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Abstract

This paper proposes a restoration scheme for noisy im-

ages generated by coherent imaging systems (e.g., syn-

thetic aperture radar, synthetic aperture sonar, ultra-

sound imaging, and laser imaging). The approach is

Bayesian: the observed image intensity is assumed to

be a random variable with gamma density; the image to

be restored (mean amplitude) is modeled by a compound

Gauss-Markov random �eld which enforces smoothness

on homogeneous regions while preserving discontinuities

between neighboring regions. A Neyman-Pearson detec-

tion criterion is used to infer the discontinuities, thus

allowing to select a given false alarm probability maxi-

mizing the detection probability. The whole restoration

scheme is then cast into a maximum a posteriori proba-

bility (MAP) problem. An expectation maximization type

iterative scheme embedded in a continuation algorithm is

used to compute the MAP solution. An application exam-

ple performed on radar data is presented.

I. Introduction

Coherent imaging systems are designed aiming at the

acquisition of the scene complex re
ectivity. They are

linear systems whose output is given by the convolution

between its coherent point spread function (PSF) and the

scene complex re
ectivity. Examples are synthetic aper-

ture radar (SAR), synthetic aperture sonar (SAS), ultra-

sound imaging, and laser imaging. The complex re
ec-

tivity originated in a given resolution cell is composed

by the contributions of all individual scatterers lying in

that cell. These contributions interfere randomly in a de-

structive or constructive manner, according to the spatial

con�guration of the scatterers. This random 
uctuation is

termed (speckle noise); its statistical properties have been

addressed in several references [1], [2], [3]. Assuming that

the surface being illuminated is rough compared to the

wavelength, that there are no strong specular re
ectors,

and that there is a large number of scatterers per reso-

lution cell, then the squared amplitude (intensity) of the

complex re
ectivity is exponentially distributed; the sce-

nario just described, termed fully developed speckle, leads

to highly noisy intensity images: the signal to noise ra-

tio (SNR), de�ned as the square of the ratio between the
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intensity mean value (backscatering coe�cient) and the

intensity variance, is one. The granular appearance of

intensity images is due to this very low SNR.

Most applications involving coherent systems data rely

on the mean intensity image (backscattering coe�cient

image). In view of the rationale above presented, there

is need for applying speckle reduction/restoration tech-

niques to intensity data. A common approach consists

in averaging independent observations of the same pixel,

which in the case of SAR systems is calledmulti-look. This

term stems from the fact that each independent sample

is generated by a di�erent segment of the SAR array. In-

dependently of the system, an image formed by the av-

eraging of m independent samples will herein be termed

an m-look image. For fully developed speckle, the SNR

of an m-look image is m. However, increasing the num-

ber of independent samples results in reduction of spatial

resolution, being necessary to resort to spatial smoothing

techniques. The basic idea underlying these techniques

is that of applying nonuniform smoothness in such a way

that homogeneous image regions, in a statistical sense,

are highly smooth, while discontinuities are preserved [4],

[5], [6].

In recent years a signi�cant research activity has been

devoted to the development of speckle reduction tech-

niques, or, equivalently, to the mean backscattering co-

e�cient estimation. These techniques take the form of

image restoration [7], [8], edge detection [9], or image seg-

mentation algorithms [3], [10], [11], [12], [13]. A common

assumption is that images are locally smooth. This be-

havior has been modeled mainly by ad hoc techniques [7],

or by Markov random �elds [3], [10], [11], [12].

The present approach is Bayesian:

� the observed image, given the backscattering coe�-

cients, is assumed to be a realization of a random �eld

taking into account the statistics of image re
ectivity;

� the set of backscattering coe�cients associated to the

image pixels is assumed to be piecewise smooth, and mod-

eled as a random �eld with a compound Gauss-Markov

random �eld (CGMRF) prior [5], [14].

The piecewise smoothness assumption makes sense in

many situations: e.g., SAR images of agricultural land-

scapes, echography of the human body, etc.

The methodology herein proposed is on the vein of work



[15]. Its main contribution is on a new approach to the

line �eld discontinuity dectection; the Neyman-Pearson

detection criterion is used, thus allowing to select a given

false alarm probability maximizing the detection proba-

bility.

II. Proposed Approach

Assume that images are de�ned on the N � N rect-

angular lattice ZN = f(i; j); i; j = 1; : : : ; Ng. De�ne

F = fFijg andG = fGijg, with (i; j) 2 ZN as the random

�elds associated to the square root of the backscattering

coe�cient image and the observed intensity image, respec-

tively. Lowercase letters will denote the values assumed

by the the random �elds as well as its realizations.

Besides �elds F and G, it is assumed the existence

of another �eld, L = fH;Vg, with H = fHijg and

V = fVijg, signaling horizontal and vertical discontinu-

ities. Variables Vij and Hij are binary, taking value 1 if a

discontinuity is present and 0 otherwise. The �eld L, also

termed line �eld [5], serves the purpose of avoiding edges

to be smoothed out during the restoration of �eld F.

For compactness, the probability density of the generic

�eld X, px(X = x), or of the generic random variable X ,

px(X = x), will be denoted by p(x) and p(x), respectively.

For example, the density pFLjG(F = f ;L = ljG = g), will

be denoted as p(f ; ljg).

A. Image Generation Mechanism

Under the fully developed speckle hypothesis, the com-

plex amplitude x = xr + jxi (inphase and quadrature

components) of the backscattered �eld, at each pixel, is

circularly symmetric and Gaussian [10]. Thus

p(xjf) = 1

�f2
e
�

jxj2

f2 ; (1)

where f2 := E[jxj2] is the backscattering coe�cient of the

referred resolution cell. For intensity or power images the

data is in the form of square magnitude of the complex

components, g = jxj2. Random variable G is therefore

the exponentially distributed:

p(gjf) = 1

f2
e
�

g

f2 : (2)

For an m-look image, G is the average of m independent

exponentially distributed random variables, thus having

gamma density [16],

p(gjf) = 1

�(M)

�
f
2

M

��M
g
M�1 exp

�
�gM
f2

�
; (3)

with E[gjf ] = f
2 and �

2 [gjf ] = f
2
=M .

It is herein assumed that the components of g, given f ,

are independent. Hence

p(gjf) =
Y

ij2ZN

p(gij jfij): (4)

The conditional independence assumption is valid if the

resolution cells associated to any pair of pixels are disjoint.

This is only true if the size of the imaging system PSF is

smaller than the corresponding interpixel distance. This

is approximately true in most acquisition systems. Oth-

erwise, neighboring data would be extremely correlated,

adding no information.

B. Prior Model

Image f is assumed to be piecewise smooth. This makes

sense whenever the scene is made of smooth regions, con-

cerning the backscattering coe�cient. Gauss-Markov ran-

dom �elds [17] are both mathematically and computa-

tionally suitable for representing local interactions, par-

ticularly continuity between neighboring pixels. However,

the continuity constraint must be discarded for those sites

near the discontinuities. For this purpose we take the �rst

order noncausal CGMRF

p(f jl) = 1

Z1(l)
e
�2�
P

ij
!(�h

ij
)2�vij+!(�

v

ij
)2�hij+(1�4!))f

2

ij
;

(5)

where �vij := (1 � vij), �hij := (1 � hij), �
h
ij := (fij �

fi;j�1), �
v
ij := (fij�fi�1;j), Z1(l) is the so-called partition

function and (2�!)�1 has the meaning of the variance

of the increments �h
ij and �v

ij . Notice that continuity

constraint between sites (i; j) and (i; j � 1) is removed if

variable vij is set to one; the same is true concerning sites

(i; j), (i� 1; j) and horizontal line hij .

Parameter ! plays only a tecnical role in assuring that

density (5) is valid, and should be chosen so as to ! < 1=4;

note that for values of ! very close to 1=4 the third term

of (5) a�ects very little p(f jl), yet leads to an integrable

density.

C. Density Distribution Given the Line Field

Invoking the Bayes rule, and noting that p(gjf ; l) =

p(gjf), we obtain the joint probability density function of

(f ;g), given l, as

p(f ;gjl) = p(gjf)p(f jl): (6)

Replacing expressions (3) and (5) in (6), the joint den-

sity of (f ;g), conditioned on l, is then given by

p(f ;gjl) = 1

Z2

e
�U(f ;gjl)

; (7)

where

�U(f ;gjl) = (8)

� 2M log fij �
Mgij

f2ij

� 2�
X
ij

!�vij(�
h
ij)

2 + !�hij(�
v
ij)

2 + (1� 4!)f2ij

� logZ1(l) + c
te
: (9)



III. The Line Field

The line �eld l is not known and has to be estimated

from the observed data g. The �rst thought that comes

to mind is the maximum likelihood (ML) estimate blML.

The ML solution is however useless since it gives ĥij =

v̂ij = 1 everywhere, besides the unberable complexity in

computing the partition function Z(l) [18].

To cope with the di�culties of the ML estimate, it is

necessary to penalize somehow the creation of discontinu-

ities. This can be done by assuming that images f , l are

both random �eld with a given prior p(f ; l). This strat-

egy, or an equivalent one, has been folowed, for example,

in [4], [5], [6]. Work [18] proposes a penalizing term based

on an information theoretical viewpoint; this approach is

however equivalent to the Bayesian one.

In this paper we address the line �eld estimation from

a detection theory point of view. The basic ideia is to

design a binary decision rule that, based on the observed

di�erences �h
ij , should decide:

1. H0: discontinuity is not present (vij = 0);

2. H1: discontinuity is present (vij = 1).

The same binary decision rule should apply also to �v
ij .

Fundamental components of a decision problem are

the conditional probabilities densities p(�h
ij jH0) and

p(�h
ij jH0) (the so-called probabilistic transition mecha-

nism); given the multidimensional Gaussian density (5),

we have

p(�ij jHh
0 ) =

1p
2��0

e
�

�
2

2�2

0 (10)

p(�ij jHh
1 ) =

1p
2��1

e
�

�
2

2�2

1 ; (11)

where �0 and �1 are functions of l and !. For ! ' 1=4,

we have �20 ' �
�1. The lowest value that �1 can take

is �21 = (�(1 � 4!))�1, when all the four discontinuities

between site (ij) and its neighbors are signaled. Notice

that �21 � �
2
0 since ! ' 1=4.

Since priors p(H0) and p(H1) are unknown, we derive

the decision rule based on the Neyman-Pearson criterion

[19]. For the problem at hands, it can be shown that the

Neyman-Pearson criterion leads to the decision rule

bvij = max
vij2f0;1g

�
�(�h

ij)
2 � �vij

�
(12)

where, for the false alarm probability PF ,

� ' 2
�
2
0�

2
1

�21 � �20

log
1

PF
: (13)

For �1 � �0, the treshold (13) is, approximately, given

by � = 2�20 logP
�1
F , hence, independent of �1.

Although we have not dealt with l as a random �eld, it

is convinent to introduce the following prior

p(l) =
Z1(l)

Z3

e
��klk

: (14)

The joint probability p(f ; l) = p(f jl)p(l) is than given by

p(f ; l) =
1

Z
e
�2�
P

ij
!(�h

ij
)2�vij+!(�

v

ij
)2�hij+(1�4!))f

2

ij
�2�!�klk

:

(15)

We now note that, for a given f , the solution of

bl = argmax
l

p(f ; l) (16)

isbl = fbvij ;bhijg, where bvij is given by (12), and bhij likewise
replacing v with h.

To jointly estimate �eld f and l, we adpot the follwoing

joint maximization:

bf = argmax
f

p(f ;gjl) (17)

bl = argmax
l

p(f ; l): (18)

Maximization (17)-(18) is however equivalent to

(bf ;bl) = argmax
f ;l

p(f ; ljg) (19)

whis is exactely the MAP solution associated to density

p(f ; ljg).
Althouh we have followed a detection theory point of

view, concerning image l, the proposed methodoly can be

casted into a Baysiean perspective. This stratagem will

be fruitfull in the next solution when computing imagesbf and bl.
IV. Computing the MAP solution

According to the rationale presented above, we have to

determine

(bf ;bl)MAP = argmax
f ;l

p(f ; ljg): (20)

Computing the MAP solution leads to a huge non-

convex optimization problem, involving continous and

discrete variables, with unbearable computation burden.

Instead of determining exactly (bf ;bl)MAP , we propose a

continuation method which although not yielding the

global maximum of p(f ; ljg), delivers nearly optimum es-

timates with a feasible computational load. Aiming at

this goal, de�ne

p(f ; ljg; �) = 1

Z(�)
e
��U(f ;ljg)

: (21)

Under a statistical physical interpretation, parameter �

is the inverse of the temperature (� = 1=T ); this parame-

ter controls the prominence of the maxima of (21): when



� ! 0, all con�gurations of (f ; l) are equiprobable; when

� !1, the absolute maxima becomes progressively more

marked, and in limit the set of the absolute maxima has

probability one.

Annealing algorithms, of wich mean �eld annealing [6]

(MFA) is an example, exploit this behaviour to establish

continuation methods in which the temperature plays the

role of continuation parameter.

The proposed continuation scheme evaluates, for an in-

creasing sequence �t, with t = 1; : : : ; tm, the maximumbf (t) of p(f ;bl(t�1)jg), with respect to f , follwed by the

mean line �eld bl(t) = E�t [ljbf (t);g] (symbol E� denotes

the mean value operator computed according to density

(21)). Based on this operation, we call the algorithm ex-

pectation maximization annealing (EMA).

EMA Algorithm

Initialization: set bh(0)ij = bv(0)ij := 0:5, t = 1, �0, a,

m

DO

step 1: bf (t) = argmax
f

p(f ;bl(t�1)jg) (22)

step 2: bl(t) = E�t [ljbf (t);g] (23)

step 3: �t+1 = a�t (24)

While t � m

Due to the already pointed out behaviour of (21), it fol-

lows that

E� [ljf ;g]! argmax
l

p(f ; ljg); � !1: (25)

Therefore the stationaty points of the EMA algorithm

are, at least, local maxima of p(f ; ljg); the quality of the

maxima depends on the schedule of �t.

Maximization (22) is implemented by the iterated con-

ditional modes (ICM) method [17]. This is a coordinate-

wise ascent technique, that maximizes the posterior dis-

tribution with respect to each individual component. Af-

ter sweeping all image, the procedure is repeated until no

noticiable energy increments are obtained.

The sationary points of (9), with respect to fij , are

zeros of the fourth order polynomial

�4�
�
(1� 4!) + !(�hij + �hi+1;j + �vij + �vi;j+1)

�
f
4
ij

+4�! �fijf
3
ij � 2Mf

2
ij + 2Mgij = 0: (26)

For each site (i; j) the solution of equation (26) is chosen

to be the one root that maximizes p(f ;gjl).
Step (23) of the EMA algorithm is similar to the equiva-

lent step ofmean �eld algoritm (MFA); using the rationale

proposed in [6], one obtains

vij := E� [vij jf ;g] =
1

1 + e
2�!�f��(�h

i;j
)2g (27)

A similar result is obtained for �hij := E� [hij jf ;g], replac-
ing h by v and vice versa in (27).

The EMA algorithm di�ers from the MFA in the step

(23): while the latter evaluates mean value E�t [f jbl(t);g],
the former maximizes p(f ;bl(t)jg) with respect to f . For

Gaussian observation models both estimates are equal.

This is not, however, the present case, since the obsevation

model is not Gaussian.

Although not explicitly, function p(f ;gjl) depends on

parameter �. Since Z1(l) / �
�N2=2, we obtain from (9)

the ML estimate

b�ML =
N

2

4
P

ij !�vij(�
h
ij)

2 + !�hij(�
v
ij)

2 + 1
2
(1� 4!)f2ij

:

(28)

Therefore, if � is unknown, it can be iteratively evaluated

when implementing the EMA.

V. Experimental Results

In this section we present restoration results applied to

real SAR data. The EMA algoritm is parametrized with

m = 10 (number of temperature iterations), a = 1:259

(increasing rate of �), and PF = 10�3. Parameter � is

estimated according to (28).

Fig. 1(a) shows a SAR image of the agricultural land-

scape of Flevoland region in northern Netherlands. The

image was acquired with 12.5m of pixel spacing and has

four-looks. Part (b) displays the restored image with the

line �eld superimposed. The EMA algorithm performs

very well, as it can be perceived from the plot shown in

part (c) of Fig. 1: the squared root of intensity data

jointly with the restored image are plotted for column

300 (image has size 512� 512). The algorithm correctly

smoothes data within homogeneous regions, preserving

discontinuities between neighboring regions. and Tiago

Silva

VI. Concluding Remarks

A new restoration scheme for speckled images, acquired

by coherent imaging systems, was presented. The knowl-

edge of the statistics of the speckled images was fully

taken into account through the observation model. The

prior, a compound Gauss Markov random �eld, was used

to tackle images exhibiting piecewise homogenous regions.

A detection theoretical framework was adopted for lo-

cating the model discontinuities; more speci�cally, the

Neyman-Pearson detection criterion was used, thus allow-

ing to select a given false alarm probability in signaling

discontinuities. A restoration of a real SAR image, sug-

gests the adequacy of the proposed methodology.

Acknowledgment

The authors wishes to thank Dr. P. C. Smits, Univer-

sity of Genoa, for providing the SAR data.



a)

b)

0 100 200 300 400 500
0

100

200

c)

Fig. 1. SAR image of agricultural �elds in the Flevoland, Nether-
lands: a) original image; b) estimated image consideringM = 4
looks. The resulting segmentation is superimposed on both a)
and b); estimated values along a straight line.
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