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ABSTRACT 1.2. Previous Work and Our Contributions

lterative shrinkage/thresholding (IST) algorithms have been recentl{f€centlyiterative shrinkage/thresholdingST) algorithms, tailored
r objective functions with the form (1), were proposed indepen-

proposed to handle high-dimensional convex optimization problem
arising in image inverse problems (namely deconvolution) under nofi€ntly by several authors [12, 14, 15, 17, 18, 21]. Convergence of
quadratic regularizatiore(g, total variation or sparsity inducing reg- > Was studied in [12]; more recently IST was shown to belong to a
ularizers on wavelet representations). The convergence speed gpSs of so-calletbrward-backwardalgorithms, whose convergence
IST algorithms depends heavily on the nature of the direct operal/@s studied in [10]. _ _ _

tor, being very slow when this operator is severely ill-conditioned. ~Another class of algorithms, termed IRS (frative reweighted

In this paper, we introduce a two-step version of IST (termed 21STSNrinkagg, was proposed in [3]. IRS algorithms were shown to be
pronounced “twist”) showing much faster convergence for stronglynuch faster than IST in cases whdgis very ill-conditioned [3].
ill-conditioned operators. We give theoretical results concerning=onversely, for mildly ill-conditioned, and strong noise, IST is
the convergence behavior of 2IST and show its effectiveness fd@Ster than IRS [16].

wavelet-based and total variation image deconvolution. This paper introduces a new algorithm bringing together the best
of IRS and IST. It's @wo-step IST2IST, pronounced “twist”), in the

sense that the update equation uses the two previous estimates, rather
1. INTRODUCTION than only the previous one. We present a theorem giving sufficient
conditions for the convergence of 2IST. The effectiveness of 2IST
is experimentally confirmed on a set of image deblurring problems,
using wavelet-based and TV regularization.

In an inverse problem, the goal is to estimate an unknown image  The next section reviews several choiceaind (old and new)

from a (possibly noisy) observation, produced by an operatd€ results on existence and uniqueness of minimizerg. ofhe previ-
applied tox [2]. In a linear inverse problen{LIP), K is a linear ous IST and IRS algorithms are described in Section 3, which also

operator; ifK represents a convolution with some kernel, the LIP isfeviews previous results on the convergence of IST. The new 2IST

1.1. Problem Formulation

called adeconvolution problem algorithm is introduced in Section 4, which also contains some theo-
Most approaches to LIPs define a solutiras a minimizer of retical results concerning its convergence behavior. Finally, Section
an objective functiory : X — R = [—o0, +00), 5 reports experimental results.
1
T = 5 lly = Kx|[* + 2@ (x), @) 2. REGULARIZERS

) ] ] 2.1. Convex Regularizers and Denoising Functions
whereK : X — Y is the (linear)direct operator X and) are real

Hilbert spacesp : X — Ris the so-called regularizer functioh,c We adopt the following standard assumptions about the regularizer
[0, +o0[ is theregularization parameterand||- || denotes the normin ~ ®: it is convex, lower semi-continuous (Isc), and proper (see [23,
the Hilbert space of its argument (see [2], for a comprehensive tex25] for details on these and other concepts and results in convex
on inverse problems and regularization in imaging). The intuitiveanalysis).
meaning off is clear: its minimizers reach a compromise between A LIP in which K is the identity,i.e, Kx = x, is termed a
lack of fitness to the observed data (given||lgy— Kx||?) and degree  denoising problem. In this case, the objective function (1) simplifies
of “undesirability” (as assessed ky(x)). The parametek controls  to fgen= (1/2)d2 + X ®, where
the relative weight of these two terms.

State-of-the-art regularizers for LIPs in imagiregg, total-vari- dy(x) =|Ix =yl 2
ation (TV) [5], [8], [22] and wavelet-based regularization [7], [13],
[20]) are non-differentiable. This fact, together with the huge di-is Isc, proper, and coercive (that ¥mx|—oo ||y — x||? = o0).
mension ofk, placef beyond the reach of off-the-shelf optimization Consequentlyf4en is also Isc, proper, and coercive, thus its set of
algorithms and has stimulated research in recent years [3, 5, 10, 1&inimizers is not empty [10, 23]. The strict convexity df im-
14,17, 18, 21]. plies strict convexity off4ers hence, it has a unique minimizer which



allows defining thalenoising functionP  : X — X as or ®,p , with w; > 0, V;, the set of minimizer of (1) is nonempty;
(i) using®?, , withp > 1 andw; > 0, V;, the minimizer is unique;

o,

W, (y) = arg min dy (x) b L 3 (i) with @, or &y, withp > 1, if K is injective, the minimizer
x 2 is unique;(iv) in the finite-dimensional case, K is injective the

minimizer is unique.

also known as the (Moreapyoximal mappingf ¢ [10, 23]. With &1y and a non-injectivé, the results in [10] can not be

If ®(ax) = a®(x), foralla > 0andx € X, ®is said  applied to guarantee existence of a minimizer. The following result
positively homogeneous of degregphd-1) and the following result  (proved in [4]) gives a sufficient condition for the existence of mini-
applies (see [5, 10, 19]): mizer(s) under a discrete TV regularizer:
Theorem 2 Let X = R™ and f be given by (1), withb = &y
Then, if the null-space oK doesn't contain the constant imagg,
has at least one minimizer.

Theorem 1 If @ is convex, Isc, proper, and phd-1, then

¥i(y) =y — Pac(y) )
whereC C X is a closed convex set depending on the regularizer 3. PREVIOUS ALGORITHMS
®, andP, : X — X denotes the orthogonal projection operator
onto the convex set C X. From this point on, we consider only finite-dimensional spa&es;

R™,Y = R". The class of IST algorithms has the form
We next list common classes of (convex, Isc, proper) regulariz-
ers and the corresponding denoising functions. X1 =1—-08)x+ 8Py (Xt +K"(y - th)) , ()

Weighted /7 Norms: These normsy( > 1), defined as where > 0. Convergence of IST, wit}s = 1, was first shown in
L [12]; a more general result was shown in [10]. The following is a
P simplified (namely, for the finite-dimensional case) version of The-
Pyp (x) = [[xlp.w = (Z wz‘|xip) ; () orem 5.5 from [10]:
i Theorem 3 Let f be given by (1), wher@ is convex, andK||3 <

wherew = [wi, ..., ws, ...], with w; > 0, are convex, Isc, proper, 2, where||K]||» is the matrix norm induced by th& norm. LetG,

and phd-1, thus Theorem 1 applies. This class of norms appeafd® St of minimizers of, be non-empty. Fix some,; then, the
in the discrete version of Besov norm regularizers in wavelet-basegfduencex:, ¢ € N} produced by (7), wit§ €]0, 1], converges
image restoration (see [7]). The denoising function undeyareg-  t© @ Pointx € G.

ylarizer can't, i_n general, be obtained in closed form._An exce_ption The iterations of the IRS algorithm are given by

isp = 1, for which ¥ is the well-known soft-thresholding function

[13]. xt+1 = solution{A; x = b}, (8)

p-th Power of Weighted ¢” Norms: This class of regularizers, de- with b R KTy and At. = ).‘Dt + K"K, whereD; is a (nop-
fined as@ifp (x) = ||x||%.. appears in many wavelet-based ap- negatwe)dlagongl ma_tnx yvh|ch depen_dsaqrandf?._ The huge size
proaches (gee [3,12, 17, 18, 19] and reference therein)p Eotl, OflAt folrlceds an |t§rat3/e |1mplem_entat|0r_1 of (.8)’ in [SA,IWO-T'tVIep
@Iﬁ%v = @, , and Theorem 1 applies. Fpr> 1, @5& is not phd- \(Naassoagﬁp?ejecon -order(1]) stationary iterative metho@2SIM)

1, and the denoising operator doesn't have the form (4). In this'y; \ a5 shown in [3] that, for strongly ill-conditioned systems,
case ¥, is given by the component-wise application of the func-|pg js mych faster than IST, due to the use of the 2SIM. On the
tion Sxw, », Wheres:, is the inverse function of other hand, when noise is the main factor, and the observation op-
erator is not severely ill-conditioned, IST outperforms IRS due to
its closed-form denoising step in each iteration [16]. In the extreme
case of a pure denoising probleK = I), IST (with 8 = 1 and ini-
tialized atx; = 0) converges in one step, while IRS does not. The

Fry (@) = 2+ 7p signa)le] " ®)

Forp > 1, F;, is bijective, thusS; , = F, (called theshrinkage

function) is well defined. This function has simple closed forms for2 S hod din thi K h d denoisi
p=4/3,p = 3/2, orp = 2 [10]. Key features of5.., (for p > 1) IST method proposed in this paper keeps the good denoising per-

are: it's strictly monotonic, differentiable, and its derivative is upperforma_npe of IST , but is able to handle severely ill-posed problems
bounded by 1 [12]. as efficiently as IRS.

Total Variation: TV regularizers, denotedty (either the continu- 4. TWO-STEP IST (2IST)

ous formulation [5, 8, 22], or its discrete versions [5, 6]) have been

shown to satisfy the hypotheses of Theorem 1; thus, TV denoisinspired by the good performance of the 2SIM used in IRS, we pro-
ing corresponds to the residual of a projection onto a convex sgiose a two-step version of IST (2IST), defined as

[5, 10, 19]. Although in this case, there is no closed form for this

projection {.e., for TV denoising), fast iterative methods have been x1 = Ix(x0) ©
recently introduced [5, 6, 11]. xe41 = (I —a)xe1 + (@ — B)xe + BTn(x¢),  (10)

fort € N, wherel, : R™ — R™, is defined as
2.2. Existence and Unigueness of Solutions .
r =w K -K . 11
Sufficient conditions for the existence/uniqueness of minimizers of A (%) A (x + (y x)) (11)

(1), under regularizergy, , @,z , and®ry can be derived from re- The following theorem partially characterizes the convergence
sults in [10] (Propositions 3.1 and 5.3). In particul(éa),using@’gp of the 2IST algorithm, wherf has a unique minimizer.



Theorem 4 Let f be given by (1), wher@ is convex. Lef be areal  discrete version of the TV regularizer [5], anchand-tuned for op-
number such that < ¢ < \;(KTK) < 1, where);(-) is thei-th  timal performance. In this casd, is a TV denoising function,
eigenvalue of its matrix argument, and fet= (1 — /€) /(1 + /€). implemented by running a few steps.@, 5) of the algorithm pro-
Let x be the unique (becausK is injective) minimizer off and  posed in [5]. In all the experiments, the algorithm is initialized with
define the “error vector” ase; = x; — X and the “staked error a Wiener filter estimate, as in [3]. Figure 1 shows the evolution of

vector” as . the objective functiorf (x;) and of the SNR improvement, along the
_ T — T iterations of 2IST, IST with3 = 1 (the version introduced in [12],
= V1 . 12
W [(etﬂ) o (o) ] (12) [21]), and IST with3 # 1. The 2IST algorithm was stopped when
(i) There exist matrice§); such thatw;+1 = Q; wy, fort € N; If(x:) — f(x¢-1)]/f(x¢—1) < 10~* and the other two algorithms

moreover, if0 < a < 2and 0 < 8 < 2, thenp(Q:) <1,  were run until they reached the same valuef¢k,), which hap-
wherep(-) denotes the spectral radius, i.e., the largest ab-pened (not shown) after 2100 iterations, fors # 1, and~ 4000
solute eigenvalue; iterations, forg = 1.

(i) settingar = p*+1and § = 4% guarantees thagp(Q:) = 7,

(i) if 0<a<land0< g <2aq,thenlim;_.. w; = 0; 4

—2IST
IST,B#1
---IST,B=1

(iv) with o = 1, 2IST becomes IST; taking = 13 guarantees
that p(Q:) < %g =p.

W
3]

W
o

Theorem 4 extends the results about the convergence of the lin-
ear 2SIM (see [1]) to the non-linear/non-differentiable case. While
the proofin [1] uses linear algebra tools, the possible non-linear/non-
differentiable nature o, demands non-smooth analysis techniques
[9, 23]. The proof of Theorem 4, as well as a related result for the
case where the minimizer is not unique, can be found in [4].

If Q: = Q, the conditionp(Q) < 1 would be sufficient for = 0 5 200
convergence to zero of;. However, in 2IST,Q; is in general Iterations
not constant, thup(Q:) < 1, Ve, is not a sufficient condition ‘ ‘
for convergence. Convergence of a non-stationary linear iteration
w1 = Q¢ wy, WhereQ, € Q, depends on thpint spectral ra-
dius (JSR) of the matrix se@ [24]. Computing (or bounding) the
JSR of (even very small) matrix sets is a hard problem, currently
under active research (see [24] and references therein). The conver-
gence stated ifiii) results from the fact that far < 1, Q. is sym-
metric, thusp(Q:) =1|Q¢||2 < 1, which guarantees convergence.

Although, whena > 1, Theorem 4 does not guarantee conver- 55
gence, we have observed, in a large number of image deconvolution
experiments, that the algorithm always converges with the setting
given in(ii). Althoughp < 1 andp < 1 do not guarantee conver- 0 50 100 150 200
gence, we have experimentally verified that these values are good Iterations
indicators of the relative speed of 2IST and IST. Treating the algo- ) ] o ]
rithms as linear stationary, we could make the following observationFig. 1. TV deblurring example: evolution of the objective function
numbers of iterations needed to reduce the error norm by a factor of

10. For example, witlf = 10 ! (2not uncommon in image restora- In the second experiment, we apply wavelet-based deconvolu-
tion problems)—1/log,, p ~ 10°, while —1/log,,p ~ 107, 1., {ion to the same observed image; in this cdse= HW, whereH
in this case 2IST is roughly two orders of magnitude faster than IST the matrix representing the bIOW is the inverse DWT transform,
andx is the set of wavelet coefficients of the unknown ima§ex
5. EXPERIMENTAL RESULTS [3, 17, 18]. We use Haar wavelets and takes the/! norm, thus
W, is the soft-threshold function. The results of this experiment are
This section reports experiments comparing the convergence sped@ported in Figure 2. The qualitative behavior of the algorithms is
of 2IST and IST. We stress that the goal of these experiments is n¥€ry similar to the first experiment.
to assess the performanaed, in terms of SNR improvement) of The third and last experiment uses the following setup (also
image deconvolution criteria of the form (1). Such an assessmentudied in [3, 17, 18]): the observed image is obtained by convolv-
has been carried out (in comparison with other state-of-the-art tecling the well-known “Lena” image with a separable blur with kernel
nigues) in several previous publications [3, 17, 18]. [1,4,6,4,1]7[1, 4, 6,4, 1]/256 and then adding noise with standard
Our first experiment uses a benchmark problem which was studdeviation equal t&. The blur is much less severe than the uniform
ied in [3, 17, 18] (and in many other deconvolution papers): thed x 9 considered in the previous experiments, thus 2IST is not ex-
observed image is obtained by convolving the well-known “Cam-pected to show such a clear superiority over IST as it did above. The
eraman” image with & x 9 uniform blur and then adding noise evolution of f(x:) along the iterations of algorithms, with a TV reg-
with variance 40dB below that of the blurred image. We deconvolveaularizer, is shown in Figure 3; the plot shows that 2IST is still faster
the observed image by minimizing (1), with being the isotropic  than both versions of IST, but by a smaller margin than above.
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Fig. 2. Wavelet-based deblurring example: evolution of objective

function for 2IST, and IST withg = 1 andj3 # 1.
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Fig. 3. TV deblurring example, under mild blur: evolution of objec- [16]

tive function for 2IST, and IST withs = 1 andg # 1.

6. CONCLUDING REMARKS

(17]

We have introduced a two-step version of the recent iterative shrink-
age/thresholding (IST) algorithm, termed 2IST, for a class of convei18]
objective functions, appearing namely in total-variation and wavelet-
based image restoration. We have presented theoretical results con-
cerning the convergence behavior of the 2IST algorithm. In a typical19]
benchmark image deblurring problem (with strong blur), 2IST con-
verges between 1 and 2 orders of magnitude faster than the original
IST. Current work includes extending Theorem 4, namely showing

convergence fory > 1.
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