
FAST GEM WAVELET-BASED IMAGE DECONVOLUTION ALGORITHM
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ABSTRACT

The paper proposes a new wavelet-based Bayesian approach
to image deconvolution, under the space-invariant blur and ad-
ditive white Gaussian noise assumptions. Image deconvolution
exploits the well known sparsity of the wavelet coefficients, de-
scribed by heavy-tailed priors. The present approach admits any
prior given by a linear (finite of infinite) combination of Gaussian
densities. To compute themaximum a posteriori(MAP) estimate,
we propose ageneralized expectation maximization(GEM) algo-
rithm where the missing variables are the Gaussian modes. The
maximization step of the EM algorithm is approximated by asta-
tionary second order iterative method. The result is a GEM algo-
rithm of O(N log N) computational complexity. In comparison
with state-of-the-art methods, the proposed algorithm either out-
performs or equals them, with low computational complexity.

1. INTRODUCTION

Image deconvolution is a longstanding linear inverse problem with
applications in remote sensing, medical imaging, astronomy, seis-
mology, and, more generally, in image restoration [1].

The challenge in many linear inverse problems is that they are
ill-posed, i.e., either the linear operator does not admit inverse or it
is near singular yielding highly noise sensitive solutions. To cope
with the ill-posed nature of these problems, a large number of tech-
niques has been developed, most of them under the regularization
[2, 3, 4] or the Bayesian frameworks [5].

The heart of the regularization and Bayesian approaches is the
a priori knowledge expressed by the prior/regularization term. A
“good” prior should express knowledge about images being de-
scribed. For example, theweak membrane[6], in the regulariza-
tion setup, and thecompound Gauss Markov random field[7], in
the Bayesian setup were conceived to model piecewise-smooth im-
ages. This was an improvement over the classical quadratic priors.

Wavelet-based approaches have recently been adopted to solve
linear inverse problems [8, 9, 10, 11, 12, 13, 14, 15]. Underlying
this direction is the parsimonious representation provided by the
wavelet transform of a large class of natural images [16]: images
are essentially described by a few large wavelet coefficients. This
fact has fostered Bayesian and regularization approaches where the
prior favors a few large wavelet coefficients and many nearly zero
ones (the so-called heavy-tailed priors).

In formulating linear space-invariant inverse problems in the
wavelet domain, one is frequently faced with linear operations re-

sulting from the composition of Toeplitz operators with the wavelet
transforms. This composed operator is not diagonal and intro-
duces unbearable computational complexity in the wavelet-based
deconvolution schemes. Recognizing that each of these operations
per secan be computed efficiently with fast algorithms, several
works exploiting this fact have recently appeared in the literature
(e.g.,[17, 15]).

1.1. Proposed approach

We introduce a wavelet-based Bayesian solution to image decon-
volution. The observation mechanism comprehends space-invariant
blur and additive Gaussian noise. The wavelet coefficients are as-
sumed to be independent with density given by a linear (finite of
infinite) combination of Gaussian densities. This class of densi-
ties models many heavy-tailed priors, namely, theGaussian mix-
ture models(GMM), the Jeffreys’ non-informative prior [18], the
Laplacian prior, the equivalentgarroteprior (see [19] and papers
therein).

To compute the MAP estimate, we propose an EM algorithm
where the missing variables are the Gaussian modes. The maxi-
mization step of the EM algorithm includes a huge non-diagonal
linear system with unbearable computational complexity. To avoid
this difficulty we approximate the linear system solution with by
a few iterations of astationary second order iterative method.
The resulting scheme is ageneralized expectation maximization
(GEM) algorithm, achieving convergence in a few tens of itera-
tions. The Fourier transform (FFT) and a discrete wavelet trans-
form (DWT) are the heaviest computations on each GEM step.
Thus the overall algorithm complexity isO(N log N).

In a set of experiments, the proposed algorithm either equals
or outperforms state-of-the-art methods [15, 20, 9, 14].

2. PROBLEM FORMULATION

Let us denotex andy as vectors containing the true and the ob-
served image gray levels, respectively, arranged in column lexi-
cographic ordering. We assume, without loss of generality, that
images are square of sizeN (number of pixels).

The observation model herein considered is

y = Hx + n, (1)

whereH is a square block-Toeplitz matrix accounting for space-
invariant blur andn is a sample of zero-mean white Gaussian noise



vector with densityp(n) = N (n|0, σ2I) [N (z|m,C) denotes
the Gaussian multivariate density of meanm and covarianceC
evaluated atz, andI is the identity matrix].

LetW denote the orthogonal discrete wavelet transform (DWT)
andθ = Wx the wavelet coefficients ofx. SinceW is orthogo-
nal, expression (1) can be written as

y = HWT θ + n. (2)

The density of the observed vectory given θ is then given by
p(y|θ) = N (y|HWT θ, σ2I). Given a priorp(θ), the maximum
a posteriori (MAP) estimate ofθ is given by

θ̂ = arg max
θ
{log p(y|θ) + log p(θ)} (3)

= arg max
θ

{−‖y −HWT θ‖2
2σ2

+ log p(θ)

}
. (4)

As in many recent works, we assume that the wavelet coeffi-
cients are mutually independent and identically distributed; i.e.,

p(θ) =

N∏
i=1

p(θi).

The independence assumption is motivated by the high degree of
decorrelation exhibited by wavelet coefficients of natural images.
Although decorrelation does not imply independence, the former
has led to very good results.

If H = I, i.e., there is no blur, the image restoration at hand
fall into a denoising problem. In this case the maximization (4)
reduces toN decoupled coefficient-wise maximizations, what can
be efficiently solved exploiting the orthogonality ofW and using
fast implementations of the DWT (see, e.g. [19, 21]).

If H 6= I, i.e., there exists blur, the maximization (4) can not
be decoupled. Furthermore, matrixHWT of sizeN × N intro-
duces complexity beyond reasonable. In the next section we de-
velop a GEM algorithm that avoids direct manipulation of matrix
HWT .

3. A GEM ALGORITHM THAT AVOIDS DIRECT
MANIPULATION OF HWT

Let us assume that the prior on each wavelet coefficient is given by

p(θ) = E[p(θ|z)], (5)

wherez is a continuous or discrete random variable, and

p(θ|z) = N [θ|0, σ2(z)]. (6)

Many of the heavy-tailed priors used in wavelet-based image denos-
ing/restoration admit the decomposition implicit in the right-hand
side of (5). Some examples are listed below (see [18])

• Gaussian mixture models (GMM):z ∈ {1, . . . n} andP (z =
i) is the probability ofθ ∼ N [θ|0, σ2(i)]

• Laplacian prior: p(z) = γ exp(−γz), with z > 0, and
σ2(z) = z

• Jeffreys prior:p(z) ∝ 1/z, with z > 0, andσ2(z) = z.

• Any even prior such thatp(
√

θ) is completely monotone
(see [22]).

Random vectorsz ≡ (z1, . . . , zN ) and (y, z) play the role
of missing dataandcomplete data, respectively, in our GEM for-
mulation. The EM algorithm generates a nondecreasing sequence
[23] {p(y, θ̂t), |t = 0, 1, . . . }, where{θ̂t, |t = 0, 1, . . . } is gen-
erated by the two-step iteration

E-step:

Q(θ, θ̂t) = E
[
log[p(y, z, θ)|y, θ̂t

]
(7)

=
−‖y −HWT θ‖2

2σ2
− 1

2
θT Dtθ + cte,

whereDt ≡ diag{E[(σ−2(z1), . . . , σ
−2(zN ))|θ̂t]}

M-step:

θ̂t+1 = arg max
θ

Q(θ, θ̂t) (8)

=
(
σ2Dt + WHT HWT

)−1

WHT y. (9)

M-step (9) is impracticable from the computational point of
view, as it amounts to solving the linear systemAtθ = y′, where
At ≡ σ2Dt + WHT HWT andy′ = WHT y, of sizeN2 and
involving the matrixHWT . We tackle this difficulty by replacing
the maximization (9) with a few steps of an iterative procedure that
incrementsQ(θ, θ̂t), with respect toθ. The resulting scheme is
thus a GEM algorithm.

Let At = Ct − R be asplitting [24] of At, whereCt ≡(
σ2Dt + I

)
andR ≡ (

I−WHT HWT
)
. Assuming thatAt

is positive definite, then thesecond-order iterative methoddefined
by

ri = Atξi − y′ i = 0, 1, . . .
ξ1 = ξ0 − β0C

−1
t r0

ξi+1 = αξi + (1− α)ξi−1 − βC−1
t ri i = 1, 2, . . .

(10)
converges to the solution ofAθ = y′, if and only if 0 < α < 2
and0 < β < 2α/λN , where0 < λ1 ≤ λ2 ≤ · · · ≤ λN are
the eigenvalues ofC−1

t At (see Theorem 5.9 of [24, ch. 5 ]). The
optimal convergence factor is(αopt−1)1/2 ≡ [1−

√
λ1/λN ][1+√

λ1/λN ] and is achieved forα = αopt, β = 2α/(λ1 + λN ) and
β0 = β/α.

Given thatDt is diagonal, the productWHT HWT ξi, nec-
essary to determine the residualri, is the heaviest computation
in each iteration of (10). We note however thatWHT HWT ξi

can be computed efficiently, since there exists fast implementa-
tions [O(N log N)] of the DWT and of the inverse DWT [16],
and the product of a Toeplitz matrix by a vector can also be com-
puted efficiently, by embeddingH in a larger block-circulant ma-
trix. Block-circulant matrices are diagonalized by the 2D discrete
Fourier transform. Therefore, by using the 2D fast Fourier trans-
form (FFT), the complexity of the product of a Toeplitz matrix by
a vector is [O(N log N)] [1].

Algorithm 1 shows the pseudo-code for the proposed GEM
scheme. The number of iterations of the inner loop in only 4. An
informal justification for this figure is that it is sufficient to increase
the objective function. The balance between the number of inner
and outer iterations should however be addressed in future work.

Given thatC−1
t At = C−1

t σ2Dt +C−1
t WHT HWT is pos-

itive definite,0 ≤ λi(C
−1
t σ2Dt) ≤ 1, for i = 1, . . . , N , and

Ct, Dt, andWHT HWT are symmetric matrices, we have0 <



Algorithm 1 Generalized Expectation Maximization Algorithm.

Initialization: θ̂0 {Winer filter},
1: for t := 0 to StopRule do
2: {E-Step}
3: Dt := diag{E[(σ−2(z1), . . . , σ

−2(zN ))|θ̂t]}
4: {IncreasingQ(θ, θ̂t)-Step}
5: ξ0 := θ̂t, Computer0, ξ1 { see (10)}
6: for i := 1 to 4do
7: ri = Atξi − y′

8: ξi+1 = αξi + (1− α)ξi−1 − βC−1
t ri

9: end for
10: θ̂t+1 = ξ5

11: end for

λi(C
−1
t At) ≤ 1 + λi(C

−1
t WHT HWT ). Noting that0 <

λi(C
−1
t ) ≤ 1 and that matrixW is unitary, it follows that0 <

λi(C
−1
t At) ≤ 1 + λN (HHT ). The approximatioñλ1 = 0.01

andλ̃N = 1 + λN (HT H) for λ1(C
−1
t At) andλN (C−1

t At), re-
spectively, was taken. We stress that, although this approximation
might be rough, it is good enough to boost the converge rate by an
order of magnitude when comparing withthe first order iterative
methodobtained by settingα = 1 in (10).

We call attention for the following aspects of Algoritm 1:

• Unknown parameters: If there are unknown parameters
in the observation model (e.g., observation noiseσ2) or in
the prior, they can be inferred iteratively in the optimization
step.

• Computation of Dt: Matrix Dt depends on the type of
prior. Below, we list a generic diagonal elementdt =
E[σ2(z)|θt] of Dt for four priors (see [18], [22], [19]):

Gaussian mixture dt =

∑n
i=1

P (z=i)

σ2
i

p(θt|z = i)

p(θt)

Laplacian prior dt = 2γ|θt|−1

Jeffreys prior dt = |θt|−2

Garrote prior dt =
−|θt|+

√
θ2

t + 4aσ2

2|θt|σ2

The denoising algorithm introduced in [19] is equivalent
to the Garrote prior witha = 3. The present formulation
opens the door to adapting parametera to data.

• Translation-Invariant restoration: Translation- invari-
ant (TI) wavelet-based methods outperform the orthogo-
nal DWT based ones, as the former significantly reduce
the blocky artifacts associated to the dyadic shifts inher-
ent to the orthogonal DWT basis functions [25]. In the
present setup, replacing the orthogonal DWT with the TI-
DWT does not alter the GEM nature of the developed algo-
rithm, as the optimization step still increment the objective
functionQ(θ, θ̂t).

4. EXPERIMENTAL RESULTS

We now present a set of three experiments with the same image
(cameraman) illustrating the performance of Algorithm 1. Esti-
mation results are compared with methods [9], [14], [15], [20], to

Fig. 1. Camera-man: a) blurred noisy image(9 × 9 uniform,
BSNR=40 dB); b) Restored imaged with Algorithm 1 (ISNR =
8.1dB).

assess the relative merit of the proposed methodology. In all exper-
iments, we employ TI-DWT, with Haar wavelets (Daubechies-2),
and the equivalent Garrote prior witha = 3 as this prior yields
the best results of those compared in paper [15]. Noise is assumed
unknown and the stopping rule is

‖x̂t+1 − x̂t‖2
‖x̂t‖2 < 2× 10−3σ.

In the first experiment the blur is uniform of size9 × 9 and
the signal to noise ratio of the blurred image (BSNR) is set to
BSNR=40 dB. In the second and third experiments the point spread
function of the blur ishij = (1 + i2 + j2), for i, j = −7, . . . , 7,
and the noise variances set toσ2 = 2 andσ2 = 8, respectively.

Table 1 shows the signal-to-noise improvements (ISNR) of the
proposed approach and methods [15], [20], [9], and [14], for the
three experiments. Algorithm 1 outperforms the others in all ex-
periments. The number of GEM iterations to satisfy the stop crite-
rion was 55, 10, and, 8, respectively for the experiments 1, 2, and
3.

Figure 1a) shows a degraded version of the camera-man (blur
(9× 9) uniform, BSNR=40 dB). Part b) shows the restored image
with Algorithm 1, corresponding to a ISNR of 8.1dB.

5. CONCLUDING REMARKS

We developed a new fast Bayesian wavelet-based algorithm to im-
age deconvolution. To compute the MAP estimate, we adopted



Table 1. SNR improvements (ISNR) of the proposed algorithm
(Algoritm 1) and of the methods [15], [20], [9], and [14].

ISNR
Method Exp. 1 (dB) Exp. 2 (dB) Exp. 3 (dB)

Algoritm 1 8.10 7.47 5.17
[15] 7.02 7.22 5.06
[20] 7.30 – –
[9] 6.70 – –
[14] – 6.75 4.85

a GEM optimization algorithm that employs asecond order sta-
tionary iterativeprocedure to approximate the M-step of the EM
algorithm. The total complexity isO(N log N) (N is the number
of image pixels). In a set of experiments the proposed methodol-
ogy competes with state-of-the-art methods.
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