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Abstract—In image deconvolution problems, the diagonaliza-
tion of the underlying operators by means of the FFT usually
yields very large speedups. When there are incomplete obser-
vations (e.g., in the case of unknown boundaries), standard
deconvolution techniques normally involve non-diagonalizable
operators, resulting in rather slow methods, or, otherwise,
use inexact convolution models, resulting in the occurrence of
artifacts in the enhanced images. In this paper, we propose
a new deconvolution framework for images with incomplete
observations that allows us to work with diagonalized convolution
operators, and therefore is very fast. We iteratively alternate
the estimation of the unknown pixels and of the deconvolved
image, using, e.g., an FFT-based deconvolution method. This
framework is an efficient, high-quality alternative to existing
methods of dealing with the image boundaries, such as edge
tapering. It can be used with any fast deconvolution method. We
give an example in which a state-of-the-art method that assumes
periodic boundary conditions is extended, through the use of
this framework, to unknown boundary conditions. Furthermore,
we propose a specific implementation of this framework, based
on the alternating direction method of multipliers (ADMM). We
provide a proof of convergence for the resulting algorithm, which
can be seen as a “partial” ADMM, in which not all variables
are dualized. We report experimental comparisons with other
primal-dual methods, where the proposed one performed at the
level of the state of the art. Four different kinds of applications
were tested in the experiments: deconvolution, deconvolution with
inpainting, superresolution, and demosaicing, all with unknown
boundaries.

Index Terms—Deconvolution, incomplete observations, convex
non-smooth optimization, alternating direction method of multi-
pliers (ADMM), primal-dual optimization, inpainting, superres-
olution, demosaicing.

I. INTRODUCTION

DEBLURRING is one of the classical problems of the
image processing field. It consists in the recovery of

sharp images from blurred ones, where the blur can be
any kind of degradation that results in a decrease of image
sharpness. The blur can be caused, for example, by camera
motion, or by the propagation of light through the atmosphere.
For a review of deblurring methods, see [1] and the more
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recent [2]. In this work, we consider the situation in which
some pixels of the blurred image are not observed. Examples
are the pixels corresponding to the boundaries of the image,
saturated or missing pixels, and the extra pixels that would
have been observed if the sensors that acquired the images
had a higher spatial resolution than the actual sensors that were
used, as in the case of superresolution [3] and demosaicing [4].
We assume that the blur corresponds to a convolution with a
known point spread function (PSF). Since the blurring PSF
is assumed to be known, this corresponds to the so-called
non-blind deconvolution problem, but is also of use in blind
deconvolution algorithms, since most of these involve non-
blind deconvolution as one of the processing steps.

In this paper, bold lowercase letters denote column vectors,
and bold uppercase letters denote matrices. Ip denotes the
identity matrix of size p × p. 1p denotes a vector of ones
of size p, and 0 denotes a zero vector or matrix of appropriate
size. A superscript on a vector, as in xi, denotes the index
of a sequence of vectors. We will use the notation {xi}
as a shorthand for representing the sequence {xi}+∞i=1 . The
subgradient operator will be denoted by ∂. The inverse of
matrix A will be denoted by A−1 and the A-norm will be
denoted by ‖·‖A, i.e., ‖x‖A =

√
xTAx, where A is positive-

definite and x is a vector.

A. Problem statement

Consider the estimation of a sharp image from a blurred
one. Assume that the support of the convolution kernel has
size (2b+ 1)× (2b+ 1) pixels and is centered at the origin.1

Let the size of the blurred image be m × n. To express that
image as a function of the sharp one, we need to consider a
region of the sharp image of size m′× n′, with m′ = m+ 2b
and n′ = n+ 2b; the central m× n zone of this sharp image
is in the same spatial location as the blurred image. Fig. 1
illustrates this situation.

Let X be a given nonempty convex subset of Rm′n′ .
Assuming a linear observation model with additive noise, we
can express the blurring operation as

y = Tx + n, (1)

in which the images are represented by column vectors with
the pixels arranged in lexicographic order, y ∈ Rmn is the
observed image, x ∈ X is the sharp image, T is a mn ×
m′n′ block-Toeplitz-Toeplitz-block (BTTB) matrix such that

1For simplicity, we consider only kernels supported in square regions cen-
tered at the origin. The extension to other situations would be straightforward.
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Fig. 1. An illustration of the dimensions of the images involved in typical
deblurring problems. a) Blurred image. b) Blurring kernel. c) Sharp image.

Tx represents the convolution of the sharp image with the
blurring PSF, and n ∈ Rmn is the observation noise.

In this paper, we address the estimation of the sharp image
x from the blurred one, in situations in which some of the
pixels of the blurred image are unobserved. This situation oc-
curs, for example, in inpainting and superresolution problems.
Demosaicing is a form of superresolution, and also involves
unobserved pixels. Often, in simple deconvolution problems,
one is only interested in estimating the central m×n region of
x, which we shall designate by cropped sharp image, denoted
by x̄. If one is interested in estimating the whole image x, this
can be seen as an inpainting problem, since we are estimating
the pixels of x in a boundary zone of width b around the central
m × n region, and this zone is not present in y. Even if we
do not wish to estimate this zone, the need to properly handle
the boundary zone still exists in most real-life deconvolution
methods, as we discuss next.

A difficulty with the use of model (1) is that deconvolution
methods based on it normally involve products by large BTTB
matrices and/or the inversion of such matrices, and both
operations are computationally heavy. In order to obtain fast
deconvolution methods, many authors replace (1) with models
that involve simpler computations. One of the most frequently
used models is

y = Tx̄′ + n, (2)

in which T is a block-circulant-circulant-block (BCCB) matrix
of size mn×mn, and x̄′ ∈ Rmn is an approximation of the
true cropped sharp image x̄. Tx̄′ represents the circular con-
volution of x̄′ with the blurring PSF. The speed advantage of
(2) comes from the fact that BCCB matrices are diagonalized
by the two-dimensional discrete Fourier transform (DFT), and
therefore products and inverses involving such matrices can be
efficiently computed using the FFT. However, the fact that x̄′ is
only an approximation of the true image x̄ means that (2) is not
an exact model of the convolution process. As a consequence
of this, the sharp images obtained by these methods normally
exhibit artifacts, typically in the form of ringing. The use of
model (2) is often referred to as the use of periodic boundary
conditions, because it is equivalent to the use of (1) with the
true sharp image x replaced with an image obtained by period-
ically repeating x̄ in the horizontal and vertical directions, and
then retaining only the central m′×n′ region of the resulting
periodic image. Other possibilities exist for obtaining fast
deconvolution methods, besides the use of periodic boundary

conditions. For example, one can use reflexive or anti-reflexive
boundary conditions, which, under appropriate assumptions,
lead to matrices that are diagonalizable, respectively, by the 2D
discrete cosine transform and the 2D discrete sine transform,
and therefore also yield significant speed advantages [5], [6],
[7]. However, the use of any of these boundary conditions
(and, in fact, the use of any artificially imposed boundary
conditions) corresponds to the use of an inexact convolution
model, and therefore gives rise to artifacts.

The occurrence of artifacts can be completely eliminated
by the use of an exact model of the convolution process. A
relatively recent method, which we shall designate by AM [8],
[9], uses a model of the form

y = MT̃x + n, (3)

in which T̃ is an m′n′×m′n′ BCCB matrix that corresponds
to a circular convolution with the blurring PSF, and M is
an mn × m′n′ masking matrix that selects, from T̃x, only
the pixels that correspond to the observed image, discarding a
boundary zone of width b in the periphery of the image T̃x.
The circular convolution T̃x in (3) only differs from the linear
(i.e., non-circular) convolution Tx of (1) by the presence of
that boundary zone, and therefore Eq. (2) is an exact model of
the convolution process. Computationally, this method has the
advantage of using a diagonalizable matrix, T̃, but needs to
deal with the fact that MT̃ is not easily diagonalizable. This
difficulty is circumvented, in AM, through an adaptation of the
Alternating Directions Method of Multipliers (ADMM) [10],
[11]. By means of the splitting of a variable, AM decouples the
matrix M, which is diagonalizable in the spatial domain, from
T̃, which is diagonalizable in the frequency domain, thereby
allowing a significant speedup to be achieved.

The deconvolution framework proposed in the present work
uses a different, but also exact, convolution model. The
convolution process is modeled as

ỹ = T̃x + n, (4)

in which T̃ is the same BCCB matrix as in (3), and ỹ ∈ Rm′n′

represents the observed image y surrounded by the boundary
region of width b mentioned in the previous paragraph. In
the proposed framework, this boundary region is estimated,
instead of being masked out, as happened in AM. We will
present two implementations of this framework: an imple-
mentation using an off-the shelf deconvolution method that
assumes circular boundary conditions, and an efficient imple-
mentation using a “partial” ADMM in which not all variables
are dualized, and for which we present a convergence theorem.

Deconvolution methods that do not impose boundary con-
ditions, such as AM and the method proposed in this paper,
are often referred to as methods that use unknown boundaries.
We will use that nomenclature in this paper.

B. Related work

As mentioned above, many of the published deconvolution
methods, such as [5], [6], [7], [12], use artificially imposed
boundary conditions, leading to the occurrence of artifacts.
Some methods try to reduce the intensity of those artifacts
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by preprocessing the observed image’s borders, e.g., through
edge tapering or smoothing. A brief review of preprocessing
methods is given in [13]. Some other methods, such as [14],
[15], consider the blurred image as being extended with a
boundary zone as in (4), but, instead of correctly estimating
that zone, use a synthetic extension that is relatively easy to
compute. Since the contents of that extension are artificially
imposed, these methods give rise to artifacts.

Methods that use exact models have the potential to com-
pletely eliminate the occurrence of artifacts. One such method
is the one proposed in [13], which implicitly uses model (4),
although that model is not explicitly mentioned in the paper.
That method is limited to the use of quadratic regularizers,
which allow a fast implementation but yield relatively low-
quality deconvolution results. The method has been extended
in [16], allowing the use of more general regularizers. In the
latter form, the method achieves a relatively high speed by
limiting the estimation of the boundary zone (an estimation
that is time-consuming, in that method’s formulation) to a few
initial iterations of the optimization procedure. This version of
the method improves on the results of [13] due to the use of
more appropriate regularizers, but the imperfect estimation of
the boundary zone gives rise to artifacts in the deblurred im-
ages. Similar approaches for astronomical images can be found
in [17], [18]. Another method, proposed in [19], uses model
(1), and is rather slow due to the use of non-diagonalizable
BTTB matrices.

As previously said, the AM method [8], [9] uses model
(3) and is based on ADMM. Compared to other algorithms,
the use of ADMM that is made in that method has some
convenient properties: its convergence is guaranteed under
rather general conditions, and each iteration only involves
operations with a low computational cost (e.g., the inversion
of diagonalizable matrices). ADMM is a primal-dual method,
which means that it solves a primal optimization problem
as well as its dual convex formulation, in the sense of the
Fenchel-Rockafellar duality theory (see [20], [21], [22] for
recent reviews of proximal and primal-dual methods). In
Section III, we experimentally compare AM with the ADMM-
based method proposed in the present paper, and find the
performances of both to be similar.

The works [23] and [24] propose primal-dual methods that
do not involve the inversion of large BTTB matrices. In
Section III, we experimentally test one of these methods [23],
and find it to be rather slow. Another primal-dual method that
considers non-periodic boundaries was proposed in [25]. It
needs the structure of the boundaries to be known a priori,
which normally is not the case in real-life situations. The use
of an artificially chosen structure results, once again, in the
occurrence of artifacts.

In [26], a method that has some resemblance to our pro-
posed deconvolution framework was introduced, in the context
of the solution of systems of linear equations with Toeplitz
system matrices.

C. Contributions and outline

This work has two main contributions:

• We propose a new framework for solving deconvolution
problems with unobserved pixels. This framework is an
efficient, high-quality alternative to the use of heuristic
methods, such as edge tapering, to reduce the artifacts
produced by deconvolution methods that assume peri-
odic boundary conditions. We give an example of how
this framework can be used to extend a state-of-the art
deconvolution method to the use of unknown boundaries.

• The proposed framework can also be used to develop new
deconvolution methods. We propose a specific ADMM-
based implementation of the framework, for which we
give a proof of convergence. We experimentally compare
it with some state-of-the-art methods.

The structure of this paper is as follows. Section II describes
the proposed framework and the ADMM-based implementa-
tion, and gives the convergence proof for the latter. Section III
presents experimental results, and has two parts: the first
one illustrates the use of the proposed framework to con-
vert an off-the-shelf, state-of-the-art deblurring method (IDD-
BM3D [12]) to the use of unknown boundaries; the second
part presents a comparison between the proposed ADMM-
based method and some other published ones, in problems of
deconvolution with and without inpainting, of superresolution,
and of demosaicing, all with unknown boundaries. Section IV
concludes.

II. THE PROPOSED FRAMEWORK

A. Basic structure

As previously mentioned, the framework that we propose is
based on model (4). From here on, we’ll express the extended
blurred image ỹ in a form that is more convenient for the
treatment that follows, and that encompasses not only the
case of unknown boundaries, but also all the other cases of
unobserved pixels. We’ll denote the number of observed pixels
of the blurred image by k, and the number of unobserved
pixels (including the above-mentioned boundary zone) by d.
Let z ∈ Z and y ∈ Rk be column vectors containing,
respectively, the elements of ỹ that correspond to unobserved
pixels and those that correspond to observed pixels; Z is some
given nonempty convex subset of Rd. In a simple deconvo-
lution problem with unknown boundaries, z will contain the
boundary zone, and y will contain the observed blurred image.
In a combined deconvolution and inpainting problem, z will
contain both the boundary zone and the additional unobserved
pixels, and y will contain the pixels of the blurred image that
were actually observed. We will reorder the elements of the
extended image ỹ as [ yz ] = Pỹ, where P is an appropriate
permutation matrix, so that the observed pixels are in the first
positions and the unobserved pixels are in the last positions
of the vector [ yz ].

Conceptually, the proposed framework is rather simple.
It consists of using the blurring model (4), and alternately
estimating x and z, as shown in Fig. 2. In this framework,
step 2, which estimates x, can be performed, essentially,
with any existing deblurring method that assumes circular
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Framework 1
1. Initialize x1 and z1. Let i = 1.
repeat

2. Compute xi+1 given xi, zi.
3. Compute zi+1 given xi+1.
4. Increment i.

until stopping criterion is satisfied.

Fig. 2. The proposed deblurring framework.

boundary conditions.2 Step 3 is performed by just computing
the reconstructed blurred image, given by T̃x, and selecting
from it the pixels that correspond to z.

An important difference of the proposed framework relative
to most published deblurring methods, including AM, is that,
in this framework, the unobserved pixels of the blurred image
(represented by z) are explicitly estimated. This means that
we have one more variable to estimate (z).

As given in Fig. 2, the proposed framework is rather
general. It can be used to design new deblurring methods, an
example of which is the efficient ADMM-based method that
we propose in Section II-B. It is also an efficient, high-quality
alternative to methods such as edge tapering, to convert
existing deblurring methods that impose specific boundary
conditions into methods that work with unknown boundaries.
We illustrate this in Section III-A, by using the proposed
framework to convert an off-the-shelf, state-of-the-art
deblurring method that assumes circular boundary conditions
(IDD-BM3D) into a method that uses unknown boundaries.

B. ADMM-based method

ADMM has been widely used, in recent years, to solve high-
dimensional problems in signal and image processing, due to
its ability to yield high-quality solutions in a computationally
efficient way, in many practical situations. In its original for-
mulation, ADMM can be used to solve problems of the form

minimize
u

f(u) + ψ(Ku),

where both f and ψ are closed, proper convex, possibly non-
smooth functions (see Appendix A for details). In comparison
with some other primal-dual methods, in the context of
image deconvolution, ADMM uses an extra set of variables
and involves a matrix inversion. These characteristics,
however, apparently are the ones that allow it to remain quite
competitive relative to more recent primal-dual methods,
as illustrated, for example, by the results that we report in
Sections III-B to III-D.

In the ADMM-based implementation of Framework 1 that
we propose, we’ll use the blurring model of Eq. (4). The noise
n will be assumed to be i.i.d. Gaussian. We’ll use a maximum-
a-posteriori (MAP) formulation, and consequently, the data-

2The framework can also be used with methods that use other boundary
conditions. The only difference will be in the structure of the matrix T̃ used
in model (4). Instead of being a BCCB matrix, it will have the proper structure
for the boundary conditions under consideration.

fitting term of our objective function will be given by

f(x, z) =
1

2

∥∥∥∥∥
[
y
z

]
−Hx

∥∥∥∥∥
2

, (5)

with H = PT̃ and x ∈ X , where X is some given convex
subset of Rk+d.

The problem to be solved will be expressed as

minimize
x,z

f(x, z) + φ(Dx), (6)

where D ∈ Rl×(k+d) is a matrix that extracts a linear
representation of the estimated image, such as edges, l is the
number of components of that representation, and φ(Dx) is
a regularizer that promotes some desirable characteristic of
images, such as sharp edges.

We’ll start by considering the use of ADMM in its stan-
dard form to solve problem (6). The resulting method will
not be very efficient, because it will involve a step that is
computationally heavy, but it will be useful to motivate the
method that we propose, and to analyze some of its properties.
We’ll then describe our proposed method, which avoids the
above-mentioned computational inefficiency through the use
of a partial ADMM.3

In what follows, we will make use of the variables v,d ∈
Rl+d, decomposed as v =

[
vx
vz

]
and d =

[
dx

dz

]
, with vx,dx ∈

Rl and vz,dz ∈ Rd. To apply ADMM to problem (6), we first
define

u =

[
x
z

]
, K =

[
D 0
0 Id

]
, f̄(u) = f(x, z),

and also define
ψ(v) = φ(vx),

so that ψ(Ku) = φ(Dx).
We rewrite (6) as

minimize
u,v

f̄(u) + ψ(v)

subject to v = Ku.
(7)

Applying ADMM to this problem, we obtain an iteration of
the sequence of steps[

xi+1

zi+1

]
∈ arg min

x,z
f(x, z) +

µ

2

∥∥∥∥∥vi −K

[
x
z

]
− di

∥∥∥∥∥
2

, (8)

vi+1 ∈ arg min
v

ψ(v) +
µ

2

∥∥∥∥∥v −K

[
xi+1

zi+1

]
− di

∥∥∥∥∥
2

, (9)

di+1 = di −

(
vi+1 −K

[
xi+1

zi+1

])
. (10)

From now on, we will refer to the iteration of steps (8)–(10)
as the standard ADMM.

As mentioned above, the standard ADMM won’t normally
be computationally efficient. This is due to the fact that, in
step (8), x and z need to be estimated simultaneously, and
this will normally involve the inversion of a large matrix that
is not easily diagonalizable. For the (rather small) images used

3We qualify it as “partial” because not all variables are dualized.
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in the experimental tests of Section III, which have 256×256
pixels, this would involve a matrix with (256×256)2 ≈ 4×109

elements. Since matrix inversion runs in O[n3] time, directly
inverting matrices as large as these would not be feasible, in
useful time, with current computers. Furthermore, it would
be impracticable to manipulate such large matrices, given
the memory sizes of most present-day computers. For the
much larger images that are commonly used in practice, the
difficulties would be even larger.

To motivate the solution that we propose, we note that if,
in problem (6), we consider minimizing relative to x and to z
separately, only the minimization relative to x will be difficult
to perform. The minimization relative to z will be easy to
implement in a computationally efficient way, because it is the
minimization of a quadratic function, and the matrix H = PT̃
is diagonalizable in the frequency domain (with an appropriate
permutation, corresponding to the product by P). In view of
this, we will separate the minimization relative to x from the
minimization relative to z, applying them in an alternating
manner, and we will apply the ADMM machinery only to the
variable x, instead of applying it to

[
x
z

]
, as happened in the

standard ADMM. Of course, the convergence guarantees of
the standard ADMM won’t apply to the proposed method. We
will, therefore, present a convergence proof for it.

Since we are applying the ADMM machinery only to
x, step (8) of the standard ADMM will be replaced by a
minimization of

f(x, z) +
µ

2

∥∥∥vix −Dx− dix

∥∥∥2, (11)

which we will solve approximately by means of an alternating
minimization on x and z through one or more block-Gauss-
Seidel (BGS) passes. Furthermore, steps (9) and (10) will have
to be modified so as to refer only to x, and not to [ xz ]. If we
use just one BGS pass to minimize (11), the complete method
will correspond to the iteration of

xi+1 ∈ arg min
x

f(x, zi) +
µ

2

∥∥∥vix −Dx− dix

∥∥∥2, (12)

zi+1 ∈ arg min
z

f(xi+1, z), (13)

vi+1
x ∈ arg min

vx

φ(vx) +
µ

2

∥∥∥vx −Dxi+1 − dix

∥∥∥2, (14)

di+1
x = dix − (vi+1

x −Dxi+1). (15)

If we use more BGS passes, instead of just one, there will be
an inner loop consisting of steps (12) and (13).

As can easily be seen, this method falls within the scope
of Framework 1, the main steps being (12) and (13); steps
(14) and (15) are added by the use of the ADMM technique.
We will call the iteration of (12)–(15) (with one or more BGS
passes) the partial ADMM; this designation stems from the
fact that we only apply the ADMM technique to x, and not
to [ xz ].

We will now address the issue of the convergence of the
partial ADMM. We will start by proving (in Theorem 1) the
convergence of a somewhat more general method, and we
will then show (in Corollary 1) that the partial ADMM is
a special case of that method, and is therefore encompassed
by Theorem 1.

Until now, we have assumed the data-fitting term f to be
given by (5). For the proof of convergence, we will allow f
to have the more general form

f(x, z) =
1

2

[
x
z

]T [
A B
BT C

] [
x
z

]
+

[
x
z

]T [
e
f

]
+ g, (16)

where A ∈ R(k+d)×(k+d), B ∈ R(k+d)×d, C ∈ Rd×d,
e ∈ Rk+d, f ∈ Rd, and g ∈ R, and where we assume
that C is positive-definite (PD) and that A − BC−1BT is
positive-semidefinite (PSD). These assumptions guarantee that
f is convex, and are not very restrictive. The set of functions
that they encompass is only slightly less general than the set
of all convex quadratic functions. To obtain the latter set, the
assumption on C would have to be relaxed to being PSD,
but additional assumptions would need to be made (see, e.g.,
Appendix A.5.5 of [27]).

The convergence result is given by the following theorem:

Theorem 1. Assume that, in problem (6) with f defined
by (16), C is PD, A − BC−1BT is PSD, D is full column
rank, and φ is closed proper convex and coercive. Define
K =

[
D 0
0 Id

]
. Then, the set of solutions of problem (6) is non-

empty, the sequence
{[

xi

zi

]}
generated by the partial ADMM

converges to a solution of that problem, and the sequence {vi}
converges to K

[
x∗

z∗
]
, where

[
x∗

z∗
]

is the limit of
{[

xi

zi

]}
.

Proof. The proof is given in Appendix B.

Corollary 1. For problem (6) with f given by (5), Theorem 1
applies.

Proof. If we make A = HTH, BT = −MzH, C = Id,
eT = −yTMyH, f = 0, and g = 1

2yTy, where My = [Ik 0]
is of size k× (k+ d) and Mz = [0 Id] is of size d× (k+ d),
the conditions of Theorem 1 are satisfied.

Regarding the practical implementation of the partial
ADMM, the solutions of the minimization problems that
constitute steps (12) and (13), with f given by (5), are given,
respectively, by

xi+1 =
[
HTH + µDTD

]−1[
HTMT

z zi + HTMT
y y + µDT (vix − dix)

]
=
[
HTH + µDTD

]−1[
HT

[
y
zi

]
+ µDT (vix − dix)

] (17)

and
zi+1 = MzHxi+1. (18)

Matrices My and Mz are defined in the proof of Corollary 1.
They are masking matrices and, in particular, My is equivalent
to the masking matrix M used in the AM method (3), i.e.,
M = MyP.

In practice, we have found it useful to use over-relaxation
with a coefficient of 2 in the update of z, and therefore we’ll
replace (18) with

zi+1 = 2MzHxi+1 − zi. (19)
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In (17), HTH = T̃TPTPT̃ = T̃T T̃ is a BCCB matrix.
If DTD is also BCCB, the matrix inverse in (17) can be
efficiently computed by means of the FFT. On the other hand,
since H = PT̃, products by H or HT can be computed as
products by the BCCB matrix T̃ followed or preceded by the
appropriate permutation, and therefore can also be efficiently
computed by means of the FFT. Consequently, the iterations
of the proposed method are computationally efficient, having
complexity O[(k + d) log(k + d)].

The MATLAB code for the proposed
ADMM-based method is available at
https://github.com/alfaiate/DeconvolutionIncompleteObs.

III. EXPERIMENTAL STUDY

This section has two parts. The first one, corresponding to
Subsection III-A, illustrates the use of the framework of Fig. 2
with a state-of-the-art deblurring method that assumes periodic
boundary conditions, to adapt it to the unknown boundaries
situation. We plug into the mentioned framework, without
modification, a fast, high-quality FFT-based deconvolution
method: IDD-BM3D [12]. As a result of the incorporation
into the framework, we obtain a deconvolution method that
uses unknown boundaries, and that still retains the speed of
FFT-based matrix operations. We compare the results of the
resulting method with those of the commonly adopted solution
of using edge tapering to deal with the unknown boundaries.
The second part of this section, consisting of Subsections
III-B to III-D, presents experimental results on the use of the
proposed ADMM-based method, and comparisons with AM
and with another state-of-the-art method.

In the deblurring tests described ahead, we created each
blurred image by performing a circular convolution of the
corresponding sharp image with the desired blurring kernel,
and then cropping the result, keeping only the part of the
circular convolution that coincided with the linear convolution.
We then normalized the images so that all pixel values were
in the interval [0, 1]. Finally, we added i.i.d. Gaussian noise
with a blurred signal-to-noise ratio (BSNR) of 50 dB, unless
otherwise indicated.

A. Use of Framework 1 with IDD-BM3D

As previously mentioned, step 2 of Framework 1 can be im-
plemented using, essentially, any deconvolution method. One
such method is the state-of-the-art IDD-BM3D [12], which
assumes circular boundary conditions to be able to perform
fast matrix operations in the frequency domain by means of
the FFT. It takes a frame-based approach to the deconvolution
problem, and performs both a deconvolution and a denoising
step. Additionally, it runs another deconvolution method [28]
for initialization. We used the published IDD-BM3D software,
without change, to implement step 2 of Framework 1. As
mentioned in Section II-A, step 3 was performed by computing
T̃x and selecting from it the pixels that corresponded to z.

In the experimental tests, we compared four different situa-
tions: (a) direct application of IDD-BM3D without the use of
Framework 1, to assess the effect of the method’s assumption
of circular boundary conditions on an image that didn’t obey

those conditions; (b) similar to (a), but preprocessing the
observed image by edge tapering, to reduce the effect of
the mentioned assumption; (c) the use of IDD-BM3D within
Framework 1, as described above; and (d) the use of the
partial ADMM method (the latter situation was included for
completeness, but is not essential to the comparison being
made here). In situations (a) and (b), IDD-BM3D was run
for 400 iterations; in situation (c), we performed 80 iterations
of the main loop of Framework 1, and within each of these,
IDD-BM3D was run for 5 iterations, giving, again, a total of
400 iterations of IDD-BM3D; in situation (d), we used the
Proposed-AD version of the partial ADMM method (see the
next section for details).

We ran the experiment using the cameraman image with
size 256 × 256 pixels, blurred with a 9 × 9 boxcar filter,
and with additive i.d.d. Gaussian noise with a BSNR of 40
dB. In situation (b), the image borders were smoothed with
MATLAB’s edgetaper function with an 11× 11 boxcar filter.
This size of the filter was experimentally chosen so as to yield
the best final results in terms of improvement in signal-to-noise
ratio (ISNR). In situations (a) and (b), IDD-BM3D estimated
sharp images of size m× n. In situations (c) and (d), the use
of Framework 1 led to estimated images of size m′ × n′. To
ensure a fair comparison, only the central m × n regions of
the estimated images were used to compute the ISNR, in cases
(c) and (d).

The results of the tests, along with the corresponding ISNR
values, are shown in Fig. 3. As can be seen, using IDD-BM3D
without taking into account that the boundary conditions were
not circular (situation (a)) produced very strong artifacts. With
edge tapering (situation (b)), the artifacts were much reduced,
although some remained visible; there also was some loss of
detail near the image borders. With the use of IDD-BM3D
within Framework 1 (situation (c)), there were barely any
artifacts, and the image remained sharp all the way to the
borders. The values of the ISNR agree with these observations.
The partial ADMM method (situation (d)) yielded somewhat
lower ISNR than IDD-BM3D within Framework 1. This agrees
with the fact that IDD-BM3D is among the best existing image
deblurring methods, with a quality that is hard to equal.

B. Proposed method: deblurring with unknown boundaries

In this and the following subsections, we present results of
the ADMM-based deblurring method proposed in Section II-B,
and we compare it with two published state-of-the art methods.
The first of these is AM, which was chosen because it is an
ADMM-based method specifically developed for the problem
of deblurring with unobserved pixels, and therefore bears some
resemblance to the proposed partial ADMM. Although the
MATLAB code for AM was made available by the authors
of [8], we implemented the method ourselves in a form that
was more efficient than the published one, by performing the
products by the matrices D and DT in the space domain
instead of the frequency domain (the latter required the
computation of FFTs and element-wise multiplications, while
our implementation only required subtractions). The second
method used for comparison was the primal-dual algorithm
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(a) (b) (c) (d)

Fig. 3. Use of the IDD-BM3D deblurring method and Framework 1 in a blurred image with unknown boundaries. The experiments were run for the 256×256
cameraman image blurred with a 9× 9 boxcar filter. (a) Plain IDD-BM3D (ISNR = -14.62 dB). (b) IDD-BM3D with pre-smoothing of the blurred image’s
borders (ISNR = 8.27 dB). (c) Framework 1, with step 2 implemented through IDD-BM3D (ISNR = 9.64 dB). (d) ADMM-based implementation of Framework
1 (Proposed-AD version, λ = 4× 10−5 ) (ISNR = 8.43 dB).

of Condat [23], which we shall denote by CM. We chose
this method because it can be expressed in a form that does
not require the inversion of matrices related to the blurring
operator, and this inversion is a computational bottleneck of
most deblurring methods based on exact blurring models, as
discussed in Section I-A. While [23] does not explicitly con-
sider the problem of image deblurring with unobserved pixels,
in [29] it is shown how to adapt the method to a deblurring
and demosaicing problem. We implemented this adaptation of
the method in a form appropriate to the observation model of
Eq. (3). For completeness, we also show results obtained with
an approximation of the standard ADMM. As discussed in
Section II-B, the direct application of that method is impracti-
cable, even for small images, in most present-day computers.
We give the results obtained by approximately solving Eq. (8)
through 1000 conjugate-gradients iterations. This number of
iterations was experimentally chosen to approximately yield
the best speed. We denote this method by ‘ADMM-CG’.

All the methods under comparison minimize equivalent
cost functions, and therefore we considered it quite probable
that they would yield virtually identical estimated images,
even though, in our tests, we were not strictly under the
convergence conditions of Theorem 1, for reasons that we
will discuss further on. As described ahead, we experimentally
confirmed, in a few cases, that all the methods converged to
essentially the same images, and therefore we focused the
subsequent comparisons on the computational efficiencies of
the various methods, and not on the quality of their results. The
computation times that we report ahead were obtained using
MATLAB on an Intel Core i7 CPU running at 3.20 GHz, with
32 GB of RAM.

We used, in the deblurring tests, two well-known images:
Lena (in grayscale) and cameraman, both of size 256 × 256
pixels. These images were blurred with boxcar filters of sizes
between 3×3 and 21×21, and with truncated Gaussian filters
with supports of the same sizes; for a Gaussian filter with a
support of size l × l, we used a standard deviation of

√
l.

As in [8], [9], [29], we used isotropic TV to
regularize our problem, i.e., we made φ(Dx) =

λ
∑k+d
j=1

√
(Dhx)2j + (Dvx)2j , where (a)j denotes the

jth element of the vector a; Dh and Dv were such that
the products by these matrices computed, respectively, the
horizontal and vertical first-order differences of a discrete
image, with periodic boundaries; D = [DT

hDT
v ]T ; and λ > 0.

The matrix DTD was BCCB, as required for both the
proposed method and AM to be efficient (CM has no such
requirement).

With the isotropic TV regularizer, the solution of prob-
lem (14) is obtained by a vector soft-thresholding operation,
vi+1
x = vector-soft

(
vix,

λ
µ

)
[30], [31]. With this regularizer, we

can guarantee the uniqueness of the solution of problem (6)
if N (H)∩N (D) = {0}, which is true if 1k /∈ N (H), where
N (·) denotes the null space of a matrix. The latter condition
is normally verified, since real-world blur kernels usually have
nonzero DC gain.

The guarantee of convergence given by Theorem 1 requires
that matrix D be full column rank. An assumption of this kind
is common in the literature, when studying the convergence of
primal-dual methods, even though it can be relaxed in some
cases (see, e.g., [11] for the ADMM case). With the isotropic
TV regularizer, D is not full column rank (its rank is k +
d− 1), which means that we did not have a formal guarantee
of convergence of the proposed method in our experimental
tests. This was not the case for AM, where the use of an extra
variable splitting makes D full rank. It was also not the case
for CM, in which D does not need to be full rank. In practice,
we found that the four methods always converged, and we
had some experimental evidence that they all converged to
the same solution, as reported ahead. If we wished to have
a formal guarantee of convergence of the proposed method,
we could have used one of two approaches: (1) to use a new
variable to decouple the convolution operator from x, which
would lead to, e.g., D = [DT

hDT
v HT ]T , which is full column

rank ifN (Dh)∩N (Dv)∩N (H) = {0} (the regularizer would
need to be changed accordingly), or (2) to modify the discrete
difference matrices, making them full rank, e.g., by adding to
them εIk+d with a small ε > 0.

In the proposed method, the complexity of an iteration was
dominated by FFTs: three for steps (12) and (13), and one
for step (14); the number of FFTs thus depended on the
number of BGS passes (each pass involved three FFTs). In
our implementation, the other two methods both involved four
FFTs per iteration.4 Our method required the storage of one
variable with dimension d and five with dimension k + d. AM
required the storage of seven variables with dimension k + d,
and CM required the storage of four with dimension k + d.

4The publicly available implementation of AM requires seven FFTs per
iteration.
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In order to ensure fair comparisons, the initial estimate of x
was obtained in the same way for the four methods, by padding
the observed image with a boundary zone formed by repeating
the border pixels of the observed image. This initialization led
to slightly faster results than other alternatives, such as linear
interpolation between opposite-border pixels.

All the methods have parameters that need to be adjusted.
The optimal tuning of the regularization parameter λ is
a complex issue, and a number of techniques have been
proposed for that purpose, e.g. using Stein’s unbiased risk
estimator [31], generalized cross-validation [32], or a measure
of the whiteness of the reconstruction error [33]. Since, as
mentioned above, we wanted to focus our comparison on the
computational costs, and not on the quality of the deblurring
results, we fixed λ = 5 × 10−6, a value that yielded visually
good estimated images.

Another parameter that needed to be set, both in our method,
in AM and in ADMM-CG, was the penalization parameter µ,
which influences the convergence speed. The authors of [8]
and of [9] developed their own heuristics to set this parameter.
Since heuristics like these require an amount of fine-tuning
that can be time-consuming, and since the tuning done for
some images may not extend to other images, we instead
followed a simple strategy, proposed in [11]. It involves little
computation, but requires that we keep track of both vi+1 and
vi. The penalization parameter is adapted in every iteration,
according to

µi+1 =

 2µi if ‖di+1 − di‖ > t‖vi+1 − vi‖,
0.5µi if ‖vi+1 − vi‖ > t‖di+1 − di‖,
µi otherwise.

(20)
Additionally, di+1 needs to be rescaled after updating µ: it
should be halved in the first case above, and doubled in the
second one. In the proposed method, we used t = 3. We used
the same strategy to set the penalty parameters of AM. There
are two such parameters in that method: one similar to the one
of our method, and another one relating to the variable splitting
used to decouple matrix M from matrix T̃. We adapted the two
parameters independently, and used t = 10 for both because
lower values led to instabilities. For ADMM-CG, we used t =
3. The use of the same strategy to set the penalty parameters
of the three methods was intended to make the comparison
between both as fair as possible. The convergence proof of
Theorem 1 is difficult to adapt to a varying µ, but still applies if
this parameter is kept fixed after a certain number of iterations.
5

As already mentioned, another parameter of our method is
the number of BGS passes. The proof in Appendix B assumes
that a single pass is used, and is easily extendable to any fixed
number of passes. If the number of passes changes along the
iterations, the proof still applies if that number becomes fixed
after a certain number of iterations. For setting this parameter,
we found that a simple strategy was useful: for a blur of size
(2b + 1) × (2b + 1), we set the number of passes to b. We
found this strategy to yield a good choice of the number of

5For alternative strategies for setting the penalization parameters,
see [11] and [34].

passes, irrespective of the noise level of the observed image. In
what follows, we report the results obtained using this adaptive
strategy (designated by ‘Proposed-AD’), and also the results
obtained with just one BGS pass (designated by Proposed-1’);
the latter are reported because they correspond to an especially
simple, and therefore interesting situation.

In CM, in order to guarantee convergence, we chose its
proximal parameters τ and σ so as to satisfy the condition
given in [29], τ(β2 + σ‖DTD‖I) < 1, where ‖ · ‖I denotes
the induced norm of a matrix, and β is the Lipschitz constant
of the gradient of f , β = ‖MyH‖2I . It can be shown [35]
that ‖DTD‖I ≤ 8; we also have ‖MyH‖I ≤ ‖My‖I‖H‖I ,
and ‖My‖I = 1, ‖H‖I = 1. Therefore, in order to obey the
convergence condition, we chose τ = 0.99

0.5+8σ . We verified ex-
perimentally that the speed of convergence was approximately
maximal as long as σ ∈ [10−8, 10−4], and therefore chose
σ = 10−6.

The variable z, which exists only in the proposed method
and in ADMM-CG, was initialized with an approximate solu-
tion of the quadratic regularization problem

min
x,z

f(x, z) +
τ

2
‖x‖2,

where τ is a small positive value. The approximate solution
was computed by alternating minimization with respect to x
and z, yielding the iterative procedure

xi =
(
HTH + τI

)−1
HT

[
y

zi−1

]
(21)

zi = MzHxi, (22)

for i = 1, 2, · · · , 100 , τ = 10−3, with z0 obtained by padding
y with its border elements. The complexity involved in the
computation of xi+1, zi+1 is dominated by the solution of
the linear system implicit in (21). Given that

(
HTH + τI

)
is

BCCB, that solution can be efficiently found in the frequency
domain, with complexity O[(k + d) log(k + d)].

To check whether the four methods converged to the same
result, we ran them for a very large number of iterations
(106) in a few of the cases mentioned ahead, and found that,
in each case, the results were essentially the same for all
methods: the root-mean-square errors (RMSE)6 among the
results from different methods were always below 10−7, which
is much below what is visually distinguishable. Given this, we
arbitrarily chose, for all tests, the results of one of the methods
(AM), after the mentioned 106 iterations, as representatives of
the solutions of the corresponding problems. We used these
representatives as reference images for the evaluation of the
quality of the results of the four methods. Our choice of AM
to compute the reference images did not especially benefit this
method relative to the other ones, because, if we had chosen
any of the other two methods instead of AM, the RMSE values
of the results of the tests, computed relative to them, would
have been essentially the same. We did not use the original
sharp images as references, for two reasons. First, given the

6The RMSE was defined as

RMSE =
√

1/(m′ × n′)
∑m′×n′

i=1 (xi − xri )2,
where xi and xri denote, respectively, the pixels of the estimated image and
of the reference image.
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Fig. 4. Deblurring: RMSE of the estimated images as a function of running
time, for the various methods. This test used the cameraman image with a
13× 13 boxcar blurring filter.

(a) (b)

Fig. 5. Deblurring: observed (a) and estimated (b) images using the Proposed-
AD method. The experiments were run for the cameraman image with a
13× 13 boxcar blur.

experiments mentioned in the beginning of this paragraph, we
had good reasons to believe that the four methods converged
to the same fixed point, in each problem. Second, the solutions
of the optimization problems were slightly different from the
original sharp images, due to the presence of the noise and
of the regularizer, and our main interest was in assessing the
speed of convergence of the methods to the solutions of the
optimization problems, not in the recovery of the original
images. If we had used the original images as references,
it might happen that, in their path to convergence, some of
the methods would pass closer to those images than other
methods, and this could make them stop earlier. This would
give them an apparently better speed, while they might not
truly have a better convergence speed. In what follows, when
we mention RMSE values, these were computed relative to the
above-mentioned reference images, using the whole images,
including the boundary zone, in the computation.

Fig. 4 illustrates the behavior of the four methods during
the optimization. The estimated images from all the methods
were visually indistinguishable from one another. Figure 5
shows a result of the Proposed-AD method. In Table I, we
show the computing times for cameraman with Gaussian blurs
of various sizes. The times for Lena with the same blurs,
and for both images with the boxcar blurs, are presented in
Appendix C. In summary, the Proposed-AD method was faster
than AM for small and medium-sized boxcar blurs and for
small Gaussian blurs, the two methods had similar speeds for
large boxcar blurs and medium-sized Gaussian blurs, and AM
was faster for large Gaussian blurs.

TABLE I
RESULTS FOR cameraman WITH GAUSSIAN BLURS OF VARIOUS SIZES.

THE VALUE OF κ IS THE CONDITION NUMBER OF MATRIX H. THE TWO
RIGHTMOST COLUMNS SHOW THE NUMBER OF ITERATIONS AND THE TIME

TAKEN TO REACH AN RMSE BELOW 10−3 .

Method Blur size κ× 103 Iterations Time (s)
Proposed-1

5 247.0

85 0.866
Proposed-AD 56 0.770
AM 178 1.973
ADMM-CG 45 29.355
CM 14562 63.797
Proposed-1

13 21590.6

531 4.590
Proposed-AD 117 2.687
AM 313 3.399
ADMM-CG 71 106.450
CM 123912 539.466
Proposed-1

21 686384.8

5366 45.169
Proposed-AD 542 17.858
AM 882 9.478
ADMM-CG 319 223.828
CM 305227 1334.286

(a) (b)

Fig. 6. Inpainting with deblurring: observed (a) and estimated (b) image
using the Proposed-AD method. In the observed image, the black rectangles
correspond to unobserved regions.

C. Proposed method: inpainting, superresolution, and demo-
saicing

The experiments reported in this subsection used the set-
tings that were described in the previous subsection, unless
otherwise noted. In all experiments, the boundary zone was
considered as unobserved, as in the previous subsection.

a) Inpainting: As mentioned in Section II, the inpainting
problem can be formulated within the proposed framework by
simply including in z the unobserved pixels. We performed
tests on a problem of simultaneous deblurring and inpainting,
using the Lena image with a boxcar blur of size 13 × 13, in
which some zones were unobserved, as shown in Fig. 6 (a).
The regularization parameter was kept at λ = 2× 10−6. The
result obtained with the Proposed-AD method can be seen in
Fig. 6 (b). The other methods produced visually indistinguish-
able results. The evolution of the different methods during the
optimization process is shown in Fig. 7.

b) Superresolution: In superresolution problems, z
should include the extra pixels that would have been present
if the image had the higher resolution. For this test, we used
a 608 × 337 crop of a single band of the so-called Pavia
hyperspectral image. The experiments consisted of increasing
the resolution by a factor of 3, and we used a 3 × 3 boxcar
blurring filter in the estimation of the high-resolution image.
The regularization parameter was set, again, to λ = 2× 10−4.
Figs. 8 and 9 show the results. The estimated images from all
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Fig. 7. Inpainting with deblurring: RMSE of the estimated images as a
function of running time, for the various methods.

(a) (b)

Fig. 8. Superresolution: observed (a) and estimated (b) images using the
Proposed-AD method. The upsampling ratio was 3.
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Fig. 9. Superresolution: RMSE of the estimated images as a function of
running time, for the various methods.

the methods were visually indistinguishable from one another.
c) Demosaicing: The demosaicing operation, which

is a step of the processing pipeline used in most digital
cameras, seeks to reconstruct a full-resolution color image
from its subsampled RGB channels. In most digital cameras,
the image sensor observes only one color in each pixel, and
therefore the color channels are subsampled relative to the
resolution of the sensor. The goal of demosaicing is to fuse

(a) (b)

Fig. 10. Demosaicing: observed (a) and estimated (b) image using the
Proposed-AD method.
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Fig. 11. Demosaicing: RMSE of the estimated images as a function of running
time, for the various methods.

the color channels, obtaining full-resolution images for all
of them. We performed tests on a problem of simultaneous
deblurring and demosaicing. We used a 289×253 crop of the
well-known parrot image as ground truth, and synthesized the
observed image by first blurring it with an 8x8 boxcar filter,
and then applying a Bayer color filter. In the representation
of the problem within our framework, vector y contained the
observed pixels from the three color channels, and vector z
contained the unobserved pixels from all of them (including
the boundary zone). In the vector y, the observed pixels
were grouped according to the channels they belonged to, by
making y = [(y1)T (y2)T (y3)T ]T ; the same was done for the
vectors z and x. The data-fitting term had the form f(u) =

1/2
∑3
j=1

∥∥[ yj

zj

]
− Hxj

∥∥2. As in the demosaicing example
of [29], we used a vectorial version of the TV regularizer,
which promotes the alignment of the discontinuities across
channels: φ(Dx) = λ

∑k+d
i=1

√∑3
j=1{(Dhxj)2i + (Dvxj)2i }.

The regularization parameter was set to λ = 10−5. The results
can be seen in Figs. 10 and 11. Once again, the estimated
images from all the methods were visually indistinguishable
from one another.

D. Appraisal

The example of the use of IDD-BM3D within the proposed
framework illustrates the fact that this framework can be used
to convert existing deblurring methods that assume artificial
boundary conditions to methods that use unknown boundaries.
As far as we know, there is no other published way to
accomplish this. This is a simple alternative to the use of
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edge tapering, yielding results of better quality, as illustrated
in Subsection III-A.

The proposed partial ADMM implementation of Framework
1 (more specifically, the Proposed-AD form) showed a perfor-
mance similar to the performance of the state-of-the-art AM
method, both in terms of final results and of computational
speed. CM yielded similar deblurred images, but showed a
significantly lower computational performance. We conjecture
that this was due to the fact that both the proposed method
and AM, being based on ADMM, make use of second-order
information on the objective function (in terms of the matrix
HTH + µDTD). CM, on the other hand, does not use any
information of this kind. This difference in speed agrees
with our experience in other image enhancement problems,
in which we have repeatedly found CM-like methods to be
significantly slower than ADMM-based ones.

IV. CONCLUSION

We have proposed a framework for deblurring images with
unobserved pixels. This framework can be used to convert
most deblurring methods to unknown boundaries, irrespective
of the specific boundary conditions that those methods assume,
being a simple, high-quality alternative to the use of edge
tapering.

An ADMM-based deblurring method that falls within the
mentioned framework was proposed, and a proof of conver-
gence was provided. This method can be seen as a partial
ADMM with a non-dualized variable. Experimental results
on problems of deconvolution, inpainting, superresolution and
demosaicing, with unknown boundaries, showed, for the pro-
posed method, a performance at the level of the state of the art.

APPENDIX A
ADMM

ADMM can be used to solve convex optimization problems
of the form

minimize
u

f(u) + ψ(Ku), (23)

where f : Rn → R ∪ {+∞} and ψ : Rm → R ∪ {+∞} are
closed proper convex functions, and K ∈ Rm×n. The problem
is first rewritten as

minimize
u,v

f(u) + ψ(v)

subject to v = Ku,
(24)

where v ∈ Rm. This problem has the augmented La-
grangian [36]

L(u,v,d) = f(u) + ψ(v) +
µ

2

∥∥∥v −Ku− d
∥∥∥2, (25)

where µ > 0 is a penalization parameter, and d ∈ Rm is the
so-called scaled dual variable (µd is the dual variable).

The standard ADMM solves problem (23) through an iter-
ation on a set of problems that are often much simpler,

ui+1 = arg min
u

L(u,vi,di), (26)

vi+1 = arg min
v

L(ui+1,v,di), (27)

di+1 = di − (vi+1 −Kui+1). (28)

The convergence of ADMM was established in [37] (among
others) by proving a more general version of the following
theorem:

Theorem 2. Consider a problem of the form (23), in which
K has full column rank. Let d0 ∈ Rn and µ > 0. Assume that
{ui}, {vi}, and {di} conform, for all i, to

ui+1 = arg min
u
L(u,vi,di), (29)

vi+1 = arg min
v
L(ui+1,v,di), (30)

di+1 = di − (vi+1 −Kui+1). (31)

If problem (23) has a Karush-Kuhn-Tucker (KKT) pair,7 then
the sequence {ui} converges to a solution of that problem,
{µdi} converges to a solution of the dual problem, and
{vi} converges to Ku∗, where u∗ is the limit of {ui}. If
problem (23) has no KKT pair, then at least one of the
sequences {di} or {vi} is unbounded.

APPENDIX B
PROOF OF THEOREM 1

The proof follows a similar machinery to the ones proposed
in [38], [39], [40], [41], [42]. We start by deriving some
preliminary results. Consider problem (6) with f given by (16),
and define, as in the main text,

u =

[
x
z

]
, K =

[
D 0
0 Id

]
, ψ(Ku) = φ(Dx).

Also define

ω =

u
v
d

 , w =

 z
vx
dx

 , G =
[C 0 0

0 µIl 0
0 0 µIl

]
,

Π =
[ 0 Id 0 Id 0 0

(DTD)−1DT 0 Il 0 0 0
0 0 0 0 Il 0

]T
, Γ =

[ 0 Id 0 0 0 0
0 0 Il 0 0 0
0 0 0 0 Il 0

]
.

Note that w = Γω, and therefore ω univocally determines w.
Lemmas 1–5 present several results concerning the partial

ADMM (12)–(15) with f defined as in (16).

Lemma 1. Assume that φ is closed proper convex and coercive
and that D is full column rank. Then, the set of solutions of
problem (6) is non-empty.

Proof. This result follows immediately from [43, Proposition
11.14].

Lemma 2. Under the assumptions of Lemma 1, let wi =
[(zi)T (vix)T (dix)T ]T denote the vector w that results from the
ith iteration of the partial ADMM (12)–(15), obtained with
a given initialization of x, z, vx, and dx. Denote with an
asterisk, as in ω∗ = [(u∗)T (v∗)T (d∗)T ]T , a KKT pair of
problem (6).8 Let w∗ = Γω∗. Then, the following inequality
holds:

‖wi −w∗‖2G − ‖wi+1 −w∗‖2G ≥ ‖wi+1 −wi‖2G. (32)

7A pair (u, p) is said to be a Karush-Kuhn-Tucker pair of problem (23)
if −KTp ∈ ∂f(u) and p ∈ ∂ψ(Ku).

8We consider problem (6) reformulated as (7), and say that a pair (u,
p) is a Karush-Kuhn-Tucker pair of that problem if −KTp ∈ ∂f̄(u) and
p ∈ ∂ψ(Ku). These are necessary and sufficient conditions for u to be a
solution of this problem [43, Proposition 26.11].
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Proof. We will give a proof for the case in which only one
block-Gauss-Seidel pass is used, per iteration, to compute x
and z in the partial ADMM. The proof is easily extendable to
more than one pass per iteration.

The necessary and sufficient conditions for the existence of
u∗,v∗ and d∗ are the following: primal feasibility,

v∗ = Ku∗ ⇔ v∗x = Dx∗,v∗z = z∗, (33)

and dual feasibility,

− µDTd∗x = ∇xf(x∗, z∗), (34)

− µd∗z = ∇zf(x∗, z∗), (35)

µd∗x ∈ ∂vx
ψ(v∗)

⇔ µd∗x ∈ ∂vx
φ(v∗x) (36)

d∗z = 0. (37)

Eqs. (36) and (37) use the fact that ψ(v) doesn’t depend on
vz , and the latter equation also uses the fact that µ 6= 0.

The solutions of the minimization problems of the partial
ADMM obey, respectively,

∇xf(xi+1, zi) = µDT (vix −Dxi+1 − dix)

= µDT (vix − vi+1
x )− µDTdi+1

x , (38)

∇zf(xi+1, zi+1) = 0, (39)

0 ∈ ∂vx
φ(vi+1

x ) + µ(vi+1
x −Dxi+1 − dix)

⇔ µdi+1
x ∈ ∂vx

φ(vi+1
x ), (40)

where we have used (15) in (38) and (40). Since φ is convex,
∂φ is monotone, from Kachurovskii’s theorem. Denote the
vectors vx and dx from two different iterations of the partial
ADMM by v′x and d′x, and v′′x and d′′x, respectively. Due to the
monotonicity of ∂φ and to (40), they will satisfy the condition

(v′x − v′′x)T (d′x − d′′x) ≥ 0. (41)

Also due to that monotonicity, now together with (40) and
(36), we have

(v′x − v∗x)T (d′x − d∗x) ≥ 0. (42)

Computing the gradients in Eqs. (34) and (38), we obtain,
respectively,

Ax∗ + Bz∗ + e + µDTd∗x = 0, (43)

Axi+1 +Bzi+e+µDTdi+1
x −µDT (vix−vi+1

x ) = 0, (44)

and for equations (35) and (39) we obtain, respectively,

BTx∗ + Cz∗ + f = 0⇔ z∗ = −C−1(BTx∗ + f), (45)

zi+1 = −C−1(BTxi+1 + f); (46)

in (45) we have used (37).
Subtracting (43) from (44) yields

A(xi+1 − x∗) + B(zi − z∗)

− µDT (vix − vi+1
x ) + µDT (di+1

x − d∗x) = 0.
(47)

Using the equality B(zi−z∗) = B(zi−zi+1)+B(zi+1−z∗)
and Eqs. (45) and (46), we can rewrite (47) as

(A−BC−1BT )(xi+1 − x∗) + B(zi − zi+1)

− µDT (vix − vi+1
x ) + µDT (di+1

x − d∗x) = 0.
(48)

The matrix (A − BC−1BT ) is PSD, as noted in Sec-
tion II-B. Due to this fact, multiplying both sides of (48),
on the left, by (xi+1 − x∗)T , leads to

0 ≤− (xi+1 − x∗)TB(zi − zi+1)

+ µ(xi+1 − x∗)TDT (vix − vi+1
x )

− µ(xi+1 − x∗)TDT (di+1
x − d∗x).

(49)

Using Eqs. (15) and (33), we can transform the last two
members of the right-hand side of (49) as follows:

µ(xi+1 − x∗)TDT (vix − vi+1
x )

− µ(xi+1 − x∗)TDT (di+1
x − d∗x)

= µ(vix − vi+1
x )T (Dxi+1 −Dx∗)

− µ(di+1
x − d∗x)T (Dxi+1 −Dx∗)

= µ(vix − vi+1
x )T (vi+1

x − v∗x)

− µ(vix − vi+1
x )T (dix − di+1

x )

− µ(di+1
x − d∗x)T (vi+1

x − v∗x)

+ µ(di+1
x − d∗x)T (dix − di+1

x ).

(50)

Subtracting (45) from (46) and multiplying both sides of the
result, on the right, by C(zi − zi+1), we obtain

(zi+1 − z∗)TC(zi − zi+1) = −(xi+1 − x∗)TB(zi − zi+1).
(51)

Equations (50), (51), (41) and (42), applied to (49), lead to

0 ≤ (zi+1 − z∗)TC(zi − zi+1)

+ µ(vi+1
x − v∗x)T (vix − vi+1

x )

+ µ(di+1
x − d∗x)T (dix − di+1

x )

= (wi+1 −w∗)TG(wi −wi+1).

(52)

G is PD, since it is a block-diagonal matrix composed of PD
blocks. We have

‖wi+1 −w∗‖2G = ‖(wi −w∗)− (wi −wi+1)‖2G
= ‖wi −w∗‖2G + ‖wi −wi+1‖2G
− 2(wi −w∗)TG(wi −wi+1).

(53)

Reordering these terms, we obtain

‖wi −w∗‖2G − ‖wi+1 −w∗‖2G + ‖wi −wi+1‖2G
= 2(wi −w∗)TG(wi −wi+1).

(54)

From (52),

0 ≤ (wi+1 −wi + wi −w∗)TG(wi −wi+1)

⇔ 0 ≤ −‖wi+1 −wi‖2G
+ (wi −w∗)TG(wi −wi+1)

⇔ (wi −w∗)TG(wi −wi+1) ≥ ‖wi −wi+1‖2G. (55)

Finally, (54) and (55) lead to

‖wi −w∗‖2G − ‖wi+1 −w∗‖2G ≥ ‖wi −wi+1‖2G.
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Lemma 3. Under the assumptions of Lemma 1,
1) The sequence {‖wi −w∗‖2G} is convergent.
2) The sequence {‖wi − wi+1‖2G} is non-increasing and

converges to 0.
3) The sequence {wi} has a convergent subsequence.
4) Let ωi = Πwi; the sequence {ωi} has a convergent

subsequence.

Proof. From inequality (32), we can conclude that ‖wi+1 −
w∗‖2G ≤ ‖wi−w∗‖2G. This means that the sequence {‖wi−
w∗‖2G} is non-increasing. Since its elements are non-negative,
the sequence is bounded. Since the sequence is non-increasing
and bounded, it is convergent. Taking the limits of both sides
of (32), we conclude that ‖wi −wi+1‖2G → 0.

Since the sequence {‖wi − w∗‖2G} is bounded, {wi} is
bounded as well. Therefore, it has a convergent subsequence.
The same applies to {ωi}.

Lemma 4. Under the assumptions of Lemma 1, the limit of any
convergent subsequence of {ωi} is a KKT pair of problem (6).

Proof. From Lemma 3, ‖wi+1−wi‖2G → 0. This implies that
‖zi−zi+1‖2C → 0, ‖vix−vi+1

x ‖2 → 0, and ‖dix−di+1
x ‖2 → 0.

From the latter and from (15), we have

vi+1
x −Dxi+1 → 0. (56)

From Lemma 3, {wi} has a convergent subsequence. Consider
one such subsequence, {wij}, whose limit we designate by
w∞. Denote by z∞, v∞x , and d∞x , respectively, the limits
of the corresponding subsequences {zij}, {vijx }, and {dijx }.
Additionally, designate by ω∞ the limit of the subsequence
{ωij} = {Πwij}. Note that zij+1 → z∞ because, according
to Lemma 2, ‖zi−zi+1‖C → 0; for similar reasons, v

ij+1
x →

v∞x and d
ij+1
x → d∞x . Since {vijx } converges and D is full

column rank, (56) shows that {xij} also converges. Denote its
limit by x∞. Taking the limits of both sides of (56) over the
subsequence of indexes {ij}, we obtain

v∞x = Dx∞. (57)

Taking the limits on both sides of Eqs. (38)–(40), again over
the subsequence of indexes {ij}, and applying [44, Theorem
24.4], we have

− µDTd∞x = ∇xf(x∞, z∞), (58)

0 = ∇zf(x∞, z∞), (59)

µd∞x ∈ ∂vx
ψ(v∞x ). (60)

Variables viz and diz are not used in the partial ADMM, and
therefore we can give them any values that are convenient.
By making ωi = Πwi, we are setting, for all i, viz = zi

and diz = 0. This implies that v∞z = z∞ and d∞z = 0.
These two equalities, together with (57)–(60), correspond to
the optimality conditions of problem (6), i.e., ω∞ is a KKT
pair of this problem.

Lemma 5. Under the assumptions of Lemma 1, the sequence
{ωi} is convergent.

Proof. We follow the argument made in, e.g., [45], [38].
Consider the limits of two convergent subsequences of {ωi},

ω∞1 and ω∞2 . According to Lemma 4, ω∞1 and ω∞2 are both
KKT pairs of problem (7). Therefore, according to Lemma 3,
the following two limits exist:

lim
i→∞

‖ωi − ω∞p ‖G = ap, p = 1, 2. (61)

We have

‖ωi − ω∞1 ‖2G − ‖ωi − ω∞2 ‖2G
= −2(ωi)T (ω∞1 − ω∞2 ) + ‖ω∞1 ‖2G − ‖ω∞2 ‖2G.

Taking the limits of both sides over a subsequence of {ωi}
that converges to ω∞1 , we have

a21 − a22 = −2(ω∞1 )T (ω∞1 − ω∞2 ) + ‖ω∞1 ‖2G − ‖ω∞2 ‖2G
= −‖ω∞1 − ω∞2 ‖2G,

and taking the limits over a subsequence that converges to
ω∞2 , we have

a21 − a22 = −2(ω∞2 )T (ω∞1 − ω∞2 ) + ‖ω∞1 ‖2G − ‖ω∞2 ‖2G
= ‖ω∞1 − ω∞2 ‖2G.

These two equalities imply that ‖ω∞1 − ω∞2 ‖2G = 0. This
means that ω∞1 = ω∞2 . Therefore, all convergent subse-
quences of {ωi} converge to the same limit, and as a con-
sequence {ωi} is convergent.

After these preliminary results, we prove Theorem 1.

Proof of Theorem 1. With problem (6) reformulated as (7),
we are under the conditions of Lemmas 1–5. Lemma 1 shows
that the set of solutions of the problem is non-empty. Lemma 5
allows us to conclude that the sequence {ωi} converges.
Lemma 4 shows that its limit corresponds to a KKT pair. This
implies that

{[
xi

zi

]}
converges to a solution of problem (6),[

x∗

z∗
]
, and that {vi} converges to K

[
x∗

z∗
]
.

APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS

This Appendix presents the computing times for some of
the experiments described in Section III-B.

TABLE II
RESULTS FOR cameraman WITH BOXCAR BLURS OF VARIOUS SIZES.

Method Blur size κ× 103 Iterations Time (s)
Proposed-1

5 57.0

74 0.796
Proposed-AD 41 0.600
AM 179 1.977
ADMM-CG 25 20.416
CM 12028 52.405
Proposed-1

13 492.4

457 4.030
Proposed-AD 133 3.072
AM 401 4.376
ADMM-CG 49 92.345
CM 58623 259.226
Proposed-1

21 1356.5

410 3.628
Proposed-AD 95 3.244
AM 492 5.336
ADMM-CG 65 142.542
CM 122902 535.551
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TABLE III
RESULTS FOR Lena WITH BOXCAR BLURS OF VARIOUS SIZES.

Method Blur size κ× 103 Iterations Time (s)
Proposed-1

5 57.0

131 1.256
Proposed-AD 52 0.721
AM 264 3.032
ADMM-CG 25 21.188
CM 11353 49.062
Proposed-1

13 492.4

1038 8.908
Proposed-AD 140 3.192
AM 399 4.390
ADMM-CG 49 86.374
CM 51328 223.575
Proposed-1

21 1356.5

2202 18.713
Proposed-AD 176 5.761
AM 552 6.038
ADMM-CG 65 138.104
CM 118684 517.376

TABLE IV
RESULTS FOR Lena WITH GAUSSIAN BLURS OF VARIOUS SIZES.

Method Blur size κ× 103 Iterations Time (s)
Proposed-1

5 247.0

196 1.828
Proposed-AD 73 0.958
AM 331 3.737
ADMM-CG 35 26.204
CM 13946 61.351
Proposed-1

13 21590.6

6093 52.058
Proposed-AD 776 16.905
AM 1032 11.344
ADMM-CG 81 120.265
CM 196053 867.026
Proposed-1

21 686384.8

68776 583.065
Proposed-AD 7047 233.340
AM 1454 15.863
ADMM-CG 205 345.285
CM 412249 1833.467
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