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Abstract—This paper proposes a novel Bayesian stochastic
filtering approach for the simultaneous phase drift estimation
and symbol detection in digital communications. The posterior
density of the phase drift is propagated in a recursive fashion by
implementing a prediction and a filtering step in each iteration.
The prediction step is supported on a random walk model playing
the role of prior for the phase drift process; the filtering step is
supported on a Gaussian sum approximation for the probability
density of the current observation, i.e., the so-called sensor factor.
The Gaussian sum approximation turns out to be the key element
allowing to derive a fast and efficient stochastic filter, which
otherwise would be very hard to compute. The detection of the
digital symbols is then carried out based on the inferred statistics
of the phase drift. The effectiveness of the proposed method is
illustrated for BPSK signals in the presence of strong phase drift.

Index Terms—Stochastic recursive filtering; Gaussian sum
filter; phase drift; state estimation; burst communications.

I. INTRODUCTION

In digital communications, the lack of phase synchroniza-
tion between the receiver oscillator and the received signal
often renders communication systems useless. Estimating the
phase drift, which includes phase noise due to oscillators
instabilities and frequency offset caused by Doppler effect
and/or poor frequency alignment between oscillators, is of
utmost relevance.

Under a Bayesian perspective, the phase drift estimation
from the observation of the channel output amounts to deter-
mining the posterior probability density function (pdf) of the
state (i.e., the current phase drift) conditioned on all measure-
ment data, thus providing the means to compute an optimal
estimate with respect to any criterion, e.g., minimum mean-
squared error (MMSE). The determination of the posterior pdf
is usually extremely difficult. A remarkable exception occurs
when the state and the measurement equations are linear and
the noise is additive and Gaussian distributed. In this case,
the posterior pdf is efficiently computed by the well known
Kalman filter.

In this paper, we introduce a stochastic recursive filter to
propagate the posterior pdf based on two central features:

1) the phase drift is modeled by a random walk model
playing the role of prior.

2) the sensor factor is approximated by a sum of Gaussian
functions.

These two features allow to exploit well known properties
of Gaussian functions to derive an efficient and effective
stochastic filter, in a vein similar to that of the Gaussian sum
filter introduced in [1]. The detection of the digital symbols is
then carried out based on the inferred statistics of the phase
drift.

To illustrate the effectiveness of the proposed filter, we
compare the performance results obtained when modeling
the pdf by a weighted sum of Gaussian functions with that
achieved using a single Gaussian. We assume perfect channel
estimation and M -phase shift-keying (M -PSK) modulation
with perfect symbol synchronization.

The paper is organized in the following manner. Section
II establishes the models for the channel output and for the
phase drift. Section III defines the Gaussian sum filter, with
subsections dedicated to the Gaussian sum approximation, the
Gaussian fitting of the sensor factor, the evaluation of the
filtering and prediction densities, the filter initialization, and
the implementation aspects of the algorithm. Section IV is
devoted to the symbol detection, while Section V presents the
performance results and Sec. VI concludes the paper.

II. SYSTEM MODEL

Consider the transmission of the BPSK symbols {sn =
ejϕn ;n = 0, . . . , N −1}, where ϕn ∈ {0, π}, over an additive
white Gaussian noise (AWGN) in the presence of phase drift.
The received signal at the detector output is given by

yn = ej(ϕn+θn) + vn; n = 0, . . . , N − 1. (1)

In (1), {vn;n = 0, . . . , N−1} is a sequence of complex zero-
mean white Gaussian noise random variables with uncorrelated
real and imaginary components each one with variance σ2

v =
N0/(2Eb), where Eb stands for the bit energy.

The phase drift θn is modeled by a random walk process
described by the linear stochastic difference equation

θn = θn−1 + wn; n = 0, . . . , N − 1, (2)

where {wn;n = 0, . . . , N−1} is a sequence of real zero-mean
independent Gaussian random variables with variance σ2

w.



The noise sequences {vn;n = 0, . . . , N − 1} and {wn;n =
0, . . . , N − 1} are assumed to be mutually independent and
independent of the initial state θ−1. The pdfs of vn and wn

are denoted by pv and pw, respectively.

A. Optimal Symbol Detection

In our setup, we aim at detecting the nth symbol based
on the set of observations Yn = [y0, y1, . . . , yn]. According
to the Bayesian paradigm, the posterior density p(ϕn|Yn)
summarizes all the statistical information about ϕn, given the
observed data Yn. In this work, we compute the maximum a
posteriori probability (MAP) estimate, which minimizes the
probability of error.

The MAP estimate of ϕn is given by

ϕ̂n ∈ arg max
ϕn∈{0,π}

p(ϕn|Yn)

= arg max
ϕn∈{0,π}

p(ϕn, Yn).
(3)

The joint density p(ϕn, Yn) can be obtained as

p(ϕn, Yn) =

∫ +∞

−∞
p(yn, ϕn, θn, Yn−1) dθn

= p(ϕn)

∫ +∞

−∞
p(yn|ϕn, θn)p(θn|Yn−1)p(Yn−1) dθn,

(4)

where we have used repeatedly the Bayes law and the facts
that p(yn|ϕn, θn, Yn−1) = p(yn|ϕn, θn) and ϕn is independent
of (θn, Yn−1). Therefore, the main ingredients to compute the
MAP estimate (3) are the sensor factor p(yn|ϕn, θn) and the
posterior p(θn|Yn−1). The former is easily obtained from the
observation model (1). The computation of the latter is a very
hard problem owing to the Markovian statistical dependencies
introduced by the random walk model (2) on the phase drift
random sequence θn. In the next section, we introduce a
stochastic recursive filtering approach allowing an efficient
computation of p(θn|Yn−1) from the computational point of
view.

B. Bayesian Filtering

The conditional density function p(θn|Yn) summarizes
all required information to derive any estimate of the phase
drift θ̂n and can be determined recursively by the following
equations [2]:

Prediction step

p(θn|Yn−1) =

∫ +∞

−∞
p(θn|θn−1)p(θn−1|Yn−1) dθn−1, (5)

where p(θn|θn−1) is the so-called transition pdf.
Filtering step

p(θn|Yn) =
p(yn|θn)p(θn|Yn−1)∫ +∞

−∞ p(yn|θn)p(θn|Yn−1) dθn
(6)

where the pdf p(yn|θn) is the so-called sensor factor.
From the random walk model (2), we have

p(θn|θn−1) = pw(θn − θn−1), (7)

implying that the operation in (5) is a convolution between
pw(·) and p(·|Yn−1) evaluated at θn.

The integral in the denominator of (6) is just a normalizing
factor and, in certain cases, it need not to be evaluated.

The initial conditional density function p(θ0|Y−1) is as-
sumed to be

p(θ0|Y−1) = p(θ0) (8)

with p(θ0) known.
Our approach for the non-linear problem is to approximate

the non-Gaussian function p(yn|θn) by a weighted sum of
Gaussian functions such that (5) and (6) can be computed
analytically. The Gaussian sum filter approach was considered,
for instance, in [1], [3]–[5].

III. GAUSSIAN SUM FILTER

A. Gaussian Fitting of the Sensor Factor

From (1) and the statistics of vn, the joint phase drift and
symbol likelihood function is given by [6]

p(yn|θn, ϕn) = pv

(
yn − ej(ϕn+θn)

)
=

1

2πσ2
v

e
− |yn−ej(θn+ϕn)|2

2σ2
v ,

(9)
which is a periodic (non-Gaussian) function of θn and ϕn.
Expanding the squared modulus in (9) leads to∣∣∣yn − ej(θn+ϕn)

∣∣∣2 = 1 + |yn|2 − 2|yn| cos(θn + ϕn − ηn),

(10)

where ηn = arg{yn} denotes the argument of yn. By using
(10) in (9) we have

p(yn|θn, ϕn) =
1

2πσ2
v

e−γneβn cos(θn+ϕn−ηn), (11)

where

γn =
1 + |yn|2

2σ2
v

, (12)

and

βn =
|yn|
σ2
v

. (13)

Assuming equiprobable transmitted symbols, i.e.,
Prob(ϕn = 0) = Prob(ϕn = π) = 1/2, the marginal
pdf p(yn|θn) is given by

p(yn|θn) =
1

2

∫ +∞

−∞
p(yn|θn, ϕn)[δ(ϕn) + δ(ϕn − π)] dϕn =

=
1

4πσ2
v

e−γn

(
eβn cos(ηn−θn) + e−βn cos(ηn−θn)

)
.

(14)

The solid curve of Fig. 1 plots the sensor factor for Eb/N0 =
6 dB and θn ∈ [η− 3

2π, η+
3
2π]. We stress that the sensor factor,

quite often termed the likelihood function, is not a density; i.e.,
p(yn|θn) as a function of θn does not have to integrate to one,
as θn is the conditioning variable. In our case, the sensor factor
is not even integrable, as it is periodic.
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Fig. 1. Sensor factor p(yn|θn) for Eb/N0 = 1/(2σ2
v) = 6 dB, and the

respective approximation.

It was shown in [7] that periodic replicas with the formal
structure (14) are well approximated by Gaussian shapes. That
is

p(yn|θn) ≃
∑
j∈Z

κN (θn − (ηn + jπ), Rn) (15)

where Z denotes the integers, κ is a constant, and Rn is
chosen to minimize a measure of the approximation error
(more on this ahead). The goodness of the approximation (15)
is illustrated in Fig. 1 by the dashed line.

B. Computation of the Filtering Density

The Gaussian sum filter approach considers that both the
prediction density function (5) and the filtering density func-
tion (6) are weighted sums of Gaussian functions. Therefore,
the prediction density is given by

p(θn|Yn−1) =
∑
i∈Z

α(i)
n N

(
θn − θ̂

(i)
n|n−1, Pn|n−1

)
, (16)

with means θ̂
(i)
n|n−1 and common (justification given ahead)

variance Pn|n−1. The filtering density is given by

p(θn|Yn) =
∑
i∈Z

∑
j∈Z

γ(i,j)
n N (θn − θ̂

(i,j)
n|n , Pn|n) (17)

where, invoking the operation of multiplication in (6), results
(see [3] for details)

γ(i,j)
n = α(i)

n κN (ηn + jπ − θ̂
(i)
n|n−1, Rn + Pn|n−1), (18)

θ̂
(i,j)
n|n =

1

Rn + Pn|n−1
[(ηn + jπ)Pn|n−1 + θ̂

(i)
n|n−1Rn], (19)

Pn|n = (R−1
n + P−1

n|n−1)
−1. (20)

The sum on the right hand side of (17) contains an infinite
number of modes. In order to maintain the computational
efficiency of the Gaussian sum filter, one must keep the num-
ber of modes as small as possible without losing significant
information. A number of techniques have been developed to

restrain the number of terms in a Gaussian mixture below a
maximum value (see, e.g., [3], [8], [9]). For its simplicity, our
preferred component reduction procedure is to preserve the p
modes in the Gaussian mixture (17) with the largest weights
and discard the remaining (pruning procedure). The resulting
filtering density is

p(θn|Yn) =

p∑
i=1

λ(i)
n N (θn − θ̂

(i)
n|n, Pn|n), (21)

where the weights λ(i)
n are obtained from the p largest weights

γ
(i,j)
n , given in (18), by a re-normalization operation such

that
∑p

i=1 λ
(i)
n = 1. Let the p largest weights be denoted as

γ
(1)
n , . . . , γ

(p)
n . Then λ

(i)
n = γ

(i)
n /

∑p
i=1 γ

(i)
n .

The Gaussian sum method is used to approximate p(θn|Yn)
such that the convolution in (5) and the products in (6) are
determined in a simple manner, also allowing the MMSE
estimate of θn to be computed analytically and efficiently in
the filtering step as θ̂n =

∑p
i=1 λ

(i)
n θ̂

(i)
n|n.

C. Computation of the Prediction Density
As the filtering density p(θn|Yn) in (21) is a Gaussian

sum, the prediction density p(θn+1|Yn), resulting from the
convolution of Gaussian functions, is also a Gaussian sum
with weights (see (16)) α

(i)
n+1 = λ

(i)
n , means θ̂

(i)
n+1|n = θ̂

(i)
n|n,

and variance Pn+1|n = Pn|n + σ2
w.

The presence of a carrier frequency offset ∆f can be
accommodated by assuming a non-zero mean value for the
noise wn present in the random walk model (2) given by
E[wn] = 2π∆fT/N , where T is the bit duration. However,
because we often do not have a precise estimate for the carrier
frequency offset, we prefer modeling carrier frequency offsets
by keeping the mean value of wn set to zero and increasing its
variance by (2π∆fT/N)2. Although this is clearly a model
mismatch, we will give evidence that the proposed stochastic
filter is robust to it.

D. Implementation Aspects
An initial phase acquisition step is assumed to occur, e.g.,

employing one of the techniques suggested in [10] or the
references therein, and therefore, for synchronization purposes,
the phase drift for the first symbol is assumed to be θ0 = 0.
As a consequence, the initialization of the recursive algorithm
is done by defining a filtering density with p modes and means

θ̂
(i)
0|0 = 0, i = 1, . . . , p, (22)

weights

λ
(i)
0 =

{
1, i = 1

0, otherwise
, i = 1, . . . , p, (23)

and variance P0|0 = R0. In the following iterations (n ≥ 1)
the general propagation algorithm is applied.

To determine the variance Rn of the Gaussian modes in
(15) we adopt the solution proposed in [7] which consists of
minimizing the Kullback-Leibler distance between the initial
pdf and the pdf used for replacement. Alternatively, we may
use the approximation Rn ≈ 1

βn
= σ2

v/|yn| which is especially
tight for βn ≥ 10.
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IV. MAP SYMBOL DETECTION

Let us consider that p(θn|Yn−1) has most of its probability
mass concentrated in a small interval centered at θ̂n|n−1. We
have then p(θn|Yn−1) ≃ δ(θn − θ̂n|n−1). Using this density
in (4), we get

p(ϕn|Yn) ∝ p(ϕn)p(yn|ϕn, θ̂n|n−1). (24)

Assuming that Prob(ϕn = 0) = Prob(ϕn = π) = 1/2, i.e.,
the symbols are equiprobable, the MAP estimate is given by

ϕ̂n =

{
0, cos(ηn − θ̂n|n−1) > 0

π, cos(ηn − θ̂n|n−1) ≤ 0
; n = 0, . . . , N − 1.

(25)

V. PERFORMANCE RESULTS

Considering blocks with N = 512 BPSK data symbols, we
depict in Fig. 2 the BER performance of the proposed receiver
for several values of Eb/N0. Two scenarios are considered.
One in which the phase drift is a random walk process
and another where, besides the random walk, there is carrier
frequency offset. The parameters are σw = {0.05, 0.15} rad
and ∆fT = {0, 8}. The case ∆fT = 8 illustrates a possible
scenario where the relative transmitter-receiver motion expe-
riences Doppler frequency shift and/or the oscillators exhibit
poor frequency alignment. Notice that the carrier frequency
offset is not known and that the only modification in our
algorithm is to include a constant term in the evaluation of
the variance of the prediction density. In fact, although derived
for phase trajectories defined by (2), our algorithm is able to
estimate the phase errors given as

θn = 2π∆fnT/N+
n∑

k=1

wk = θn−1+wn+2π∆fT/N. (26)

This proves the robustness of the algorithm in the presence of
carrier frequency offset.

Regarding the operation of the algorithm, two implemen-
tations are considered; one with p = 1 and another with
p = 3 Gaussian modes. For comparison we also depict the
curve of the theoretical BER for a BPSK constellation [11].
For σw = 0.05 rad and ∆fT = 0 the curves for p = 1 and
p = 3 display the same results. The estimator performs equally
well and the curves are very close to the theoretical bit error
probability. If we add carrier frequency offset the performance
of the estimator degrades but, nevertheless, it still performs
well. Our simulations have shown that, with ∆fT = 8, if a
compensation procedure is not undertaken, the BER will be
0.5. Also notable is the fact that, in the presence of carrier
frequency offset the performance of the estimator, even for
small values of σw, is better with p = 3 than with p = 1. For
larger values of σw we must always consider p = 3.

VI. CONCLUSIONS

We proposed a Bayesian solution for the problem of simul-
taneous bit detection and phase drift estimation by approxi-
mating the posterior non-Gaussian probability density function
of the phase by a weighted sum of Gaussian functions.
Additionally, we compare the performance results obtained
when modeling the density function by a weighted sum
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Fig. 2. BER versus Eb/N0 for p = 1 and p = 3 Gaussian modes in the
presence of phase drift with carrier frequency offset.

of Gaussian functions with those obtained using a single
Gaussian. Moreover, through simulation results with BPSK
signaling we observed that the proposed algorithm presents
outstanding results, even in the presence of carrier frequency
offset, for perfect channel estimation and symbol synchroniza-
tion. The generalization of the algorithm to M -PSK signals,
with M > 2, is straightforward, with changes affecting mainly
the symbol detection scheme.
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