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ABSTRACT

The paper addresses interferometric phase image estimation, that
is, the estimation of phase modulo-2π images from sinusoidal 2π-
periodic and noisy observations. These degradation mechanisms
make interferometric phase image estimation a challenging prob-
lem. We tackle this challenge by reformulating the true estimation
problem as a sparse regression in the complex domain. Following
the standard procedure in patch-based image restoration, the image
is partitioned into small overlapping square patches. BM3D algo-
rithm equipped with high order SVD (HOSVD) is used to form
complex domain frames suitable to sparse representations of the
complex-valued data. HOSVD applied to the groups of BM3D data
enables the design of spatially variant and data adaptive orthonormal
complex domain transforms. The effectiveness of the new sparse
coding based approach to interferometric phase estimation, termed
Interferometric PHASE via Block matching and High order SVD
(InPHASE-BHS) is illustrated in a series of simulation experiments
where it outperforms the state-of-the-art.

Index Terms— Phase imaging, interferometric phase estima-
tion, phase unwrapping, sparse regression, BM3D, high order SVD.

1. INTRODUCTION

In this paper, we are focussed on a wide class of phase imaging prob-
lems concerning wave field sensing, reconstruction, and manipula-
tion. In particular, a monochromatic coherent wave field defined in a
given domainX is modeled by complex amplitude u = aejϕ, where
a and ϕ, are, respectively, the amplitude and phase images of the
wave field, defined onX , and both can be time and space varying. In
modern technology and science the phase and wave field imaging are
very popular and well established technique for high-accuracy mea-
suring, recording and reconstructing 2D and 3D objects. The areas of
applications are numerous varying from astronomy and engineering
to medicine and biology (e.g., [1], [2]). In engineering the phase and
wave field sensing methods serve for nondestructive testing/control
and precise measurements (e.g., [3], [4], [5]). In medicine and biol-
ogy phase measurements are exploited in microscopy and coherent
tomography, using, for instance, Fourier phase microscopy. We wish
to mention also such developments as the phase based registration of
brain dynamics, express blood tests, measurement of distribution of
biological pigments and biological structures in body tissues, etc.
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The topic of sparse and redundant representations of images
given by intensities has attracted tremendous interest from the re-
search community in the last ten years. This interest stems from the
fundamental role that the low dimensional models play in many sig-
nal and image areas such as compression, restoration, classifications,
and design of priors and regularizers, just to name a few [6], [7].
Real world images admit a sparse representation, i.e, given an im-
age, there exists a basis consisting of a small number of items where
it can be represented exactly or approximately with a very good ac-
curacy. This ideal basis is a priory unknown and selected from a
given set of potential bases (dictionary or dictionaries). To add yet
more interest to this imaging techniques, the dictionaries yielding
sparse representations may be learned from the data they represent.
Dictionary learning is currently one of the hottest research topics in
this area [6].

Sparse imaging can be viewed as a parametric approximation of
signals with an adaptive basis selection, one of the classical topics
in statistics. The modern popularity and success of sparse imaging
are due to a wealth of new theoretical and algorithmic results, many
of then borrowed from compressive sensing (CS), a closely related
area, and the evidence that the developed formalism fits many im-
portant applications.

1.1. Related work

Recently in optics, sparse imaging in complex domain has become
a subject of multiple applications. Complex-valued signals and op-
erators are distinctive features of this development. Basic facts of
the corresponding theory, algorithms, simulations as well as exper-
imental demonstrations can be found in [8], where CS is used for
subwavelength imaging thereby overcoming the diffraction limita-
tions. In the works concerning the complex-valued data, the estima-
tion of the phase is the most challenging problem, which in the case
of sparse representations include the design of the phase dictionary.
Part of these difficulties are a direct consequence of the periodic map
linking the phase to be estimated and the observations.

Work [9] attacks CS wave field in hyperspectral imaging using a
quadratic penalization for phase used jointly with the TV penalty for
the complex-valued wave field. The results obtained are step forward
in this area. Works [10] and [11] introduce separate sparse model-
ing for the phase and the amplitude and formulates the wave field
inference in a multiobjective optimization framework. The results
obtained with proposed methodologies are state-of-the-art.

1.2. Proposed work

In this paper, we are focussed on designing adaptive synthesis and
analysis frames (termed dictionaries in sparse representation jargon)



based on the BM3D technique (Block Matching three dimensional
filtering) [12], to model the wave field. The image is partitioned into
small overlapping rectangular patches and the vector corresponding
to each patch is modeled as a sparse linear combination of vectors,
termed atoms, taken from a dictionary. For each patch, a group of
similar patches is collected from a pre-defined neighborhood and
stacked together forming a 3D array. A 3D analysis frame is then
applied to the array. The obtained spectral coefficients are hard/soft-
thresholded and the collaboratively filtered patches synthesized with
a synthesis frame. This process is repeated over the entire image and
the obtained overlapped filtered patches are aggregated in the final
image estimate. See [12] for further details.

We modify the BM3D as it is presented in [12] in two ways.
First, patching and grouping of similar patches are applied to
complex-valued variables. Second, we adopt third order HOSVD
(see, e.g., [13], [14], [15], [16]) as analysis frame. After apply-
ing HOSVD to the 3D groups, we obtain complex valued group-
wise spectrums of the complex-valued data and three orthonormal
complex-valued bases/transforms: two for each variable of 2D
patches and the third one for the length variable of the group. Thus,
instead of the fixed real-valued analysis frames originally proposed
in BM3D [12], we obtain adaptive group dependent and complex-
valued frames, where the phases and magnitude are linked in a very
special way. This new technique can be understood as a generaliza-
tion for the complex domain of our BM3D-SAPCA algorithm [17],
where SVD is used for design of 2D orthonormal bases for patches,
and also of HOSVD-BM3D proposed in [18], where 3D-SVD is
used for design of the real-valued orthonormal transforms for all
three variables in BM3D groups.

Links between BM3D technique and the design of the frames for
sparse redundant approximations are discussed in [20]. For the de-
veloped algorithms we obtain similar type complex-valued frames.
Details of this development are out of context of this paper.

Our preliminary results provide evidence that the proposed com-
plex domain sparse codings work amazingly well even without the
Wiener filtering usually used in BM3D as the second stage of the
algorithm.

1.3. Organization

The paper is organized as follows. Section 2 presents the proposed
wave field estimation algorithm including its main steps: grouping,
analysis using HOSVD, thresholding, inverse HOSVD, and aggre-
gation. Section 3 presents results with simulated data providing
evidence of the effectiveness and competitiveness of the proposed
methodology. Finally, Section 4 ends the paper with a few conclud-
ing remarks and pointers to future work.

2. ALGORITHM DEVELOPMENT

Let us assume that the observed data z : X → C, where X ⊂ Z2 is
2D grid of size N ×N , is modeled as

z(x) = a(x)ejϕ(x) + n(x),

where x ∈ X , u(x) = a(x)ejϕ(x) is the true complex valued image
and n(x) = nI(x)+jnQ(x) is complex-valued zero-mean Gaussian
circular white noise of variance σ2 (i.e., nI(x) and jnQ(x) are zero-
mean independent Gaussian random variables with variance σ2/2).
In addition, we also assume that the collection of random variables
{n(x), x ∈ X} is independent.

With the objective of formulating treatable phase imaging in-
verse problems, most approaches follow a two-step procedure: in

the first step, an estimate of the true phase in the interval [−π, π),
the so-called principal phase values, or wrapped phase, or interfer-
ometric phase, is inferred from noisy wrapped observations; in the
second step, the true phase is inferred from the interferometric phase
estimate obtained in the first step. The latter procedure is known
as phase unwrapping and corresponds to the addition of an integer
number of 2π multiples to the estimated interferometric phase [21],
[22]. In this paper, our primary objective is the estimation of the
interferometric phase from noisy observations.

Given the phase ϕ, the corresponding interferometric phase is
defined as ϕ2π =W(ϕ), whereW : R→ [−π, π), ϕ2π = [(ϕ+π)
mod 2π]− π [21]. With these definitions in place, the interferomet-
ric phase estimation problem is to estimate the image ϕ2π from the
observed image z.

Following the standard procedure in patch-based image restora-
tion, the N × N images, noisy z ≡ {z(x), x ∈ X} and true
u ≡ {u(x), x ∈ X}, are partitioned into small overlapping rectan-
gular/square patches of size N1×N2. Then, following closely [12],
we implement the following 5 steps: grouping, collaboratively filter-
ing via HOSVD transform, hard-thresholding of HOSVD spectrum,
inverse HOSVD transform, and aggregation of the overlapping patch
estimates. Compared with [12], we have two major differences: a)
the images are complex; b) the transform used to carry out the 3D fil-
tering is the HOSVD, which brings groupwise data adaptiveness not
present in [12]. In the ensuing sections, we detail the above steps.

2.1. Grouping

Let Px ≡ {z(y), y ∈ Px ⊂ X} denote a rectangular image patch
of size N1 ×N2 defined on the domain Px, where the index x ∈ X
corresponds to the upper-left pixel of the patch. Define also the set
Sr ⊂ X

Sr ≡ {x ∈ X : d(Px −Pr) ≤ τrσ2}, (1)

where d(Px −Pr) denotes the Euclidean distance between patches
Px and Pr , and τr is a parameter controlling the maximum distance
between any two patches with indices in Sr . The number of elements
of Sr is denoted by Jr .

The matched noisy patches Px, for x ∈ Sr are stacked to form
a 3D array of size N1 ×N2 × Jr , denoted by Zr .

2.2. High order SVD

The 3D groups Zr ∈ CN1×N2×Jr can be understood as a tensor of
the dimension N1 × N2 × Jr . The elements of this tensor can be
expressed as Zrl1,l2,l3with l1 ∈ {1, ..., N1}, l2 ∈ {1, ..., N2} and
l3 ∈ {1, ..., Jr}. Following a recent trend in multichannel image
restoration and in video [19], [18], we use multilinear algebra tech-
niques to treat the group Zr as a whole 3D entity and thereby taking
into account the correlation of variations inside and between patches.

There are a number of tensor decompositions of which we men-
tion TUCKER3 and PARAFAC [13]. In this paper we are focussed
on the HOSVD (TUCKER3) transform which allows to represent a
given group-tensor, Zr , in the form

Zr = Sr ×1 T1,r ×2 T2,r ×T3,r, (2)

where T1,r ∈ CN1×N1 , T2,r ∈ CN2×N2 and T3,r ∈ CNJr×NJr

are orthonormal transform matrices, Sr ∈ CN1×N2×Jr is the so-
called core tensor, and symbols ×1, ×2, and ×3 stand for the prod-
ucts of the corresponding modes (variables). The matrix transforms
T1,r , T2,r , and T3,r acts , respectively, on variables l1, l2, and l3.



2.3. Thresholding

In the standard SVD, the spectral matrix is diagonal and its diagonal
elements are singular values of the matrix. Often, a given matrix is
well approximated by a small number of singular components cor-
responding to the dominant singular values. These truncated SVD
based approximations have been extensively used in signal and im-
age processing both to carry out denoising and to obtain low rank
approximation of the original matrices.

HOSVD applied to the complex-valued data gives complex-
valued orthonormal transform matrices T1,r , T2,r , and T3,r and a
complex-valued core matrix Sr . Contrarily to the 2D case, the core
tensor S is not diagonal [13]. However, as show the experiments,
in our application, a small number of tensor components with large
energy dominate the group representation. Thus, assuming that the
smaller elements of S are linked to noise and not to essential com-
ponents of the signal, the standard elementwise hard-thresholding
filtering of Sr can be used in the form

Ŝr = hard(Sr, δr), (3)

where hard(·) is the well known hard threshold function defined as
hard(z, δr) = 0 if |z| ≤ δr and hard(z, δr) = z if |z| > δr . The no-
tation hard(Sr, δr) is to be understood in the componentwise sense.

Following [24], we select as the universal threshold δr =
ηrσ
√
2 logN1N2Jr , where ηr is an algorithm parameter selected

from experiments. After the thresholding the filtered group data
(tensor) is reconstructed using the formula (2) as

Ûr = Ŝr ×1 T1,r ×2 T2,r ×T3,r. (4)

2.4. Aggregation and wave field reconstruction.

After the thresholding step, each of the 3D groups Ûr , for r ∈ X ,
contains Jr stacked local patch estimates P̂x∈Sr of the true patches.
We remark that due to the patch overlapping and grouping process,
the set of patches contained in the 3D groups Ûr , for r ∈ X , pro-
vides an overcomplete representation of the estimated image û. In
order to compute and estimate of u, define ûr,y(x) as the estimate
of u(x) provided by patch y ∈ X if y ∈ Sr and x ∈ Py and
ûr,y(x) = 0 otherwise. With these definition in place, we compute
the estimate of u(x) as

û(x) =

∑
r∈X

∑
y∈Sr ûr,y(x)∑

r∈X
∑
y∈Sr IPy (x)

, (5)

where IPy stands for the indicator of set Py . It is worth mentioning
that the denominator of (5) is always grater of equal to 1 because
all image pixels are covered at least by a patch. In practice, for
most pixels we have

∑
r∈X

∑
y∈Sr IPy (x) > 1 because at least

one patch containing x was collaboratively used in more than one
group.

Finally, the reconstructed interferometric phase and the magni-
tude is computed as follows:

â(x) = abs(û(x)), ϕ̂2π = arg(û(x)), x ∈ X. (6)

3. RESULTS

In this section, we present a series of results using simulated data
to illustrate the competitiveness and effectiveness of the proposed
algorithm termed Interferometric PHASE via Block matching and
High order SVD (InPHASE-BHS).

Fig. 1. Absolute truncated Gaussian phase: true (a), reconstruction
(b), errors (c).
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Fig. 2. Interferometric truncated Gaussian phase: true (a), recon-
struction (b), measurements (c).

Based on the true interferometric phase ϕ2π and on the esti-
mated interferometric phase estimate ϕ̂2π , we define the peak signal-
to-noise ratio (PSNR) as

PSNR = 10 log10
4N2π2

||W(ϕ̂2π − ϕ2π)||2F
[dB],

where W is the wrapping operator. We also unwrap the estimated
interferometric phase with the PUMA algorithm [22] and obtain the
estimates of the absolute phaseϕ, in particular to evaluate the quality
and reliability of the interferometric estimate provided InPHASE-
BHS.

From the estimated phase ϕ̂2π of the true phase ϕ, define the
set of image pixels with error no larger than 2π, i.e., I := {l1, l2 :
|ϕ̂(l1, l2)− ϕ(l1, l2)| ≤ π and, based on this set, define the number
of errors larger than 2π (NELP) and the peak signal-to-noise for the
absolute phase

PSNRa = 10 log10
4N2π2

||ϕ̂I − ϕI)||2F
[dB],

where the notation ϕI stands for the restriction of ϕ to I . That is,
PSNRa is computed with respect to the set I . Because the unwrap-
ping is defined apart from a constant 2π multiple, when computing
the set I , we identify the constant 2π multiple that minimizes l. We
remark that the performance indicators NELP and PSNRa, in addi-
tion to the information they give about the quality of the estimated
true phase, are also a characterization of the denoising algorithm, as
the success of the unwrapping depends crucially on the quality of the
interferometric phase.

In all experiments the patch size is N1 = N2 = 8, the size of
groups is limited to Jr ≤ 41, and the threshold parameters (scale
parameter of for the hard-thresholding) is set to ηr = 2. InPHASE-
BHS is compared with window Fourier Transform (WFT) algorithm
using the codes publicly available 1. In WFT the windowed Fourier
transform of z is calculated and hard-thresholded. The inverse win-
dowed Fourier transform is applied in order to obtain the estimate of

1WFT-WFT-http://www.mathworks.fr/matlabcentral/fileexchange/24892



Fig. 3. Absolute shear plane phase: true (a), reconstruction (b), er-
rors (c).
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Fig. 4. Interferometric shear plane phase: true (a), reconstruction
(b), measurements (c).

y, ϕ2π and a. WFT estimates were obtained with the following pa-
rameters: size of the windows σx = σy = 4; threshold for the win-
dowed Fourier transform th = 3σ; frequency interval [−π, π]; and
sampling interval 0.1. This setting was determined experimentally
aiming at optimal performance for the set of experiments considered.
We remark that this setting yields considerable better results than
that recommenced in [23] (i.e., σx = σy = 10 and [ −π/2, π/2]).
We use WFT for comparison as the current state-of-the-art for the
interferometric phase reconstruction.

In our MATLAB implementation of InPHASE-BHS we use the
tool box tptool 090831 for HOSVD transform 2, modified version of
the BM3D algorithm 3 and the PUMA algorithm for phase unwrap-
ping 4. All the algorithms ran on a personal computer equipped with
a Core i7-3770 CPU and 8.00 GB RAM.

Figs 1 and 2 shows, respectively absolute phase and interfero-
metric phase estimation results for a truncated Gaussian phase sur-
face and where the magnitude is set to a = 1 and the noise variance
is set to σ = 0.5. Figs 3-4 show results similar to Figs 1-2 for a
shear plane. We remark that the interferometric absolute phase esti-
mation in these two examples is a an extremely hard problem owing
to the the presence of discontinuities. Any attempt to directly low
pass filtering the noisy data z would destroy interferometric phase
information coded in the z what would compromise the success of
any posterior unwrapping.

Table I shows the performance indicators for the truncated Gaus-
sian and shear planes phase surfaces and for σ ∈ {0.3, 0.5, 0.7, 0.9}
corresponding to increasing levels of difficulty from moderate to
very hard. The numerical advantage of the proposed algorithm is
about 3 dB for the truncated Gaussian phase and about 7 dB for
shear plane phase. Thus, numerically and visually the InPHASE-
BHS algorithm demonstrate a great deal of advantage over the cur-
rent state-of-the-art WFT algorithm.

Finally, Fig. 5 shows the histogram of the number of active
(used) elements of the core (spectral) tensor per group in the shear
plane surface and for σ = 0.5. The total number of the groups

2tptool-090831- http://www.tp-control.hu/index.php/About
3BM3D-http://www.cs.tut.fi/˜foi/GCF-BM3D/
4PUMA-http://www.lx.it.pt/˜bioucas/code.htm

Table 1. PSNR for interferometric and absolute phase reconstruc-
tion. The values in the brackets were obtained by WFT algorithm.

Phase σ PSNR (dB) PSNRa(dB) NELP
Gauss 0.3 43.83 (40.29) 43.83 (40.29) 0 (0)
Trunc 0.5 40.15 (36.71) 40.15 (36.71) 0 (0)

0.7 37.59 (34.26) 37.59 (34.37) 6 (10)
0.9 35.56 (32.79) 35.81 (32.79) 0 (0)

Shear 0.3 48.91 (40.67) 48.91 (40.67) 0 (0)
Plane 0.5 44.44 (37.07) 44.44 (37.07) 0 (0)

0.7 41.45 (34.13) 41.45 (34.13) 0 (0)
0.9 39.14 (33.24) 39.14 (33.24) 0 (0)
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Fig. 5. Histogram of the number of active elements of the core (spec-
tral) tensor per group in the shear plane surface and for σ = 0.5.

for the image is 2209. Given that the 3D group-tensor has size
8x8x41=2624 and that in most cases the number of the active ele-
ments in the group varies between 2 and 6, we conclude, therefore,
that the representation of the groups is extremely sparse.

4. CONCLUDING REMARKS

This paper introduced InPHASE-BHS, an effective algorithm for in-
terferometric phase image estimation, that is, the estimation of phase
modulo-2π images from sinusoidal 2π-periodic and noisy observa-
tions. The true problem was recast as the estimation of the true com-
plex valued image via sparse representation of the complex image
patches on learned HOSVD analysis/synthesis. The sparse represen-
tations, also termed sparse coding, are computed by the orthogonal
matching. These transforms are learned via HOSVD factorization of
BM3D groups. The filtering of the HOSVD spectrum is produced
using componentwise hard-thresholding. In a series of experiences
with simulated data, InPHASE-BHS produced systematically better
estimates than the state-of-the-art with a significant advantage. We
highlight the InPHASE-BHS ability to preserve the interferometric
information coded in discontinuities and areas of high phase rate,
which is the essential requirement for the success of phase unwrap-
ping.

As future work, we will research on the use of different 3D ar-
ray decomposition as well as matrix representations of 3D data with
2D arrays allowing the use of the standard SVD. The Wiener filter-
ing will be developed as an additional tool in order to improve the
phase imaging in the complex domain. Another area where we will
develop our approach concerns more complex observations mecha-
nisms in which we do not have direct access to the noisy exponential
data as it for instance for example in various optical interferometric
applications.



5. REFERENCES

[1] Principles of Adaptive Optics, 3rd ed., CRC Press, 2010.

[2] L. Wang and H. Wu, Biomedical Optics: Principles and Imag-
ing, John Wiley & Sons, Inc., 2007.

[3] Th. Kreis, Handbook of Holographic Interferometry, Wiley-
VCH, Berlin, 2005.

[4] B. Kress and P. Meyrueis, Applied Digital Optics: From Micro-
Optics to Nanooptics, John Wiley & Sons, Inc., 2009 .

[5] A. Patil and P. Rastogi, “Moving ahead with phase,” Optics and
Lasers in Engineering, vol. 45, no. 2, pp. 253-257, 2007.

[6] M. Elad, Sparse and Redundant Representations: from Theory
to Applications in Signal and Image Processing, Springer, 2010.

[7] J.-L. Starck, F. Murtagh, and J. M. Fadili, Sparse Image and Sig-
nal Processing: Wavelets, Curvelets, Morphological Diversity,
Cambridge University Press, 2010.

[8] S. Gazit, A. Szameit, Y. C. Eldar, M. Segev, ”Super-resolution
and reconstruction of sparse sub-wavelength images, ” Optics
Express vol. 17, pp. 23920–23946, 2009 .

[9] Z. Xu and E. Lam ,“Image reconstruction using spectroscopic
and hyperspectral information for compressive terahertz imag-
ing”, Journal of the Optical Society of America A, vol. 27, no. 7,
pp. 1638–1646, 2010.

[10] V. Katkovnik and J. Astola, “High-accuracy wavefield recon-
struction: decoupled inverse imaging with sparse modeling of
phase and amplitude”, Journal of the Optical Society of Amer-
ica A, vol. 29, pp. 44–54, 2012.

[11] V. Katkovnik and J. Astola, “Phase retrieval via spatial light
modulator phase modulation in 4f optical setup: numerical in-
verse imaging with sparse regularization for phase and ampli-
tude”, Journal of the Optical Society of America A, vol. 29,
pp. 105–116, 2012.

[12] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
denoising by sparse 3D transform-domain collaborative filter-
ing”, IEEE Transactions on Image Processing, vol. 16, no. 8,
pp. 2080–2095, 2007.

[13] L. De Lathauwer, B. De Moor, J. Vandewalle, “A multilinear
singular value decomposition”, SIAM Journal on Matrix Analy-
sis and Applications, vol. 21, pp. 1253–1278, 2000.

[14] L. Tucker, “Some mathematical notes on three-mode factor
analysis, Psychometrika”, vol. 31, pp. 279–311, 1966.

[15] P. Kroonenberg, J. De Leeuw, “Principal component analysis
of three-mode data by means of alternating least squares algo-
rithms”, Psychometrika, vol. 45, no. 1, pp. 69–97, 1980.

[16] J. Kruskal, “Three-way arrays: rank and uniqueness of trilinear
decomposition, with application to arithmetic complexity and
statistics”, Annals of Statistics, vol. 18, pp. 95–138, 1977.

[17] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-
adaptive DCT for high-quality denoising and deblocking of
grayscale and color images”, IEEE Transactions on Image Pro-
cessing, vol. 16, no. 5, pp. 1395–1411, 2007.

[18] A. Rajwade, A. Rangarajan and A. Banerjee, “Image denois-
ing using the higher order singular value decomposition”, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 4, pp. 849–862, 2013.

[19] A. Rajwade, A. Rangarajan, and A. Banerjee, “Using the
higher order singular value decomposition for video denoising,”
Energy Minimization Methods in Computer Vision and Pattern
Recognition, pp. 344–354, 2011

[20] A. Danielyan, V. Katkovnik, and K. Egiazarian, “ BM3D
frames and variational image deblurring, ” IEEE Transactions
on Image Processing, vol. 21, pp. 1715–1728, 2012.

[21] D. Ghiglia and M. Pritt, Two-Dimensional Phase Unwrapping:
Theory, Algorithms, and Software, Wiley, 1998.

[22] J. M. Bioucas-Dias and G. Valadão, “Phase unwrapping via
graph cuts, ” IEEE Transactions on Image Processing, vol. 16,
no. 3, pp. 698–709, 2007.

[23] Q. Kemao, Windowed Fringe Pattern Analysis, SPIE, Belling-
ham, Whashington, 2013.

[24] D. Donoho and I. Johnstone, “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455, 1993.


