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ABSTRACT

The ever increasing spectral resolution of the hyperspectral
images (HSIs) is often obtained at the cost of a decrease in
the signal-to-noise of the measurements, thus calling for ef-
fective denoising techniques. HSIs from the real world live in
low dimensional subspaces and are self-similar. The low di-
mensionality stems from the high correlation existing among
the reflectance vectors and the self-similarity is common to
images of the real world. In this paper, we exploit the above
two properties. The low dimensionality is a global property,
which enables the denoising to be formulated just with re-
spect to the subspace representation coefficients, thus greatly
improving the denoising performance and reducing the pro-
cessing computational complexity. The self-similarity is ex-
ploited via low-rank tensor factorization of non-local simi-
lar 3D-patches. The proposed factorization hinges on op-
timal shrinkage/thresholding of SVD singular value of low-
rank tensor unfoldings. As a result, the proposed method has
no parameters, apart from the noise variance. Its effective-
ness is illustrated in a comparison with state-of-the-art com-
petitors.

Index Terms— Hyperspectral image denoising, self-
similarity, 3D-patches, low-rank tensor factorization.

1. INTRODUCTION

The hyperspectral cameras measure the electromagnetic en-
ergy scattered in their instantaneous field view in hundreds or
thousands of spectral channels with remarkably high spectral
resolution, which enables material identification with pre-
cision via spectroscopic analysis [1]. Hyperspectral remote
sensing images have been widely used in countless appli-
cations, (e.g., earth observation, environmental protection
and natural disaster monitoring). However, the measurement
noise often precludes the widespread use of HSIs in precise
material identification (e.g., precision farming) applications.
Natural images are self-similar. This means that they con-
tain many similar patches at different locations or scales. This
characteristic has been recently exploited by the patch-based
image restoration methods and holds the state-of-the-art in
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Fig. 1. Pavia HSL (a) 1st eigen-image (image of the first representation
coefficient); (b) 2nd eigen-image; (c) scattergram of (a)-(b).

image denoising. Representative examples of this method-
ology in single-band images include the non-local means fil-
ter [2], the Gaussian mixture model (GMM) learned from the
noisy image [3], and the collaborative filtering of groups of
similar patches BM3D [4]. Identical ideas have been pursued
in multi-band image denoising: BM4D [5], VBM4D [6], and
MSPCA-BM3D [7] use collaborative filtering in groups of 3D
patches extracted from volumetric data, videos, multispectral
data, respectively. DHOSVD [8] applies hard threshold filter
in coefficients of higher order SVD of similar patches. In HSI
denoising, we refer NAILRMA [9] that uses tensor factoriza-
tion and FastHyDe [10] that exploits the self-similarity of the
HSIs representation coefficients in suitable subspaces.

The computational complexity of most HSI denoising
methods is very high, owing to the large number of bands,
usually on the order of hundreds. It happens, however, that
hyperspectral vectors leave, with very good approximation,
in subspaces of low dimension, compared with the number of
bands [1], and this subspace may be accurately inferred from
the observed HSIs [11]. Therefore, instead of denoising the
original HSI, we may formulate the denoising with respect
to the HSI subspace representation coefficients. This is the
research line followed in FastHyDe [10], which is, to our
knowledge, state-of-the-art and faster than the competitors.

The representation coefficients image (RCI) is formed by
a few image bands, each linked with a subspace basis vector,
hereafter termed eigen-images. FastHyDe denoise the eigen-
images independently from each other, thus implicitly assum-
ing that they are statistically independent. An informal justifi-
cation for the independent processing is that the eigen-images
are uncorrelated, owing to the use eigenvectors of the signal
correlation matrix as subspace basis. However, uncorrelation



does not imply independence as illustrated in Fig. 1, where
parts (a) and (b) show two eigen-images of the Pavia HSI and
part (c) shows the scattergram of 2D vectors formed by the
two gray levels of the same pixel in (a) and (b). The statistical
dependence is clearly observed both in the couple (a)-(b) and
in the (c). There is still, therefore, room to improve the HSI
denoising performance, by taking the statistical dependence
between the eigen-images into consideration.

1.1. Contribution

The paper exploits two main characteristics of hyperspectral
data: 1) HSIs are well approximated by low-dimensional sub-
spaces [1]; 2) HSIs are self-similar and thus RClIs are also
self-similar. The latter property is exploited via low-rank ten-
sor factorization of non-local similar 3D-patches. The pro-
posed factorization hinges on optimal shrinkage/thresholding
of SVD singular values of the low-rank tensor unfoldings. As
a result, the proposed method has no parameters, apart from
the noise variance.

The paper is organized as follows. Section 2 formulates
the problem of HSI denoising. Section 3 introduces our new
denoising algorithm step by step. Section 4 presents exper-
imental results including comparisons with the state-of-the-
art. Section 5 concludes the paper.

2. PROBLEM FORMULATION
2.1. Observation model

Let X := [x1,...X,] € R™*" denote a HSI with n spectral
vectors (the columns of X) of size n; (the number of bands
of the sensor). Under the additive noise assumption, the ob-
servation model may be written as

Y=X+N, ey

where Y, N € R™*" represent the observed HSI data and
noise, respectively.

An usual assumption in HSIs is that the columns (spec-
tral vectors) of matrix X live in a low-dimensional subspace
that may be estimated from the observed data Y with good
approximation [1, 10]. Thus, we write X = EZ, with E €
R™*F and k < ny, and E holding an orthogonal basis for
the signal subspace. Hence, the observation model (1) may
be written as

Y =EZ-+N. 2)

Hereafter, Z is termed the RCI and its rows the eigen-images.
2.2. RCI Denoising

Assuming that the noise is zero-mean Gaussian independent
and identically distributed (other covariance matrices are eas-

ily dealt with [10]) and that E was learned from observated
data Y [11], the RCI denoising problem is formulated as

= 1
Z = argmin 5| Y — BZ| % + A$(2) 3)

1
=argmin o |[ETY - Z|F + A6(Z), &)

where ||X||2. = trace(XX") is the Frobenius norm of X.
The first term on the right-hand side represents the data fi-
delity and accounts for zero-mean Gaussian i.i.d noise. The
second term is a regularizer expressing prior information tai-
lored to self-similar RCIs. We remark that (4) is equivalent
to a denoising problem where the additive noise is ETN,
thus with covariance oIy, where I}, is the identity matrix
of size k. Therefore, the noise attenuation resulting from the
subspace representation is E[|ETN|/%2]/E[|IN||%] = k/ns,
which is often of the order of tens.
The solution of the optimization (3) is

Z=U,,(E"Y), (5)

where W,,(U) = argminx 1[|U — X[|% + A\¢(X) is the
so-called denoising operator, or PO of ¢ [12]. Instead of tai-
loring ¢ to promote self-similar RCIs and then solve (4), we
adopt the powerful patch-based framework. Accordingly, Z
is decomposed into 3D-patches, which are denoised and re-
combined, yielding the estimates Z and X = EZ. The global
structure of the proposed RCI denoiser is partially inspired in
BM3D [4] and BM4D [5]. The differences concern the for-
mulation with respect to the RCI and the filtering, which is
adaptive and based on tensor factorization.

3. GLF - THE PROPOSED METHOD

We propose a HSI denoising algorithm with four steps: 1)
Subspace identification; 2) RCI grouping of 3D-patches; 3)
low-rank factorization of the grouped 3D-patches; and 4) 3D-
patch aggregation. These four steps are shown in Fig. 2.
As stated before, the general structure of the steps 2, 3, and
4 is inspired on BM4D. The differences reside in step 1),
which is not implemented in BM4D, and in the filtering step,
which in our case is based on SVD singular value threshold-
ing/shrinkage, and thus data adaptive, whereas in BM4D is
fixed and based on 3D DCT and 1D Haar wavelets. Below,
we detail each step. Given that the steps 1 and 3 correspond
to, respectively, a global matrix factorization and to local ten-
sor factorizations, we term our method Global Local Factor-
ization (GLF).

The subspace identification step is carried out, for i.i.d.
noise, via SVD of the correlation matrix Y7Y /n. For the
non i.i.d. noise, the observation noise is firstly whitened (see
[10]). Below we focus on the GLF steps 2, 3, and 4.

3.1. Grouping RCI 3D-patches

Let Y, = Z; + N, € RF*V5*VS denote 3D-patches of
the projected observed HSI ET'Y, where Z; and N/, are the
corresponding 3D-patches of the clean RCI and of the pro-
jected noise ETN, i € {1,...,n} is the index of the top-left
pixel, k is the subspace dimension and +/s is the spatial size
of the 3D-patch. Given Yg, we find, in a neighborhood of
pixel i of size 7979, a set of similar (b — 1) 3D-patches,
with indexes i1, ?2, . . ., tp—1, according to the Frobenius dis-
tance. With Y} and the (b — 1) similar patches, we build a
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Fig. 2. Flowchart of the proposed denoising algorithm GLF.

3D-tensor G? € R¥*Xs (see Fig. 2), such that GY(:, 7,:
) (Y;)(l) S kas, forjel, = (i, 11,02,y ,’ibfl), and
(Y})q) is the mode-1 matrix unfolding of tensor Y. By
construction, GY = G? + G?, where G} and G are the
tensors corresponding to the clean RCI and projected noisy
3D-patches, respectively.

3.2. Low-rank factorization of grouped 3D-patches

Due to the way GY, fori € {1,...,n}, is constructed, its sig-
nal component, G, is expected to have low-rank, whereas its
noise component, G}, is expected to have higher rank, which
might be as higher as min{ks, kb, sb} [13]. On the other
hand, the lower is the rank of the approximation the higher
is noise attenuation. Therefore, by finding the lowest rank
approximations for the 3D-tensors GY, we are maximally at-
tenuating the noise while preserving the signal.

Computing a low-rank approximations @f of G7, from
G/, able to minimize the mean square error ||éf - GZ||F,
is a hard problem [13]. On the other, in the case of ma-
trices and using results from random matrix theory [14],
the low-rank approximations for matrices in additive i.i.d.
Gaussian noise may be optimally computed, in an asymp-
totic sense. This computation is carried out via SVD,
by properly thresholding and shrinking its singular values
[14, 15]. In summary, and taking the observation model
(1) for the sake of explanation, the estimated X is given
by X = UT(Z)V”, where {U,X,V} = SVD(Y) and
T(X) = Diag[t(o1),t(o2),...,t(on,)], with t : Ry — Ry
being the shrinkage/thresholding function shown in [15],
expression (10). In this work, we exploit these results by suc-
cessively applying them to the mode-1, mode-2, and mode-3
matrix unfoldings of tensor GY € R¥*?*s a5 shown in
Algorithm 1. The spatial indexes are omitted for simplicity.

Line 3 of Algorithm 1 computes the projection coeffi-
cients of the columns Gg(’l) onto the range of Uy(:,1 : k'),
where (01, ...,0p) = diag(X%;) and k' = arg min; ¢(o;) sub-
ject to t(oy) > 0. Since matrix U(:, 1 : k') is orthogonal, the
additive noise present in é(l) has density N(0, 021,,). This
is important as it enables the subsequent application of the
same filtering thresholding results based on random matrix

'The demos of GLF can be downloaded from http://www.lx.it.pt/
~bioucas/code/GLF_demos.rar.

Algorithm 1 Successive SVD low-rank factorization'

1: Filtering in the spectral domain

2: {AUl,El} = SVD(G{,).

Gz(ll) c REx(bs)
Gy =Ui(,1: K)TGY,, G eRFxbxs j/ <
Filtering in spatial domain (intra-patch)
(U3, 25} :=SVD(G(z),  Go) € R**»)
é(g) =Us(:,1: b’)Té(g), G € R x¥'xs
Filtering in spatial domaiE (inter—Eatch)
{U3,%3,V3} :=SVD(G3)), Gz € R¥*)
Gs) = UsT(Z3) VY, G € RF'x¥'xs
10: Inverse transform to compute G~
: 6(2) =Us(;,1: b’)é@), G € RF'xbxs
12: é(l) = Ul(:, 1: k’)é(l), a € RFxbxs
13: return G* := G

b <b
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theory [14, 15]. Line 6 is similar to line 3 applied to dimen-
sion 2 of the tensor G. In Line 9, we apply not only thresh-
olding as before, but also shrinkage as defined in expressions
(7)-(10) in [15]. In lines 11 and 12 the tensor is projected
back to the original dimensions.

3.3. 3D patch aggregation

The estimated 3D-patches contained in the tensors éf, for
1 =1,...,n, are added back to their original location in the
RCI and then averaged taking into account that a given RCI
pi)iel belongs various 3D-patches. Finally, we compute X =
EZ.

4. EXPERIMENTS

A noisy hyperspectral dataset (Fig. 3) was simulated as
follows: sixteen very low signal-to-noise bands in origi-
nal Pavia University data®> were removed as the signal in
these wavelength regions is largely attenuated due to wa-
ter vapor in the atmosphere leading mostly noise. Further-
more, the remaining spectral vectors were then projected
onto the signal subspace of dimension 8 learned via per-
forming SVD on correlation matrix. The obtained HSI is

ZPavia scenes were provided by Prof. Paolo Gamba from the Telecom-
munications and Remote Sensing Laboratory, Pavia university (Italy) and can
be downloaded from http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral Remote_Sensing_Scenes.



considered the clean HSI to which Gaussian i.i.d. noise
with o € {0.02,0.04,0.06,0.08,0.10} was added to simu-
late noisy HSIs. Following the same procedure, noisy HSIs
of Washington DC Mall data® (Fig. 4) subscene were also
generated.

The denoising performance of proposed GLF is com-
pared with those of BM4D [5], NAILRMA [9], two versions
of FastHyDe [10] (namely each component of subspace rep-
resentation coefficients is denoised by BM3D [4] or LRCF
[15]), “Subspace+BM4D [5]” (meaning BM4D applied in
subspace representation coefficients). Parameters related
to non-local patch based framework, including patch-size
(N1 = 10), size of search region Ng X Ng (Ng = 79), sliding
step to process every next reference patch (Ngep = 3) , and
(maximum) cardinality of similar patch groups (N2 = 16),
are set to the same in BM3D, BM4D, LRCF and GLF. For
quantitative assessment, the peak signal-to-noise (PSNR) in-
dex and the structural similarity (SSIM) index [10] of each
band are calculated. The mean PSNR (MPSNR) and mean
SSIM (MSSIM) results of compared methods in two datasets
are reported in Tab. 1 and Tab. 2.

Table 1. Quantitative assessment of different denoising algorithms applied
to Pavia University dataset.

Index Noisyimage ~ BM4D  NAILRMA F'(‘;;%'B; F“(‘Sf{ygf) S:g;\‘/’l";‘g GLF
MPSNR 33.98 45.16 46.53 47.71 47.74 47.67 48.66
MSSIM 0.8731 09903 09921 0.9946 0.9944 0.9946 0.9956

Time - 11258 447 43 1268 211 470
MPSNR 27.96 40.98 41.80 43.40 4335 4335 4“3
MSSIM 0.6688 09767 09787 0.9870 0.9863 0.9869 0.9893

Time . 11224 298 44 1212 211 421
MPSNR 24.44 38.60 38.90 41.02 40.94 40.96 41.86
MSSIM 0.5084 09622 0.9600 0.9791 09776 09786 0.9824

Time - 11028 272 46 1277 215 400
MPSNR 21.94 36.91 36.96 39.39 39.28 39.12 40.14
MSSIM 0.3951 09472 0.9405 09714 0.9691 0.9689 0.9753

Time - 11050 25 46 1280 4 400
MPSNR 20.00 3558 35.37 38.15 38.03 38.03 38.84
MSSIM 0.3148 0.9319 09170 0.9638 0.9608 0.9617 0.9682

Time - 11187 233 49 1302 215 400

Table 2. Quantitative assessment of different denoising algorithms applied
to Washington DC Mall dataset.

FastHyDe ~ FastHyDe  Subspace

Index Noisy image BM4D NAILRMA (BM3D) (LRCF) +BM4D GLF
MPSNR 33.98 45.03 50.90 54.72 5471 53.86 5522
MSSIM 0.6382 0.8790 0.9678 0.9939 0.9938 0.9877 0.9936

Time - 15553 505 31 810 129 342
MPSNR 27.96 4111 45.73 49.92 49.93 49.23 50.43
MSSIM 0.5367 0.8119 0.9362 0.9840 0.9839 0.9766 0.9826

Time - 15471 335 31 729 129 311
MPSNR 24.44 38.90 43.18 47.29 47.28 46.82 47.84
MSSIM 0.4634 0.7658 0.9189 0.9776 0.9775 0.9724 0.9779

Time - 15275 262 31 733 128 287
MPSNR 21.94 37.37 41.14 45.23 45.25 44.95 45.76
MSSIM 0.4032 0.7307 0.8906 0.9618 0.9637 0.9589 0.9627

Time - 15318 215 30 748 126 258
MPSNR 20.00 36.17 39.50 43.75 43.75 43.46 44.13
MSSIM 0.3530 0.7045 0.8705 0.9570 0.9578 0.9526 0.9569

Time - 15325 236 31 708 128 262

The methods working in subspace representation coeffi-
cients yield better results than BM4D and NAILRMA, which
work in the original spectral space. The subspace dimension
input to the former methods was 10, instead of the 8, the true

3This data set is available from the Purdue University Research Reposi-
tory (https://engineering.purdue.edu/~biehl/MultiSpec/
hyperspectral.html)

value, which indicates robustness with respect to subspace
overestimation. Results in Tab. 1 and Tab. 2 show that GLF
yields uniformly the best performance. The quality of recon-
structed bands and spectra may also be inferred from Fig. 3
and Fig. 4.

FastHyDe (BM3D)
FastHyDe (LRCF)
= Subspace+BM4D
e

Fig. 3. Pavia University dataset of size 610 x 339 x 87 (MPSNR = 20.00
dB): (a) Noisy image (band 76), (b) A subset of noisy image, (c) A subset of
estimated image (MPSNR = 38.84 dB) by GLF, and (d) A denoised spectral
signature.

—Clean

Noisy
——8MiD
——NARLMA
FastHyDe (BM3D)
FastHyDe (LRCF)
Subspace+BMAD
GLF

Band

Fig. 4. A subset of Washington DC Mall dataset of size 400 x 307 x 191
(MPSNR = 20.00 dB): (a) Noisy image (band 61), (b) A subset of noisy
image, (c) A subset of estimated image (MPSNR = 44.13 dB) by GLF, and
(d) A denoised spectral signature.

The running time of denoisers are reported in Tab. 1 and
Tab. 2. The time comparison between BM4D and ‘Sub-
space+BM4D’ shows that denoising in subspace coefficients
highly reduces the computational complexity. FastHyDe
takes shortest time. But note that available codes of BM3D,
BM4D and LRCF are programmed in C language, and codes
of NAILRMA and proposed GLF are implemented in MAT-
LAB. GLF is supposed to be further speed up by program-
ming in C language.

5. CONCLUSIONS

We have proposed GLF, a new HSI denoiser, which repre-
sents HSIs in a low-dimensional subspaces. The denoising is
formulated in the subspace representation coefficients. Con-
sidering components of subspace representation coefficients
are self-similar and statistical dependent, they are jointly de-
noised in a non-local patch-based framework. Furthermore,
a new filter based on low-rank approximation is devised for
filtering noisy 3D-patches. In a comparison with the state-of-
the-art GLF uniformly outperformed the competitors.
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