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Abstract—In this letter, we propose a multinomial-logistic-
regression method for pixelwise hyperspectral classification. The
feature vectors are formed by the energy of the spectral vectors
projected on class-indexed subspaces. In this way, we model not
only the linear mixing process that is often present in the hy-
perspectral measurement process but also the nonlinearities that
are separable in the feature space defined by the aforementioned
feature vectors. Our experimental results have been conducted
using both simulated and real hyperspectral data sets, which
are collected using NASA’s Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) and the Reflective Optics System Imaging
Spectrographic (ROSIS) system. These results indicate that the
proposed method provides competitive results in comparison with
other state-of-the-art approaches.

Index Terms—Hyperspectral imaging, pixelwise classification,
subspace multinomial logistic regression (MLR).

I. INTRODUCTION

HYPERSPECTRAL sensors provide images in hundreds
of continuous (narrow) spectral bands that can be used

to discriminate different objects on the earth surface [1]. Re-
cently, multinomial logistic regression (MLR) has shown good
performance in hyperspectral image classification. MLR is a
discriminative approach that directly models posterior class
distributions [2]–[5]. Recent examples on the use of MLR in
hyperspectral classification problems can be found in [6]–[9].
In this type of classifiers, we highlight the MLRsub method [5]
that was specifically designed with the linear spectral mixing
process in mind. In the MLRsub method, the classification of a
pixel (with its associated spectral vector in a given class) cor-
responds to the largest projection of that vector onto the class-
indexed subspaces. In this letter, and in order to model possible
nonlinear mixing effects, we allow the MLR regression vectors
to define arbitrary linear combinations of the projections of
the subspaces learned from the training set. In comparison
with the work in [5], which originally proposed MLRsub, the
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proposed subspace-based MLR (MLRsubmod) introduces two
main contributions.

• First, the newly developed method uses the projection
of the original spectral vectors onto class-dependent sub-
spaces in order to enhance class separability. At this point,
we can mention two main reasons that support the use
of these projections. One reason is that the hyperspectral
measurements are often linear mixtures of the endmem-
bers’ signatures, and then, each class corresponds to a
given subset of the endmembers, thus defining a subspace.
The other reason is that we claim that a relevant number of
nonlinear phenomena present in the hyperspectral image
yields spectral vectors that are linearly separable in the
feature space defined by the class-indexed subspaces.

• Second, the proposed method consists of including the
class prior probabilities in the proposed model. This is
expected to introduce advantages in scenarios in which the
number of training samples per class depends on the area
covered by that particular class in the scene.

The remainder of this letter is structured as follows.
Section II describes the newly proposed subspace-based MLR
method. Section III presents experimental results using both
simulated and real hyperspectral scenes. The numerical results
illustrate that the performance of the MLRsub classification
algorithm can be significantly improved by using the proposed
subspace-based projection feature vectors, and it incorporates
the prior information from the known class proportions. Finally,
Section IV concludes this letter with some remarks.

II. CLASS-DEPENDENT SUBSPACE-BASED

MLR (MLRSUBmod)

Let x ≡ {x1, x2, . . . ,xn} be the input hyperspectral image,
where n is the number of pixels in x; xi ∈ R

d denotes a spectral
vector associated with an image pixel i, and d is the number of
spectral bands. Let y ≡ (y1, . . . , yn) denote an image of class
labels, and yi ∈ {1, . . . ,K}, where K is the number of classes.
In [5], it was shown that the posterior class density p(yi|xi)
can be computed in the MLR framework by using the nonlinear
functions φ(k)(xi) = [‖xi‖2, ‖xT

i U
(k)‖2]T , where U(k) is a

set of r(k)-dimensional orthonormal-basis vectors for the sub-
space associated with classes k = 1, 2, . . . ,K. Following [5],
in this letter, U(k) is computed as U(k) = {e(k)1 , . . . , e

(k)

r(k)},

whereas E(k) = {e(k)1 , . . . , e
(k)
d } is the eigenvector matrix

computed from correlation matrix R(k) = E(k)Λ(k)E(k)T .
Here, Λ is the eigenvalue matrix with decreasing magnitude.
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In this letter, following [5], we use a subspace projection
accounting for 99.9% of the original spectral information in or-
der to determine the size of U(k). As shown in [5], the MLRsub
method aims to deal with the problems defined by the linear
mixing model. However, nonlinear mixing is very common in
real scenarios. We claim that a number of nonlinearities present
in the hyperspectral mixing process are, approximately, linearly
separable in the feature space defined by nonlinear functions
φ(xi) = [‖xi‖2, ‖xT

i U
(1)‖2, . . . , ‖xT

i U
(K)‖2]T , i.e., the vec-

tor features containing as components the energy of the pro-
jections on all class subspaces plus the energy of the original
vector. This claim will be supported in Section III with the
experimental results.

In this letter, we use a nonlinear vector of regression func-
tions φ(xi) = [‖xi‖2, ‖xT

i U
(1)‖2, . . . , ‖xT

i U
(K)‖2]T to com-

pute the posterior class density p(yi|xi) for a given class k as
follows:

p(yi = k|xi, ω) =
exp

(
ω(k)Tφ(xi)

)
p(yi = k)∑K

l=1 exp
(
ω(l)Tφ(xi)

)
p(yi = l)

(1)

where, by assuming p(yi = k) = 1/K, we exactly have an
MLR classifier. However, in order to introduce the available
prior knowledge, here, we include the estimation of the occur-
rence probabilities of each land-cover class from the training
set. Let Nk ∈ {N1, . . . , NK} be the number of training samples
for class k. The prior probability for class k may be computed
as p(yi = k) = Nk/

∑K
l=1 Nl [10].

Notice that, if the data live in a class-dependent subspace de-
fined by the linear mixing model, the proposed approach (1) can
be recovered by the conventional MLRsub in [5] by a setting of
regressing parameters ω(k) = [ω1, 0, . . . , 0, ωk+1, 0, . . . , 0]

T .
Another important aspect is that, if the data do not strictly live in
a linear subspace and follow a nonlinear mixing model (which
is a quite common scenario in practice), then as supported
in Section III, the proposed MLRsubmod approach is able
to separate the classes in the newly proposed feature space.
Therefore, the proposed approach has the ability to handle both
linear and nonlinear mixtures, which is the main contribution
of this letter. However, further work should be conducted in
order to fully analyze how the assumed dependence between
the classes handles the nonlinearity of the mixtures.

Under the present setup, we compute ω in (1) by calculating
the maximum a posteriori estimate as follows:

ω̂ = arg max
ω

�(ω) + log p(ω) (2)

where �(ω) ≡ log
∏N

i=1 p(yi|xi, ω) is the log-likelihood func-
tion (N =

∑K
l=1 Nl is the total number of samples in the

training set). Similar to the MLRsub algorithm in [5], p(ω) ∝
e−β/2‖ω‖2 (β ≥ 0 is a regularization parameter controlling the
weight of the prior) is a quadratic prior on ω that is intended to
cope with difficulties in learning regression vector ω associated
with bad or ill conditioning of the underlying inverse problem.

The optimization problem in (2) is convex, although term
�(ω) is nonquadratic. Following the previous work in [5], [11],
and [12], we approximate this term by a quadratic lower bound,

Fig. 1. Simulated hyperspectral image comprising eight different classes.

which leads to a sequence of quadratic problems that are easier
to solve than the original problem.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the proposed class-subspace-
based MLR by using both simulated and real hyperspectral
images. For the parameter settings, we follow the indications
given in [5] and include a comparison with the MLRsub in
[5]. It should be noted that, in this letter, we only compare our
MLRsubmod with MLRsub. The main reason is that the pro-
posed subspace-based features yield better performance than
those used in MLRsub. Another reason is that, in [5], there
is already a comprehensive comparison with state-of-the-art
methods.

A. Experiments With Simulated Data

In order to have an assessment in a fully controlled envi-
ronment, we first used a simulated data set to evaluate the
capability of the proposed approach for handling nonlinear
mixtures. For this purpose, we generated a synthetic image with
50 × 50 samples for each of the eight classes simulated (see
Fig. 1). We considered the following nonlinear mixture model
for generating each simulated mixed pixel in class k:

x
(k)
i =

Ml∑
j=0

m(k+j)γj + α

Mnl∏
j=0

m(k+j) + ni (3)

where m(l), l = 1, . . . , 10, are different spectral signatures
that were randomly selected from the U.S. Geological Survey
digital spectral library,1 γj and α are the parameters controlling
the impact of the linear and nonlinear terms, respectively, and∑Ml

j=0 γj = 1− α. In our simulation, γ0 is the abundance of
the objective class, i.e.,. the class that received the maximum
abundance value in the simulation and that will define the label
for the considered class. To have a comprehensive comparison
using both linear and nonlinear mixtures, we used α = 0 for
classes {1, 3, 5, 7}, which means that these four classes stay
in a linear subspace, and we included nonlinear mixtures for
classes {2, 4, 6, 8}. Furthermore, for each pixel, we randomly
chose a value over {1, 2} for parameters Ml and Mnl, which
means that we set the number of mixtures in each pixel to 2
or 3. Pure spectral signatures are considered for the first four

1http://speclab.cr.usgs.gov/spectral-lib.html
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TABLE I
OVERALL CLASSIFICATION ACCURACY (IN PERCENTAGE) FOR THE DIFFERENT VALUES OF PARAMETER α (WITH THE NOISE STANDARD

DEVIATION SET TO σ = 0.4) OBTAINED BY THE MLRsub AND MLRsubmod METHODS FOR THE SIMULATED DATA SET IN FIG. 1

Fig. 2. Ground truth and classification results for the AVIRIS Indian Pines data set using 1076 training samples.

Fig. 3. Ground truth and classification results obtained for the ROSIS Pavia University data set with 781 training samples.

classes, whereas the remaining classes are entirely made up of
mixed pixels (see Table I). Finally, zero-mean Gaussian noise
with covariance σ2I, i.e., ni ∼ N (0, σ2I), was added to the
generated synthetic image. Here, the noise standard deviation
is σ = 0.4.

The classification experiments using the simulated data set
have been conducted as follows. For each class, we randomly
chose 250 samples from the available ground truth for training,
and the remaining samples were used for testing. Table I
tabulates the accuracy obtained by the proposed method as a
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TABLE II
OA, AA, AND κ STATISTIC AND INDIVIDUAL CLASSIFICATION ACCURACY (IN PERCENTAGE) OBTAINED FOR THE AVIRIS INDIAN PINES IMAGE

function of the value of parameter α that controls the impact
of the nonlinear features, in comparison with the conventional
MLRsub, and all the values of the overall accuracy (OA) re-
ported in this section correspond to the average of the accuracy
values obtained after 100 Monte Carlo runs. From the results
reported in Table I, we can conclude that the results achieved
by the proposed MLRsubmod algorithm are superior to those
obtained by the MLRsub algorithm for all the considered values
of parameter α. However, the improvement is more significant
for low values of α. This is because, when parameter α in-
creases, the value of γ0 (i.e., the dominant class) decreases.
If we compare the OA obtained for linear classes {1, 3, 5,
7} with regard to the OA obtained for nonlinear classes {2,
4, 6, 8}, we can observe that the proposed approach has very
good improvements. This indicates that the proposed method
can efficiently handle nonlinear mixtures. Furthermore, if we
compare the OA obtained for classes {1, 2, 3, 4} (which contain
pure pixels) with the OA obtained for classes {5, 6, 7, 8} (which
contain mixed pixels), it is apparent that the improvement in OA
is more significant for the classes without pure pixels. In other
words, the proposed method can better manage mixed pixels
instead of pure pixels as mixed pixels stay in the boundaries
of the subspaces so that they are more difficult for subspace
identification.

B. Experiments With Real Hyperspectral Data

Two different real hyperspectral images with different char-
acteristics and contexts (one agricultural area and one urban
area, with different spectral and spatial resolutions) were used
in our experiments.

1) The AVIRIS Indian Pines scene was recorded over North-
western Indiana in June 1992. The image has 145 ×
145 pixels, with a spatial resolution of 20 m per pixel and
200 spectral channels. The original ground truth contains

16 classes of different types of crops, whereas in this let-
ter, we discarded four classes, i.e., Alfalfa, grass/pasture
mowed, oats, and stone-steel towers, which contain less
than 100 labeled pixels. The considered ground-truth map
is shown in Fig. 2(a).

2) The Pavia University image was recorded by the Re-
flective Optics System Imaging Spectrographic (ROSIS)
sensor over the urban area of Pavia, Italy. The size of the
image is 610 × 340 pixels, with 103 spectral channels
and a spatial resolution of 1.3 m per pixel. The reference
data contain nine classes of interest, which are shown in
Fig. 3(a). The original training and test sets are composed
of 3921 and 40 002 pixels, respectively.

In our experiments with real hyperspectral scenes, we de-
signed two strategies to choose the training set. In our first
strategy, we choose a constant number of training samples per
class. In the second strategy, we choose a number of training
samples per class that is proportional to the number of available
labeled samples. The classification accuracy reported for the
real scenes was obtained after 30 Monte Carlo runs.

Tables II and III summarize the OA, the average accuracy
(AA), kappa coefficient κ, and the class-specific accuracy
values for the two considered images, respectively. It is no-
ticeable that the MLRsubmod, which includes class-dependent
information and integrates the prior distribution of classes in
the scene, significantly improves the classification accuracy
provided by the MLRsub. For instance, Table II shows that the
proposed MLRsubmod approach obtained an OA of 76.71% and
an AA of 74.97%, which contrast with an OA of 73.51% and
an AA of 68.30% achieved by the MLRsub approach in the
AVIRIS Indian Pines scene. Furthermore, the results reported
in Table III reveal more significant improvements for the Pavia
University image. Using the proposed method, the OA and the
AA are improved by 5.57% and 8.09%, respectively, compared
with the MLRsub.
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TABLE III
OA, AA, AND κ STATISTIC AND INDIVIDUAL CLASSIFICATION ACCURACY (IN PERCENTAGE) OBTAINED FOR THE ROSIS PAVIA UNIVERSITY IMAGE

If we focus on the results reported for the classes in which
a constant number of training samples is selected for all
classes, we can see that the class-specific accuracy values for
MLRsubmod are higher compared with those of MLRsub in
most of the classes. This reveals that the proposed projection-
based feature vectors provide a more consistent estimation of
the posterior probability distributions. For illustrative purposes,
some classification maps are shown in Figs. 2 and 3. These
maps correspond to one of the 30 Monte Carlo runs conduced
for each scene. Effective results can be observed in these
figures.

IV. CONCLUSION

In this letter, we have developed a subspace-based MLR
method for pixelwise hyperspectral classification. The proposed
approach assumes that the observed vectors live in subspaces
constructed by the classes and represents an extension of a pre-
vious methodology in which class independence was assumed.
An important contribution of the proposed approach lies in its
ability to deal with both linear and nonlinear mixtures. Our
experimental results, which are conducted using both simu-
lated and real hyperspectral data sets collected using NASA’s
AVIRIS and the ROSIS system, indicate that the proposed algo-
rithm accurately performs in different hyperspectral image clas-
sification scenarios, particularly with limited training samples.
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