0 ; � � � ; rintM�1]
T is given

by:

(1) retrieve solution at node 0 (rint0 ):

r
int
0 := d0(n0)

(2) retrieve solutions at nodes i = M �
1; � � � ; 1 (rinti ):

For i =M � 1; � � � ; 1

r
int
i := di(ni;rinti

)

scan-line), with connections only between pairs

of nodes in successive layers. The starting and

ending nodes (which are the same given the

cyclic topology of the problem) are chosen from

scan line i = 0.

Suppose, we want to �nd the high cost path

starting and ending at node (0; n0). This is

a dynamic programming problem whose solu-

tion is given by Algorithm A0 (Bellman-Ford

algorithm [Bellman 1957] tailored to the prob-

lem at hand). Therefore, Algorithm A0 pro-

vides the contour rint that maximizes 	(rint),

constrained to r
int
0 = d0(n0), where di(k) is a

distance function such that rinti = di(k
1
i ) and

r
ext
i = di(k

2
i ).

The high cost path, without any constraint,

can be achieved by running the algorithm N0

times, considering that in each run the solution

path starts and ends at node (0; k), with k =

1; : : : ; N0. The greatest high cost path is the

wanted solution. This approach increases the

Bellman-Ford algorithm complexity by a factor

of N0.

Instead of the previous approach, we adopt a

suboptimal scheme which is based on the fol-

lowing informal argument: the solution com-

ponents r
int
i corresponding to scan-lines far

from to scan-line i = 0 depend very little on

the constraint rint0 = d0(n0). Hence, we run

Algorithm A0 twice: (1) in the �rst run the

solution is constrained to be rint0 = d0(n0), for

a given n0; (2) in the second run the compo-

nent rintbM=2c (e.g., diagonally opposed to r
int
0 )

is constrained to be that obtained in (1). This

scheme takes only 2 runs (instead of N0) of

Algorithm A0. Although supported a di�erent

argument, the strategy just presented was pro-

posed in [Geiger] and therein named two-loop

method.

For referencing purposes, we present below

Algorithm A1 which implements the two-loop

method. Notation rint := Out(A0[i; a]) means

the solution contour rint delivered by Algo-

rithm A0 constrained to rinti = a.

Algorithm A1: Implement the two-loop

scheme.

rint := Out(A0[0; rint0 ])
rint := Out(A0[bM=2c; rintbM=2c])

Algorithm A1 searches for rinti over its com-

plete domain. This is not very e�cient, thus,

one can run algorithm A1 in a multigrid type

fashion, �rstly with a coarse resolution and

covering completely the high probability zone,

and next re�ning the estimate by searching in

a smaller range, using a thinner resolution.

All the above ideas are implemented simply

by constraining the search space to the set of

nodes

N [k1;m;L] � f(i; k)jk = k
1
i + 2m t;

t = �L; : : : ; L; i = 0; : : : ;M � 1g \N ;(23)

where 1 � k
1
i � Ni. Set N [k1;m;L] contains

at most (2L + 1) nodes corresponding to each

scan line, centered at k1i (rinti = di(k
1
i )) and

2m apart. The maximum and the minimum

attainable ranges are min [di(k
1
i +2mL; di(Ni)]

7



IMDP algorithm: Assume known brinitial,
let be given an integer m0 specifying the

coarsest resolution, an integer L specifying

the number of searches per layer, and a real

� > 0:

Initialize: t := 0, r = brinitial
For t = 1; 2; : : : ;

br = r

Compute b�t
For m =m0;m0 � 1; � � � ; 0

rint := Out(A1[rint;m;L])
rext := Out(A1[rext;m;L])

If kr� brk > �

continue loop t

Otherwisebr = r

break loop t

and max [1; di(k
1
i � 2mL)], respectively. Con-

cerning Algorithm A1, 2m denotes the coarse-

ness of search, and 2L+1 denotes the number

of searches per layer.

De�ne rint := Out(A1[rint;m;L]) as the

output rint of algorithm A1 constrained to the

set N [k1(rint);m;L]. All the de�nitions and

concepts supporting algorithm A1 concern the

contour rint. They apply equally to contours

rext, replacing index int by index ext, when-

ever necessary.

Algorithm IMDP, presented below, aims at

the e�cient determination of estimate br given
by criterion (18), using the iterative scheme

(19)-(20).

We could have considered various iterations

for each value of m. However, this proved not

to be necessary, since for each t, the solution

r provided by the inner For loop in the IMDP

algorithm is, practically, the wanted one (the

maximum of 	(r) with respect to r). This

fact relies on the relatively high degree of in-

dependence (in the statistical sense) between

rint and rext.

Concerning complexity, the function 	(rint)

in algorithm A1 has to be computed N
2 �M

times (we are assuming that N = N0 = N1 =

; : : : ;= NM�1). Given a constrained search

with 2L+1 levels, 	(rint) has to be computed

(2L + 1)2 �M times. In the present work we

adopt L = 5. For N ' 150 this means that the

nonconstrained search demands a 185 times

larger computational e�ort compared with the

constrained search, what is quite a di�erence.

4 Results

In this section we present a set of experiments

using synthetic and real data. We use M = 32

scan lines in all examples. For the images con-

sidered, this number represents a good tradeo�

between the quality of estimated contours and

computational e�ort (which is proportional to

M).

The IMDP algorithm was coded in MAT-

LAB and was parametrized with m = 3 and

L = 5.

The stopping criterion of the IMDP algo-

rithm depends on the parameter �. Instead

of specifying it, the iteration is stopped when

the estimated contours display no more visual

changes. In all examples studied, this was

accomplished with no more than 4 iterations

(t = 4).

4.1 Simulated Data

Images shown in Fig. 3, of size 260�185, were

generated according to the Rayleigh density.

Pixel mean values are �0i = 10, �1i = 30, and

�
2
i = 100. The shape of countours resembles a

short axis view of the heart left ventricule.

Fig. 3(b) displays the starting contours ob-

tained by maximizing the log-likelihood of each

scan-line L(Iijri;�i) with respect to (ri;�i).

Fig. 3(c) plots the estimated contours over the

corresponding image.

Estimates b�0i , b�0i , and b�0i associated to each

scan-line of Fig. 3, computed according to

(20), are plotted in Fig. 4.

In the case of the Rayleigh observation

model, the performance of the contour estima-

tor depends on the ratios �1i =�
0
i and �

2
i =�

1
i (see

log-likelihood function (7)). The relative con-

trast of image in Fig. 3 is �1i =�
0
i ' �

2
i =�

1
i ' 3,
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a) 

c) 

b) 

Figure 3: Synthetic Rayleigh image with

�
1
i =�

0
i = 3 and �

2
i =�

1
i = 3:33 (i = 0; : : : ;M �

1): (a) Original image; (b) Starting contours

used to initialize IMDP algorithm; (c) Esti-

mated contours.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

σ2 ,   E[σ2] = 100 

σ1 ,   E[σ1] = 30 

σ0 ,   E[σ0] = 10 

scan-line 

^ 

^ 

^ 
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Figure 4: Estimated parameters b�0i , b�1i , andb�2i associated to each scan-line of Fig. 3(c),

for i = 0; � � � ;M � 1.

a) 

b) 

Figure 5: (a) Synthetic Rayleigh image with

�
1
i =�

0
i = 2 and �2i =�

1
i = 2 on the left hand size

and �
2
i =�

1
i = 0:5 on the right hand side; (b)

Estimated contours.

a) 

b) 

Figure 6: (a) Faint image (�1i =�
0
i = �

2
i =�

1
i =

1:5 for all scan-lines); (b) Estimated contours.
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for all scan-lines. This value leads to estimates

with good quality.

To have some insight on the trade-o� be-

tween region contrast and estimation error,

Fig. 5(a) displays a Rayleigh image with

�
1
i =�

0
i = 2 and �

2
i =�

1
i = 2 for i = 8; � � � ; 23

and �
2
i =�

1
i = 0:5 for i = 24; � � � ; 7. Compared

with the image of Fig. 3(a), there is not only

a decrease in the relative contrast from 3 to 2,

but also an inversion in the variation of image

mean value in the right side of the outer sim-

ulated image. This situation occurs frequently

with real data. One can say that the estimated

contour is a little worse than the one in Fig.

3(c). We have chosen a value of 2 for the rel-

ative contrast �2i =�
1
i , since, with �2 = 5�102

M2 ,

that value is the limit below which the outer

contour becomes biased. Indeed, for �2i =�
1
i < 2

the data does not produce enough strength to

compete with the smoothness term. The net

result is a biased outer contour estimate.

Concerning the inner contour, it is possible

to have relative contrasts �1i =�
0
i < 2 and still

have acceptable estimates. Fig. 6 illustrate

this situation. The relative contrasts �
1
i =�

0
i

and �
2
i =�

1
i were set to 1.5. The outer estimate

is biased, mainly near the points were the exte-

rior ellipse shows the greatest curvature. The

inner contour estimate is not as good as the

one in Fig. 5(b). Roughly, one can say that it

is a slightly smoothed version of the estimate

plotted in Fig. 5(b). However, it is still good

for many quantitative purposes.

4.2 Real Data

Fig. 7(a,b,c) show data obtained by a echocar-

diographic system, recorded on a video tape,

and �nally acquired with a video acquisition

system. An ultrasound frequency of 2.5 MHz

was used.

Figs. 7(b) and 7(c) display the estimated

and a hand traced (by an expert) contours,

respectively. The Rayleigh observation model

was used, since it accurately describes the am-

plitude in coherent systems such as ultrsound

imaging [Makovski 1983]. The agreement be-

tween the hand traced coutours and the esti-

a) 

b) 

c) 

Figure 7: End-systole frame: (a) Original

frame; (b) Original frame with automatic con-

tours overlaid; (c) Original frame with hand

traced contours overlaid.
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Figure 8: Estimated parameters b�i of image in

Fig. ??(b) for i = 0; � � � ;M � 1.
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Figure 9: Three confocal microscopy scans of

a white blood cell.

mated contour is evident.

Fig. 8 plots the estimated parameters b�i of
image in Fig. 7(b) for i = 0; � � � ;M � 1. We

call attention to the almost absence of contrast

between scan line 15 and 30. Even though, the

contours are well estimated. This is a conse-

quence of the prior information conveyed by

the a priori Markovian density P (r).

Fig. 9, left hand side, shows three confo-

cal microscopy scans of a white blood cell, ac-

quired at di�erent heights. On the right hand

side the same images are displayed with con-

tours overlaid. We use the Poisson observation

density, given that confocal images are samples

of a counting process [Snyder 1991].

The estimated contours are, according to an

expert, of good quality. We call attention to

the image on the top. It has a mean inten-

sity in inner region that cannot be considered

constant, as we assume in our model. Even

though, the contours are correctly estimated.

In the course of a research project on the

�eld of genetics, the algorithm herein proposed

was applied to more than 20000 images confo-

cal microscopy cell images, many of then con-

taining artifacts, with great success.

5 Conclusion

In this paper a method for contour estima-

tion in piecewise homogeneous images is pre-

sented. The problem was formulated under

the Bayesian setup. Contours are assumed to

be one-dimensional and are modeled as a non-

causal �rst-order Markov random process. The

physics of image generation play a key role in

building the image generation model; namely,

the observed image pixels were modeled as

Rayleigh, Gaussian or Poisson distributed ran-

dom variables with parameters depending on

their positions relatively to the contours. The

MAP criterion is then applied to derive the

contour estimates. To solve the huge opti-

mization problem one is led to, we used an

algorithm of the IMDP type introduced in

[Dias 1996]. This algorithm embodies dynamic

11



programming and multigrid aspects.

The method was coded in MATLAB code.

In a conventional Personal Computer it takes

less than 10 seconds to determine contours

from a single image.

References

[Bellman 1957] Bellman, R. 1957 Dynamic

Programming, Princeton University

Press, N.J.

[Besag 1974] Besag, J. 1974, 'Spatial interac-

tion and the statistical analysis of lattice

systems', Journ. Royal Statistical Soc. B,

vol. 36, pp. 192-225.

[Cohen 1993] Cohen, L. & Cohen, I. 1993,

'Finite-element methods for active con-

tour models and baloons for 2D and 3D

images', IEEE Trans. Pattern Anal. Ma-

chine Intell., vol. 15, pp. 1131-1147.

[Derin 1986] Derin, H. 1986Comunications

and Networks, A Survey of Recent Ad-

vances, I. Blake and H. Poor Ed., New

York.

[Dias 1993] Dias, J. & Leit~ao, J. 1993, 'Wall

Position and Thickness Estimation from

Two-dimensional Echocardiograms', in

IEEE Nucl. Sci. Symp., Med. Imag.

Conf., pp. 1246-1250.

[Dias 1996] Dias, J. & Leit~ao, J. 1996, 'Wall

Position and Thickness Estimation from

Sequences of Echocardiographic Images',

IEEE Trans. Med. Imag., vol. 15, pp. 25-

38.

[Figueiredo 1992] Figueiredo, M. & Leit~ao, J.

1992, 'Bayesian Estimation of Ventricular

Contours in Angiographic Images', IEEE

Trans. Med. Imag., vol. 11, pp. 416-429.

[Figueiredo 1997] Figueiredo, M. & Leito, J.

& Jain, A. K. 1997, 'Adaptive b-splines

and boundary estimation', in Proc of the

IEEE Comp. Soc. Conf. on Com. Vision

and Patt. Rec. - CVPR'97, pp. 724-730.

[Geiger] Geiger, D. & Gupta, A. & Costa, L.

& Vlontzos, J. ' Dynamic programming

for detecting tracking and matching de-

formable contours', submitted to IEEE

Trans. Pattern. Anal. Machine Intell.

[Geman 1984] Geman, S., & Geman, G. 1984,

'Stochastic relaxation, Gibbs distribuition

and the Bayesian restoration of images',

IEEE Trans. Pattern Anal. Machine In-

tell., vol. 6, pp. 721-741.

[Jain 1989] Jain, A. 1989, Fundamentals of

Digital Image Processing, Prentice-Hall,

Inc., Englewood Cli�s, N.J.

[Kass 1987] Kass, M. & Witkin, A. & Ter-

zopoulos, D. 1987, 'Snakes: Active con-

tour models', Intern. Journal of Comp.

Vision, vol. 1, pp. 259-268.

[Makovski 1983] Makovski, A. 1983, Medical

Imaging Systems, Prentice-Hall, Inc., En-

glewood Cli�s, N.J.

[Snyder 1991] Snyder, D. L. & Miller, M. I.

1991, Random Point Processes in Time

and Space, 2nd ed., Springer-Verlag, New

York.

[Van Trees 1968] Van Trees, H. 1968, Detec-

tion, Estimation and Modulation Theory,

vol. 1, Jonh Willey, New York.

[Wagner 1987] Wagner, R. F. & Insana, M. F.,

& Brown, D. G. 1987, 'Statistical proper-

ties of radio-frequency and envelope de-

tected signals with applications to medi-

cal ultrasound', J. Opt. Soc. Am., vol. 4,

pp. 910-922.

[Zhu 1996] Zhu, S. & Yuille, A. 1996, 'Re-

gion competition: Unifying snakes, region

growing, energy/Bayes/MDL for multi-

band image segmentation', IEEE Trans.

Pattern Anal. Machine Intell., vol. 18, pp.

884-900.

12


