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Abstract—Hyperspectral remote sensing or imaging spectrosco-
py is an emerging technology in plant production monitoring and
management. The continuous reflectance spectra allow for the
intensive monitoring of biophysical and biochemical tree charac-
teristics during growth, through for instance the use of vegetation
indices. Yet, since most of the pixels in hyperspectral images are
mixed, the evaluation of the actual vegetation state on the ground
directly from the measured spectra is degraded by the presence of
other endmembers, such as soil. Spectral unmixing, then, becomes a
necessary processing step to improve the interpretation of vegeta-
tion indices. In this sense, an active research direction is based on the
use of large collections of pure spectra, called spectral libraries or
dictionaries, which model a wide variety of possible states of the
endmembers of interest on the ground, i.e., vegetation and soil.
Under the linear mixing model (LMM), the observed spectra are
assumed to be linear combinations of spectra from the available
dictionary. Combinatorial techniques (e.g., MESMA) and sparse
regression algorithms (e.g., SUnSAL) are widely used to tackle the
unmixing problem in this case. However, both combinatorial and
sparse techniques benefit from appropriate library reduction strat-
egies. In this paper, we develop a new efficient method for library
reduction (or dictionary pruning), which exploits the fact that
hyperspectral data generally lives in a lower-dimensional subspace.
Specifically, we present a slight modification of the MUSIC-CSR
algorithm, a two-step method which aims first at pruning the
dictionary and second at infering high-quality reconstruction of
the vegetation spectra on the ground (this application being called
signal unmixing in remote sensing), using the pruned dictionary as
input to available unmixing methods. Our goal is two-fold: 1) to
obtain high-accuracy unmixing output using sparse unmixing, with
low-execution time; and 2) to improve MESMA performances in
terms of accuracy. Our experiments, which have been conducted in
a multi-temporal case study, show that the method achieves these

two goals and proposes sparse unmixing as a reliable and robust
alternative to the combinatorial methods in plant production moni-
toring applications. We further demonstrate that the proposed
methodology of combining a library pruning approach with spec-
tral unmixing provides a solid framework for the year-round
monitoring of plant production systems.

Index Terms—Array signal processing, dictionary pruning,
hyperspectral imaging, hyperspectral unmixing, MESMA,
MUSIC-CSR, plant production systems, sparse regression,
sparse unmixing, spectral libraries.

NOMENCLATURE

MESMA Multiple endmember spectral mixture analysis.
SUnSAL Sparse unmixing via variable splitting and

augmented Lagrangian.
MUSIC-CSR Hyperspectral unmixing via multiple signal

classification and collaborative sparse
regression.

ADMM Alternating direction method of multipliers.
LMM Linear mixing model.
FCLS Fully constrained least squares.
ASC Abundances sum-to-one constraint.
ANC Abundances non-negativity constraint.
BPDN Basis pursuit denoising.
OMP Orthogonal matching pursuit.
ISMA Iterative spectral mixture analysis.
MUSIC-SR Hyperspectral unmixing via multiple signal

classification and sparse regression.
HySime Hyperspectral signal identification byminimum

error.
CLSUnSAL Collaborative sparse unmixing via variable

splitting and augmented Lagrangian.
PBRT Physically based ray tracer.
LAI Leaf area index.
SMC Soil moisture content.
SAD Spectral angle distance.
ED Euclidean distance.
GM1 Vegetation index whose name is composed by

the initials of the authors who proposed it:
Gitelson and Merzlyak.

sLAIDI Standardized LAI determining index.
MDWI Maximum difference water index.

I. INTRODUCTION

I N PLANT production system monitoring, the value of
hyperspectral remote sensing has been amply demonstrated

[1]. The spatial coverage and the ability to derive vegetation

1939-1404 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Manuscript received September 20, 2013; revised November 26, 2013;
accepted February 16, 2014. Date of publication June 23, 2014; date of current
version August 01, 2014. This work was supported in part by Portuguese Science
and Technology Foundation under Projects PEst-OE/EEI/LA0008/2013 and
PTDC/EEI-PRO/1470/2012.

M.-D. Iordache is with the Flemish Institute for Technological Research
(VITO), Centre for Remote Sensing and Earth Observation Processes (TAP),
BE-2400 Mol, Belgium (e-mail: marian-daniel.iordache@vito.be).

L. Tits is with the Department of Biosystems, M3-BIORES, Katholieke
Universiteit Leuven, BE-3001 Leuven, Belgium (e-mail: laurent.tits@biw.
kuleuven.be).

J. M. Bioucas-Dias is with the Instituto de Telecomunicações and Instituto
Superior Técnico, Universidade de Lisboa, 1049–001 Lisbon, Portugal (e-mail:
bioucas@lx.it.pt).

A. Plaza is with the Hyperspectral Computing Laboratory, Department of
Technology of Computers and Communications, Escuela Politécnica, University
of Extremadura, Cáceres E-10071, Spain (e-mail: aplaza@unex.es).

B. Somers is with Department of Earth and Environmental Sciences, Division
Forest, Nature and Landscape Research, Katholieke Universiteit Leuven, B-3001
Leuven, Belgium, and also with the Flemish Institute for Technological Research
(VITO), Centre for Remote Sensing and Earth Observation Processes (TAP),
BE-2400 Mol, Belgium (e-mail: ben.somers@ees.kuleuven.be).

Color versions of one ormore of the figures in this paper are available online at
http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2014.2314960

2016 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014



attributes from spectral information are important benefits.
A common problem, however, is the sub-pixel spectral contribu-
tionofbackground soils,weeds, and shadows,whichprevents the
effectiveness of feature extraction (e.g., vegetation indices) to
monitor site-specific variations in tree condition [2]–[4]. Mixed
pixels prevail in agriculturalfields due to thediscontinuousopen
canopies, typical of most (perennial) plant production systems.
The continuous monitoring of plant production systems is
further complicated by temporal changes in pixel composition.
Over the growing season, trees andweeds grow/decaywhile soil
moisture conditions change depending on irrigation schemes
and precipitation. These dynamic and intimately mixed scenes
pose serious problems for the remote monitoring of tree condi-
tion. An accurate monitoring method for tree production para-
meters as such requires at all times the removal of undesired
spectral background effects from the mixed image pixels [4].

Most available unmixing algorithms are focused on roughly
estimating the proportional ground cover of the vegetation class
(e.g., [5], [6]). This technique is popular for the rapid, early, and
low-cost assessment of tree area statistics from multi-temporal
and spectral low-(spatial) resolution imagery [7], [8], but the
technique is clearly unable to extract spectrally pure vegetation
characteristics, uncontaminated by pixel components, such as
soil and shadow.

Several authors dealt with this problem partially by adjusting
existing vegetation indices to make them more robust for soil
background effects [9], [10]. The design of these indices is based
on the assumption that soils are characterized by a unique linear
relationship between near infrared (700–1350 nm) and visible
(400–700 nm) reflectance, i.e., the soil line. Despite these efforts,
the success of the soil-adjusted indices is limited because the soil
line is not as generic as assumed [11], [12].

Consequently, a more generic approach to reduce subpixel
background effects is needed. In [4] and [13], the authors
proposed a signal unmixing methodology to extract the “pure”
vegetation signal from the individual mixed pixels of a scene
consisting of soil and vegetation. Fig. 1 illustrates the concept.
In Fig. 1(a), two tree spectra (red) and two soil spectra (blue)
contributing to one pixel are plotted. For simplicity, we assume
that all endmembers contribute equally to the observed spectrum
of the pixel (all have fractional abundance equal to 0.25).

In Fig. 1(b), the tree signal contribution (red), soil signal contri-
bution (blue), and the resulting spectrum of the pixel (magenta)
are displayed. While classical unmixing (or area unmixing)
infers fractional abundances for each of the endmembers con-
tributing to the pixel, note that in signal unmixing we are
interested in the joint spectral contribution of the endmembers
of the same type [e.g., the resulting tree spectrum represented in
red in Fig. 1(b)], as the quality of vegetation indices inferred
directly from the observed spectrum of the pixel might be
degraded by the contribution of soil signal.

The signal unmixing methodology, based on the MESMA
model [14], searches for each pixel the best vegetation represen-
tative from an extended spectral library. The selected vegetation
spectra are uncontaminated by undesired background effects and
as such better reflect the true condition of the plant(s). Feature
extraction techniques (e.g., vegetation indices) are consequently
used to provide maps of plant condition parameters. Although
results showed improvedmonitoring of site-specific variations in
tree condition, the combinatorial nature of the method in combi-
nation with (the need for) large libraries provide a major bottle-
neck for operational implementation.

A possibly more efficient alternative for MESMAmight be the
unmixing algorithms that are based on the sparsity of the mixtures
[15]–[17]. Similar toMESMA, sparse unmixing algorithmsmake
use of large spectral libraries. The algorithms assume that the
endmembers contributing to the observed spectrum of a pixel are
present in the spectral library.As thenumberofactual endmembers
on the ground is much smaller than the number of spectra in the
library, the correspondingvectorof fractional abundancescontains
only a few nonzero values, i.e., it is a sparse vector.

In recent years, a plethora of algorithms exploiting this
characteristic was proposed. The unmixing is first formulated
as a sparse regression problem. Then, the ADMM [18] is used to
solve the obtained optimization problem. ADMM represents a
class of algorithms, which decomposes a hard optimization
problem into sub-problems, which are easier to solve, by intro-
ducing new variables in the objective function. The initial sparse
unmixing algorithms [19] were designed to act in a per-pixel
fashion, meaning that the unmixing solution in one pixel is
considered to be independent on the solution of any other pixel in
the image. Extensive tests showed that thesemethods outperform

Fig. 1. Signal unmixing illustration. (a) Spectra of endmembers present in the pixel (red—tree; blue—soil). (b) Tree (red), soil (blue) signal contributions and resulting
spectrum (magenta).

IORDACHE et al.: DYNAMIC UNMIXING FRAMEWORK FOR PLANT PRODUCTION SYSTEM MONITORING 2017



the algorithms, which do not impose sparsity explixitly both in
terms of accuracy and running time [20]. However, they were not
used before in signal unmixing applications.

A. Library Pruning for Improved Unmixing Efficiency

As already mentioned, the use of spectral libraries opened
new directions in unmixing. Originally, they were employed as
an alternative to endmember extraction, given that the presence
of pure pixels (for all endmembers) in the images is not ensured,
most of the hyperspectral pixels being mixed due to the relative
low-spatial resolution of the hyperspectral sensors [14], [21].
Also, some applications require the capture of spectral varia-
tions of one material at fine spectral level, which might not be
obtained through classic endmember extraction (e.g., the
detection of two distinct health states of the same type of tree
in precision farming [22]). In theory, the reliability of the
hyperspectral libraries improves when they contain a large
number of pure signatures, as the probability of the actual
endmembers on the ground to be present in the library increases.
As a result, the goal is to include in the libraries as many spectra
as possible. However, this leads to many drawbacks related to
computational issues and to the ability of spectral unmixing
algorithms to distinguish between similar signatures, as will be
shown further (see also [13], [14], [21], and [23]). On the other
hand, many of these signatures are not contributing at all to the
observed data. Fromhere, we can easily identify the necessity to
exploit so-called library or dictionary pruning methodologies,
able to retain, from a generic large library, only useful spectra
(i.e., the ones which are likely to contribute to the observed
dataset). Multiple techniques have been developed to select a
reduced set of endmembers from a spectral library while
capturing enough spectral variability. Different approaches
have been followed (see [21] for a comprehensive overview
on hyperspectral unmixing): 1) using the extreme points of the
data cloud [24]; 2) minimizing of modeling error through
application to a spectral library [25]; 3) minimizing ofmodeling
error through creation of virtual endmembers [26]; or 4) opti-
mizing of modeling accuracy [27]. These techniques were,
however, designed to address endmember variability issues in
spectral unmixing [28] and, therefore, target to optimize image-
wide cover fraction estimate accuracies [29], [30] rather than
to identify/extract the exact pure endmembers on a per-pixel
basis, i.e., signal unmixing. However, a low-modeling error
does not ensure the inference of the proper endmembers
contributing to the observed spectrum [20]. Therefore, we
propose here a new approach aiming at decoupling the pruning
step from the abundance estimation by using the intrinsic low-
data dimensionality characterizing the hyperspectral images, as
will be shown further.

B. Toward a Dynamic Unmixing Framework for Site-Specific
Monitoring of Plant Production Systems

If we want to effectively steer plant growth and plant produc-
tion processes, a continuous monitoring program is required
[31]. Ideally, spectral images should thus be acquired at regular
moments in the growing season, as we are looking at a dynamic

system with temporally variable vegetation and soil conditions.
For each image, a signal unmixing procedure is needed to reduce
undesired background effects and as such provide a reliable
estimate of plant condition. In order to incorporate all possible
plant states throughout a growing season, huge spectral data-
bases are needed, which are subsequently used to feed combina-
torial unmixing approaches, such as MESMA [13]. It is obvious,
however, that the computational burden and increased ill-
posedness effects related to the high collinearity between differ-
ent members of the library make this signal unmixing approach
infeasible to be applied in a temporal monitoring program.

In this paper, we propose a dynamic unmixing framework for
the year-round site specific monitoring of plant production
systems. We exploit a dictionary pruning methodology in-
tended to remove from the spectral library (of soil and tree
spectra) a significant number of signatures, which do not
contribute to the observed image. The remaining pure spectra
form a reduced subset of the original library (which we call
pruned library or dictionary). The pruned library is then used for
sparse unmixing, providing for each image pixel an estimate of
the fractional abundance and pure spectral properties of the
presented soil and tree components. Although it was shown that
the pruning does not improve significantly the mutual coher-
ence of the libraries (i.e., the largest cosine between any
two spectral vectors in the library, which strongly influences
the unmixing accuracy [18]), systematic improvements in the
estimated fractional abundances were observed [32], [33]. The
pure spectral properties of the trees provide sub-pixel informa-
tion on the actual biophysical and biochemical condition of the
trees. We recall that it is the first time that sparse unmixing is
specifically implemented as a signal unmixing approach, i.e.,
the estimated per-pixel endmember spectra are considered a
valuable output of the model and form the basis for sub-pixel
tree condition monitoring (e.g., through vegetation indices).
Traditionally, the performance of sparse unmixing is evaluated
based on its accuracy to estimate the sub-pixel cover fractions.
In this paper, however, we specifically focus on howwell sparse
unmixing is capable to provide useful sub-pixel information on
tree condition. In order to evaluate the robustness and dynamic
nature of our unmixing framework, we test its performance on a
time series of simulated hyperspectral images over a citrus
orchard covering four different periods of the growing season.
The simulated images are built using ray-tracing software with
in field collected canopy and soil spectra of different moments
in the growing season as input. For comparison purposes, the
reduced library is also used as input to MESMA, with the goal
of analyzing the impact of the pruning in the unmixing perfor-
mance. Note that sparse techniques were not used before in a
temporal monitoring framework.

The remainder of the paper is organized as follows. Section II
reviews the combinatorial and sparse regression techniques,
which are used for signal unmixing. In Section III, we describe
our proposed methodology for plant production systems moni-
toring. An extensive analysis of the quantitative and qualitative
performances achieved by the method in a temporal dataset is
presented in Section V. The paper concludes with a section
dedicated to observations related to the proposed methodology
and pointers to future work.

2018 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014



II. COMBINATORIAL VERSUS SPARSE REGRESSIONMETHODS IN

HYPERSPECTRAL UNMIXING

In Section I, we have motivated the need to perform unmixing
when evaluating vegetation indices, which are related to the
physical characteristics of the vegetation on the ground. In this
section, three unmixing algorithms related to the proposed
approach are reviewed. The first one is the well-knownMESMA
(see [13] and the references therein), which is a combinatorial
technique aimed at minimizing the reconstruction error for each
observed spectrum. The second algorithm, SUnSAL [19], ex-
ploits the sparse characteristics of the spectral mixtures, on a per-
pixel basis.

For simplicity, we establish the following terminology for the
rest of the paper: an endmember class or, simply, a class denotes
a specificmaterial, structurally different from the others (e.g., soil
and tree); a (library) member represents one spectrum of a pure
material included in the spectral library (thus, it can be assigned
to any of the classes); whereas a (pixel) endmember is a member
contributing to the observed spectrum of the respective pixel.

The aforementioned algorithms assume that the LMM holds
for each observed spectrum. Although nonlinearities are likely to
arise in any scene, the LMM is widely used in hyperspectral
applications, since, despite its simplicity, it represents a good
approximation in many natural scenes. Let be the number of
spectral bands and R denote the -dimensional observed
spectral vector of a given pixel from a hyperspectral image. Let

R denote a spectral library with
spectral signatures available a priori. The observed vector
can be expressed as a linear combination of spectral signatures
taken from the library as (see [20] for more details)

where R is the vector collecting the fractional abundances
of the members and R holds the errors affecting the
measurements at each spectral band.

Because the abundance fractions are non-negative and sum-to-
one, the constraints (to be understood in the component-
wise sense) and ( stands for a column vector with
ones) called abundance non-negativity constraint (ANC) and
abundance sum-to-one constraint (ASC), respectively, are often
imposed into the model (1).

A. Multiple Endmember Spectral Mixture Analysis

MESMA is a widely used combinatorial method to estimate
fractional abundances of the endmembers in a given scene. Let us
suppose that the spectral library contains pure spectra of
distinct classes. For each observed spectral vector , MESMA
generates combinations of endmembers belonging to distinct
classes and then performs FCLS [34] unmixing, expressed as the
following optimization problem:

where is the matrix composed by the selected members (a
small subset of ); is the vector of fractional abundances
compatiblewith ; and is a vector of oneswith components.

The optimization problem (2) infers a solution vector ,
which minimizes the reconstruction error of the observed pixel,
provided that the abundances satisfy the ASC and the ANC.
From all the spectra combinations evaluated,MESMA retains, as
a final solution, the one with the lowest reconstruction error.
Although this strategy leads to satisfactory results, it is subject to
two major drawbacks: 1) the number of possible spectra combi-
nations is combinatorial, with makes an exhaustive search
impossible as the number of classes increases; and 2) due to
time constraints, not all the possible combinations can be evalu-
ated; usually, a fixed number of tests is performed, which
decreases the probability of finding the correct endmembers
[13]. Moreover, MESMA typically enforces the presence of
exactly one endmember from each class, which might force the
solution to contain endmembers, which are not in the mixture or,
contrarily, to lack ground-truth endmembers, if the pixel contains
more than one endmember belonging to the same class.

B. Sparse Unmixing via Variable Splitting and Augmented
Lagrangian

Sparse regression opened recently many alternatives to clas-
sical unmixing algorithms. The sparse unmixing techniques
exploit the fact that one pixel contains a relative low number
of endmembers, compared to the number of pure spectra con-
tained in the library. The estimated vector of fractional abun-
dances is, then, a sparse vector, as all the members, which are not
present inmixed pixels should have null abundances. The goal of
sparse unmixing is tofind a reduced set of endmembers present in
the mixture, which reconstructs the observed pixel with high
accuracy.

The performances of sparse unmixing techniques are affected
by several factors, such as the cardinality of the solution (number
of active endmembers), the mutual coherence of the spectral
library (i.e., the maximum value of the cosine between any two

columns: ) [35]–[38] and the

number of spectral signatures in the library, among others [20].
In an ideal case, the unmixing should involve highly sparse
mixtures and spectral libraries with low coherence. In practice,
the former observation is generally true (the cardinality of the
solution vector is usually low), but the latter is not (the mutual
coherence of real spectral libraries is often close to one), which
leads to difficulties due to the high similarity between distinct
pure signatures. Even so, it was shown that sparse regression can
partially overcome these limitations [20].

In a sparse regression framework, the unmixing can be
formulated as an optimization problem as follows:

where the so-called -norm simply counts the nonzero compo-
nents in . In other words, we seek for the smallest set of library
spectra, which perfectly explains the observed data.

The optimization problem (3) is nonconvex and combinatorial,
hard to solve [39]. In practice, the -norm is relaxed to the
-norm, which was shown to produce similar results under

certain conditions of coherence [40]. Moreover, because of the
existence of noise, the observed spectrum cannot be exactly
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recovered in practice, thus, a small reconstruction error should
be allowed. The optimization problem (3) becomes, then, the so-
called BPDN problem [41]

which can be re-expressed, by incorporating the constraint into
the objective function

In (5), thefirst term is the data fidelity term and the second term
imposes sparsity, while is a regularization parameter,
which weights the two terms of the objective function (or the
Lagrangian multiplier). To solve the optimization problem (5),
we use the SUnSAL algorithm,1 which is a fast algorithm
specifically designed for hyperspectral scenes. Based on
ADMM, SUnSAL is able to incorporate both the ANC and the
ASC. In our experiments, we employANConly, as,whenASC is
enforced in the optimization problem (5), the second term plays
no role and the solution of the unmixing is equivalent to the
classical FCLS solution. For a detailed assessment on the
superiority of SUnSAL over techniques, which do not enforce
sparsity explicitly (such as OMP [42] and ISMA [43]), see [20].

SUnSAL is a per-pixel sparse unmixing algorithm specifically
designed for hyperspectral applications. Inspired by SUnSAL,
recent developments opened new perspectives in unmixing, by
exploiting the intrinsic group structure of the spectral libraries
[44], the relative low number of endmembers that contribute to
the data in a collaborative way [45] (sparsity across the pixels) or
the piece-wise smooth spatial distribution of the endmembers
[46], [47].

III. MUSIC-CSR AND PROPOSED ADAPTATION FOR PLANT
PRODUCTION SYSTEM MONITORING

MUSIC-CSR is a two-step unmixing algorithm, which ex-
ploits the fact that the observed vectors share the same support in
order to obtain accurate fractional abundances. The first step,
similar to the MUSIC array signal processing algorithm [48],
[49], selects, from the available library, a subset of pure spectra
suitable to represent the observed dataset. Consequently, the
second step applies collaborative sparse regression CSR to
the reduced library. CSR is intended to promote sparsity across
the pixels, which results in a matrix of abundance fractions with
only a few nonzero lines. This means that one single member
from the library can explain many pixels in the observed dataset.
This is an aspect that we do not specifically encourage in our
application, as we aim at capturing fine spectral differences
between different pixels. This is why we replace the second
step of MUSIC-CSR with the per-pixel processing techniques
detailed in Section II: SUnSAL and MESMA. Such modified
version of MUSIC-CSR is called MUSIC-SR, where SR stands
for sparse regression. Although MESMA does not impose the
sparsity of the solution explicitly (i.e., it does not include a sparse
regularizer in the objective function), it still returns a sparse

solution (where the number of nonzero components in the
fractional abundances vector is always equal to the number of
endmember classes.)

The modalities of the MUSIC-CSR algorithm and the under-
lying principles are detailed in [32]. The MUSIC-SR algorithm,
shown in Algorithm 1, uses literally the pruning part of MUSIC-
CSR. The input is represented by the spectral library , the
hyperspectral image R , the number of signatures to be
retained and the regularization parameter used in the SR
optimization problem (5) in which the ANC constraint is usually
imposed. If MESMA is employed in the unmixing step, this
regularization parameter does not apply. The algorithm returns a
reduced set of signatures collected in the matrix and the
fractional abundances corresponding to the reduced set, collect-
ed in the matrix denoted by .

Algorithm 1: MUSIC-CR

Input: R (library), R (hyperspectral image),
(number of signatures to be retained), (regularization

parameter)

Output: (detected signatures), (fractional abundances
with respect to )

1 begin

2 (estimate an orthonormal basis for
using the HySime algorithm [50])

3 (projector on )

4 for to do

5

6

7

8 Perform unmixing using SUnSAL [19] or MESMA,
[14] using the pruned library .

The two parts of the MUSIC-SR are performed as follows.
Steps 2)–7) of the algorithm select, from the original library, a set
of pure signatures linked to the subspace in which the data lives.
The data subspace is estimated in Step 2), using the HySime
algorithm2 [50], which is fully automatic (it does not require
input parameters). The algorithm provides a set of eigenvectors
to define the data subspace and also estimates the number of
endmembers in the image . In step 4), the EDs from each library
member to the estimated subspace are computed through the
orthogonal projector computed in Step 3).
Steps 6) and 7) sort, in increasing order, the normalized projec-
tion errors computed in the previous step and retain, from the
original library, the spectra corresponding to the first of them,
respectively. In other words, the library spectra that are the
closest in terms of ED to the data subspace are retained in the
pruned library. Ideally, they should lie in the data subspace, but it
is not always the case in real applications, due to acquisition and

1Available online: http://www.lx.it.pt/bioucas/publications.html. 2Available online: http://www.lx.it.pt/bioucas/code.htm.

2020 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014



modeling errors. Note that, in this paper, we will adopt a
conservative approach, by retaining a number of pure spectra,
where > and > eigenvectors to define the data subspace,
in order to ensure that the subspace representation is only weakly
affected by measurement errors (noise). In our application, we
retain tree spectra and soil spectra, leading to a total of

with < . Step 8) represents the second part of the
MUSIC-CR algorithm, i.e., the unmixing process w.r.t. the
selected subset of spectra, using one of the algorithms described
in Section II. As previously mentioned, the original unmixing
algorithm used in MUSIC-CSR, called CLSUnSAL [45], is
replaced, in turn, by MESMA and SUnSAL algorithms. This
is due to the fact that we are more interested in exploiting the
variability of the signatures rather than in encouraging dominant
endmembers. In our application, we are very interested in the
pruning strategy, which is likely to increase the probability to
find correct solutions, but we feel that by constraining the
estimated matrix of fractional abundances to contain a small
number of nonzero lines might result in a weak capacity of
the algorithm to capture fine spectral variations from one pixel
to another. It results that the per-pixel processing, to which
MESMA and SUnSAL belong, is more appropriate than the
collaborative approach in this specific application.

IV. EXPERIMENTAL SETUP

This section describes the temporal dataset used in the experi-
ments and the performance discriminators employed for an
extensive qualitative and quantitative assessment.

A. Simulated Dataset

Here, we detail the data used in our experiments: ground-truth
spectra, spectral libraries, and simulated images.

1) Virtual Orchard: The synthetic hyperspectral image data
considered in this work were generated from a ray-tracing
experiment in a fully calibrated virtual citrus orchard using
the PBRT model [51]. With this type of data, the complexity
of real hyperspectral images can be simulated, implicitly
incorporating effects such as multiple photon scattering and
shadowing/shading effects. In addition, the reference data can
be exactly derived, as such allowing an objective and extensive
evaluation of the methodology [52]. In the virtual orchard, 10
different 3-D representations of citrus treeswere created based on
the triangular mesh algorithm described in [53]. The spectral
interactions between the photons and the components in the
scene (i.e., leaves, branches, stems, and soil) as well as the
atmosphere were modeled realistically using bidirectional
reflectance distribution function models and sky maps [51].
The scene illumination was simulated using the combination
of two light sources: a directional light source for the direct
(unscattered) light and a skymap that contains the angular
distribution of diffuse light.

2) Spectral Measurements: The spectral properties of the
different components were determined based on field
measurements. In situ measured spectral data were collected
in a citrus orchard near Wellington, South Africa ( and

), the same orchard used to calibrate the virtual

orchard [51], [54]. The orchard block had a row spacing of
4.5 m, a tree spacing of 2 m and a row azimuth of . The
average tree height was 3 m. The soil between the trees was
classified as “Albic Luvisols” (FAO, 1998), and had a sandy
texture with an average organic content of 0.53% [12]. Spectral
measurements were collected within one hour of local solar
noon on clear sky days using a full-range (350–2500 nm)
spectroradiometer (ASD®, Boulder, CO) with a foreoptic.

During a two year period, monthly spectral measurements
were taken of the soil, canopy, and leaves [54]. As such, seasonal
changes in phenology (e.g., new shoot growth, blossoming, fruit
formation, harvest, and pruning) were incorporated. Soil mea-
surements were taken from nadir at a height of 1 m above the
surface, while tree canopy spectra were measured at 2 m above
the tree top. Leaf spectral measurements were taken from
randomly selected leaves in the top of the canopy. In addition
to the spectral measurements of the different components in the
orchard, skymaps were generated for different solar elevations
and azimuths that correspond to four different points in time. An
overview of the dates and the corresponding solar positions is
given in Table I.

3) Scenarios: From the extensive spectral dataset consisting of
the monthly measurements, the measurements closest to the
dates of the skymaps were selected. The leaf reflectance
measurements were inverted using the PROSPECT model
[55] to estimate leaf structure and biochemical composition
(e.g., pigmentation, and water content). The transmittance was
obtained by running the model again in the forward mode [51].
To incorporate different stresses in the orchard, the biochemical
composition of the leaves was altered before running
PROSPECT in the forward mode. The chlorophyll content of
the leaves was reduced to 50%, and the water content of the
leaves to 70%. In addition, from the 3-D geometries of the trees,
leaves were randomly removed to obtain trees with an LAI
around 56% of the reference trees. As such, four different
orchards could be generated for each time period (i.e.,
reference, chlorophyll stress, water stress, and LAI stress).
For the creation of each orchard, 10 different tree geometries
were available. With these trees, the orchards were constructed
by randomly repeating the trees throughout the orchard.

Six different regions were defined in each of the orchards to
incorporate spatial variability in soil moisture throughout the
orchard. In the summer month (December), a low-SMC was
implemented, ranging between 0 and 10% gravimetric SMC. For
spring and autumn (March and October), the SMC ranged
between 10% and 20%, whereas in the winter, the SMC ranged
between 20 and 30%. A hyperspectral image of each of the 16
orchards (four stresses and four time periods) was generated in

TABLE I
SOLAR POSITIONS AT THE ORCHARD FOR FOUR DIFFERENT DATES
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the ray-tracer, with a spatial resolution of 2 m to simulate an
airborne sensor. The spectral range was 350–2500 nm, with a
spectral resolution of 10 nm.

For illustrative purposes,we show, in Fig. 2,RGB images of the
four simulated datasets. Note that, despite the data are simulated,
most of the parameters affecting the observation of natural scenes
(e.g., nonlinearities, shadows, and multiple scattering) are taken
into account, which leads to a very accurate modeling of a real
plant production system. Another advantage of the simulated
dataset used in our experiments is the control, which we have on
the scene parameters, which allows us a detailed assessment of the
performances of the proposed method, this being nearly

impossible using real data due to the actual difficulties in acquiring
ground-truth information on a temporal basis.

4) Spectral Libraries: The reference canopy and soil spectra
from all seasons were compiled in the spectral library

R , containing 2320 spectra measured in 216
spectral bands with nominal spectral resolution of 10 nm.
Note that, from this library, only 580 spectra (40 tree spectra
and 540 soil spectra) are contributing to each season separately,
whereas the others can be regarded as extra spectra. The
organization of the library is schematically represented in
Fig. 3, in which each color represents the spectra generating
the dataset corresponding to one specific season.

Fig. 2. RGB images of the orchard along the four seasons: (a) January, (b) March, (c) June, and (d) September.

Fig. 3. Library organization. Each color represents spectra contributing to the observed scene in one specific season. In each season, there are 40 tree and 540 soil
ground-truth spectra.
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B. Performance Discriminators

We explore the capabilities of the proposed method from
two viewpoints. 1) The ability to retain correct endmembers from
the initial spectral library in the dictionary pruning step is tested in
various scenarios. 2) The quality of the reconstructed vegetation
spectra on the ground is measured in terms of the

between the true spectrum

and the reconstructed spectrum obtained after the unmixing.
At the same time, we measure the ED (

) between the normalized true and recon-

structed spectra and we report the average value over all pixels.
Note that, from the point of view of the vegetation indices
computation, SAD is more informative than the ED, as it is
invariant to illumination factors. The running times of the algo-
rithms are also specified. An illustration of the quality of inferred
vegetation indices in two cases: before and after dictionary
pruning and spectral unmixing, is also included. The three vege-
tation indices taken into account are:

1) GM1 [56] index: , where and are the
reflectances registered at the wavelengths and

, respectively.
2) The standardized LAI Determining Index [57]:

, where , , and are the

reflectance values measured at the respective wavelengths
and is a scaling factor to rescale the index between 0
and 1, equal to 40.

3) The maximum difference water index [58]:

, where

is the maximum reflectance in the wavelength interval
1500–1750 nm and is the minimum
reflectance in the same interval of wavelengths.

These indices are adopted due to their versatility in character-
izing the health parameters of the vegetation (i.e., chlorophyll
content, LAI and leaf water content, respectively). They were
previously tested by other authors in several scenarios (see, e.g.,
[57], [59], and [60]), being shown that they exhibit a good
correlation to the actual health state of the vegetation on the
ground, especially in Citrus orchards [61].

We analyze several scenarios related to the input library,
dimensionality of the subspace and the number of selected
spectra. First, we assume that the library is formed by the
collection of true ground spectra over the four seasons, with the
goal to check the accuracy of the pruning method in selecting
correct spectra related to each specific season. Then, the library is
extended with spectra which do not contribute to the image. In
this case, the selection process is expected to become more
difficult, due to the extra variability induced. The number of
eigenvectors retained from the HySime output to define the data
subspace, denoted by , takes the following values: ,

, and , where defines the dimension of the
subspace in which the data lives, infered by the same algorithm.
Finally, two situations regarding the number of selected spectra
are investigated: in the first case, we assume that we know the
correct number of tree and soil spectra contributing to the
observed image; then, in a general setup, we set the number of

selected tree and soil signatures to different empirical levels (60
and 100 spectra, respectively, for both tree and soil).

V. EXPERIMENTAL RESULTS

This section analyzes the performance of the proposedmethod,
according to the experimental setup described in Section IV. In
SectionV-A,we provide a qualitative and quantitative assessment
of the pruning process w.r.t. the number of correct spectra retained
in several configurations and the ability to properly cover the
variability range of the ground-truth endmembers. The accuracyof
the reconstructed vegetation spectra is investigated next. A com-
parison of the running times of the considered algorithms under
different conditions is also presented. Section V-B illustrates the
potential of the proposed method to infer accurate vegetation
indices. To evaluate the robustness of the pruning method new
members, which are not contributing to the observed data, are
added to the spectral library, and the tests related to the pruning
strategy are repeated. Section V-C is devoted to a short discussion
on the obtained results.

A. Accuracy of the Dictionary Pruning Process

Table II shows the number of correctly retained spectra by the
proposed method, for all the considered datasets and simulation
conditions, when the original library is pruned by setting and

to different values. Note that the correct spectra might not be
necessarily mandatory for obtaining accurate reconstructions of
the observed vegetation spectra. However, we consider that this
indicator is crucial for analyzing the accuracy of the pruning step,
given that the selection of true endmembers should further guide
the unmixing towardmore accurate solutions. On the other hand,
the matching of a dataset to a certain season can be considered a
fast and simple application of the pruning step—the data is likely
to be acquired during the season to which the retained spectra
correspond.

From Table II, it can be easily seen that the pruning method-
ology is able to select (with relative high accuracy) correct
spectra from the library. In all cases, most of the tree spectra
contributing to the actual observed dataset were selected. In the
first case, which corresponds to the situation when the number of
true spectra on the ground is available, the algorithmmisses a part
of the actual spectra.Wewill analyze later if or how this situation
influences the accuracy of the reconstructed vegetation spectra.
However, when increases, less vegetation spectra are missed
in the pruned library (note that, when , all the true tree
spectra are correctly selected). Regarding the soil spectra, we can
conclude that the pruning is more accurate when the number of
eigenvectors defining the subspace is not too low (see the lines
corresponding to versus the ones corresponding to

). However, when is even more increased (e.g.,
), no improvements are observed. We can see now

why the conservative approach adopted here, in which the data
subspace is defined by a number of eigenvectors larger than the
number of endmembers inferred by HySime and the number of
retained spectra is preferably set to relative high values, is indeed
necessary.

For illustrative purposes, we plot, Fig. 4(a) plots the projection
errors, for all library members, when , , and
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, in the June dataset. The green circles correspond to
actual endmembers on the ground and the red circles mark the
projection errors of the selected spectra. A zoomon the regions of
interest (i.e., the ones which contribute to the pruned library due
to the low-projection error of the members) is shown in Fig. 4(b)
and (c). Note that all the soil signatures corresponding to actual

spectra on the ground are correctly selected in the pruning
process. Regarding the tree signatures, there are eight spectra
which are missed by the pruning, with others being selected
instead. In Fig. 4(d), we plot the set of ground-truth spectra
(blue), jointly with the set of selected spectra (red). Note that
the selected spectra cover satisfactorily the whole range of

TABLE II
NUMBER OF CORRECTLY IDENTIFIED SPECTRA IN CONSIDERED SCENARIOS

Fig. 4. (a)–(c) Projection errors corresponding to the library members in the June dataset. Green circles represent the true endmembers. Red circles correspond to the
projection errors of the 580 selected spectra (40 soil spectra and 540 tree spectra). (a) Projection errors, actual members and selected members. (b) Correctly selected
members. (c) Erroneously selected members. (d) Selected and ground-truth spectra.
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variability of the ground-truth spectra. This is encouraging, as it
shows that the spectra incorrectly selected are similar to the
actual ones, which is expected to have only a weak impact on the
quality of the unmixing. The set of 580 selected spectra com-
poses the spectral library which is then used in unmixing.

Another perspective on the accuracy of the pruning step is
presented in Fig. 5, which shows, in a similar fashion to Fig. 4,
the selected spectra when , , and ,
for all images. Note that, by relating Fig. 5with Fig. 3, it is easy to
infer in which season the data were acquired, as most of the
selected members always belong to the correct library subset.
A stronger confusion between the soil signatures from January
and March is visible, due to the similiarity of the soil conditions
in these 2 months. From Fig. 5, the fine sensitivity of the
dictionary pruning step to the variations of the data subspace
is clearly proved due to the visible differences appearing
between the projection errors corresponding to the samemember
(especially for soils) in distinct datasets.

B. Proper Coverage of the Spectral Variability

An important issue is to establish how accurately the selected
spectra can cover the variability of the tree signatures in each
season. For a qualitative comparison, we plot, in Fig. 6, the
following features: the variability range of the spectral library
(blue area), the variability range of the tree signatures in the
corresponding season (green area), and the selected signatures
after the pruning step (magenta).

From Fig. 6, it can be easily seen that the selected signatures
cover satisfactorily the variability range of tree signatures on the
ground. A very interesting case is the June dataset, in which the
actual tree signatures cover the entire spectral variability of
the tree library. Even in this case, the selected signatures are
able to cover the entire variability range. The plots corresponding
to the other three datasets confirm the accuracy of the member
selection process (note how the selected signatures follow
closely the distribution of the actual spectra on the ground,
depending on the specific season).

C. Accuracy of the Reconstructed Vegetation Spectra

In this section, the quality of the reconstructed vegetation
spectra is investigated in terms of SAD and ED. In the experi-
ments, the pruned libraries with and spectra
obtained by dictionary pruning when are used as
input for MESMA and SUnSAL. Fig. 7 shows the plots of SAD
(left column) and ED (right column) w.r.t. the number of
iterations (for MESMA, on the superior -axis, colored in red)
and the regularization parameter (for SUnSAL, on the inferior
-axis, colored in blue). In these plots, values obtained after

MESMA-based unmixing are plotted in red (continuous line for
the full library and dashed line for the pruned library), while the
ones corresponding to SUnSAL are plotted in blue. The number
of iterations for MESMA varies between 10 and 200, while
takes values between 0 [which leads to the classical non-negative
least-squares (NCLS) solution] and 0.05.

Fig. 5. Projection errors corresponding to each library member in the considered datasets. Green circles represent the true endmembers. Red circles correspond to the
projection errors of the 580 selected spectra (40 soil spectra and 540 tree spectra). (a) January, (b) March, (c) June, and (d) September.
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From Fig. 7, a few important observations can be drawn. It is
useful to note that, most of the times, MESMA exhibits the
tendency to converge to the same average SAD and ED values,
independently of the library used, which proves that the pruning
does not have a negative impact on the performance. The
difference between the two situations (full and pruned library,
respectively) is that MESMA exhibits a smoother performance,
no matter the number of iterations, when the pruned library is
employed. On the other hand, when the full library is used, the
algorithm needs more iterations to achieve improved perfor-
mance (usually, at least 100 iterations). This means that, by
dictionary pruning, the reliability of MESMA output is greatly
improvedwhen a low number of iterations is conducted, which is
useful in an operational approach, i.e., when the running time is
limited. Note the important improvements achieved byMESMA
when the number of iterations is set to a low value, say only 10.
On the other hand, sparse unmixing is able to improve both the
SAD and ED between the estimated and true vegetation spectra
in all considered scenarios. We can conclude, then, that sparse
unmixing with pruned libraries is able to achive generally better
performances than MESMA, irrespectively of the scene consid-
ered in the experiments.

D. Algorithms Comparison w.r.t. the Running Times

Table III reports the running times of the proposed technique.
From our experience, the library pruning part [Steps 2)–7) in

Algorithm 1] has negligible running time variation when the
number of retained eigenvectors is varied. This is why we
consider only the specific case when . The same
observation is valid for SUnSAL in what concerns the regulari-
zation parameter , for which we consider the value 0.005 as a
reference. The running time of MESMA is also relatively stable
for a fixed number of iterations. From our previous experiments,
we can conclude thatMESMAobtains satisfactory results after at
least 100 iterations with the full library and after 50 iterations
with the pruned library, thus we report the total running times
obtained in these two situations (obviously, the running time per
iteration is comparable in the two cases). This setup is conceived
such that the algorithms compete under similar conditions of
required accuracy.

Table III reveals that the dictionary pruning step has negligible
running time (less than one second). MESMA running with the
full library exhibits a very large running time. For a similar
accuracy, the running time decreases proportionally with the
reduction in the number of spectra obtained through dictionary
pruning. However, SUnSAL requires a very low-execution
time compared toMESMA, which, correlated to the high quality
of the reconstructed spectra, proposes sparse unmixing as a
powerful alternative to the combinatorial approach in the
year-round site specific monitoring of plant production systems.
Section V-E shows a concrete illustration of the improvements
brought by the proposed technique to evaluating specific vege-
tation indices in this context.

Fig. 6. Quality of the variability range coverage for the four seasons (blue: range of the tree library signatures; green: range of the tree signatures in the specific season;
magenta: selected tree signatures through library pruning). (a) January, (b) March, (c) June, and (d) September.
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E. Illustrative Evaluation of Vegetation Indices

In this section, we compute a series of vegetation indices with
the goal to analyze the influence of the proposed method on the
quality of the inferred values. The vegetation indices employed
here are the three indices introduced in Section IV-B.

First, we provide a qualitative assessment of the estimated
indices. Figs. 8–10 show, respectively, the maps for the three
considered indices (GM1, sLAIDI, and MDWI), in all seasons.

In each figure, the first column displays the ground-truth values
of the respective index, computed from the original vegetation
spectrum. The second column shows the index maps resulting
directly from the observed dataset (mixed pixels). The following
columns show the estimated maps of the considered index,
computed, in turn, by the following algorithms: MESMA run-
ning with full library and 200 iterations (Mf200), MESMA using
pruned library and 50 iterations (Mp50) and SUnSAL (Sp)

Fig. 7. Plots of the average SAD (left column) and average ED (right column) between the reconstructed and the true vegetation spectra in different scenarios. Each row
of plots corresponds to one month of the year. The results are based on a pruned library with 540 members (40 tree spectra and 540 soil spectra) when the number of
eigenvectors to define the data subspace is set to .

IORDACHE et al.: DYNAMIC UNMIXING FRAMEWORK FOR PLANT PRODUCTION SYSTEM MONITORING 2027



(running with optimal parameter , infered in Section V-C). On
the axis, we mark the spatial position of the pixels in the
respective image.

In Figs. 8–10, there are no strong differences visible between
themaps produced byMESMA runningwith the full library and

200 iterations and MESMA running with pruned library and 50
iterations. However, it is important to note that the latter plots
were obtained about four times faster than the former ones,
due to the corresponding reduction in the number of iterations.
On the other hand, SUnSAL appears to perform better than

TABLE III
RUNNING TIMES (S) OF THE PROPOSED PLANT PRODUCTION SYSTEM MONITORING APPLICATION, FOR ALL CONSIDERED DATASETS

Fig. 8. True and computed GM1 maps in the considered datasets.
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MESMA in all considered scenarios and all considered vege-
tation indices.

We are now inspecting the quality of the estimated vegetation
indices from a quantitative point of view. In Table IV, we report
the ED between the true and estimated vectors correponding to
the considered vegetation indices, in all datasets. In Table IV,
addition to the cases presented in Figs. 8–10, we include two
other cases, for awider illustration of the achieved performances:
estimated vegetation indices using MESMA running with full
library and 50 iterations (Mf50) and MESMA running with
pruned library and 200 iterations (Mp200).

Table IV confirms the results reported previously. Generally,
MESMA running with 200 iterations displays comparable qual-
ities when the two libraries are used, as expected. The use of
MESMAwith the full library and low number of iterations leads
to poor performances. However, the vegetation indices evalua-
tion improves considerably after pruning, for the same number of

iterations.Again, SUnSAL shows higher potential thanMESMA
for the accurate evaluation of the vegetation indices, displaying
the lowest ED in all cases, while the indices estimated directly
from the observed dataset are least informative, as expected,
except for the GM1 index estimated for the June dataset, where
only SUnSAL leads to better estimations than the ones obtained
directly from the image pixels.

F. Robustness of the Method w.r.t. the Addition of New
Signatures in the Spectral Library

In this section, we run a short experiment with the goal
to check the sensitiviy of the method w.r.t. to the presence, in
the spectral library, of extra signatures which do not contribute
to the observed data. In this sense, we extend the spectral library
considered in the previous experiments, by including 790 new
tree spectral signatures. These signatures were acquired during

Fig. 9. True and computed sLAIDI maps in the considered datasets.
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a period of more than 1 year (September 2008–February 2010)
in the same orchard described in Section IV-A. Thus, the
new spectral library, which will be denoted by , contains
3110 spectra with 187 spectral bands. Similar to the plots in
Sections V-A and V-B, we plot, in Figs. 11 and 12, the
projection errors corresponding to the members of and the
variability range covered by the selected spectra, respectively,
in the considered datasets, when , , and

. The projection errors of the newly added members
are highlighted with magenta circles.

Fig. 11 reveals that the added spectra exhibit large projection
errors compared to the actual endmembers on the ground, such
that none of them is selected in the pruning process. This means
that themethod is not influenced by the presence of these spectra,
which do not contribute to the observed pixels. On the other
hand, Fig. 12 shows that, despite the wide range of variability
introduced by the enlarged tree spectral library, the pruning

Fig. 10. True and computed MDWI maps in the considered datasets.

TABLE IV
ED BETWEEN TRUE AND ESTIMATED VECTORS OF VEGETATION INDICES IN ALL

CONSIDERED DATASETS
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method is still able to cover with high accuracy the proper
variability range, in the distinct seasons.

The two aforementioned observations prove the robustness of
the method to the presence, in the spectral library, of signatures
which are not correlated to ground-truth endmembers. In the
subsequent unmixing process, it is expected that the results
follow the same pattern shown in Section V-C. However, the
results obtained with MESMA using the full library have a
high probability of losing accuracy, for a fixed number of
iterations, given that the additional spectra in the library lead
to a larger number of possible spectra combinations. This means
that, when using the spectral library , the pruning methodology
is able to boost the unmixing performances even more clearly
than in the first case analized in the experiments.

G. Discussion on the Obtained Results

From the experimental results presented in this section, a few
interesting observations can be drawn. First and foremost, it is
important to mention that the dynamic unmixing methodology
proposed in this paper is able to provide robust and specific
monitoring of plant production systems for a whole year round.
Further, the methodology is robust w.r.t. the size of the library
and the dimension of the subspace used to define the observed
data (the number of eigenvectors retained from the HySime
output). We have also shown that, by including new library
members, the selection remains stable, which means that, no

matter how many extra members are present in the library, the
final estimation of vegetation indices does not change signifi-
cantly. Also, the selected spectra are highly correlated to the
actual ones on the ground and they are able to properly cover the
full range of variability of the true endmembers. Another
observation is that MESMA benefits from pruning in terms of
running speed, as it needs less iterations to achieve a certain
desired performance. While 50 iterations are never enough to
get satisfactory output when the full library is employed, the
performances obtained using this relatively low number of
iterations and the pruned dictionary compete successfully with
the ones obtained with the large library and MESMA running
with 200 iterations. However, SUnSAL, the representative
algorithm for the sparse unmixing techniques chosen in this
work, outperforms MESMA in terms of estimated vegetation
indices in all cases. Given that SUnSAL is alsomuch faster than
MESMA, we can conclude that sparse unmixing is a powerful
alternative in achieving improved monitoring of plant produc-
tion systems through signal unmixing applications when rely-
ing on spectral libraries.

VI. CONCLUSION AND FUTURE WORK

In this paper, twomajor research directions were investigated.
A very important novel contribution is the introduction of sparse
unmixing techniques as a reliable competitor to common

Fig. 11. Projection errors corresponding to each member of in the considered datasets. Green circles represent the true endmembers. Red circles correspond to the
projection errors of the 580 selected spectra (40 soil spectra and 540 tree spectra).Magenta circlesmark the projection errors of the librarymembers added to the original
spectra. (a) January, (b) March, (c) June, and (d) September.
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approaches applied in the temporal monitoring of plant produc-
tion systems. Another important contribution is the exploitation
of a dictionary pruning algorithm able to boost the quality of
evaluated vegetation indices, when both combinatorial and
sparse methods are used. Important improvements over the
original method considered, MESMA, were highlighted in a
temporal dataset which simulates with high accuracy the varia-
tions in vegetation spectra over four seasons, with one represen-
tative month for each of them. The experiments also indicated
that the dictionary pruningmethodology presented here is able to
select, with high accuracy, the spectra of the ground-truth end-
members from a large spectral library. Consequently, the quality
of the MESMA-based unmixing improves clearly for a low
number of iterations. However, our experiments reveal that
sparse regression using the pruned dictionary outperforms
MESMA both in terms of accuracy of reconstructed spectra
and quality of the vegetation indices evaluation. Another impor-
tant advantage of the considered sparse unmixing technique used
in this work, SUnSAL, is related to the running time, which is
much lower than that of MESMA.

Future work will focus on the application of the considered
methods in a real environment, whichwas not performed here, as
it is very difficult in practice to obtain reliable estimates of ground
fractional abundances. The use of simulated spectral libraries, in
which the physical characteristics of the corresponding end-
members are known (e.g., water content, chlorophyll content,

etc.) is also highly desirable for future experiments. Another
future work direction is the exploitation of the (spectral) region
based information, in order to analize the influence, in the final
unmixing result, of the reflectance values measured in distinct
regions of the electromagnetic spectrum. Tests with more het-
erogeneous environments, in which other endmembers are pres-
ent (e.g., weeds), will be also conducted. Finally, possible ways
to exploit the proposed methodology in diverse large-scale
applications using satellite data will be also analyzed.
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