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Abstract—Hyperspectral image classification is a challenging
problem as obtaining complete and representative training sets
is costly, pixels can belong to unknown classes, and it is gener-
ally an ill-posed problem. The need to achieve high classification
accuracy may surpass the need to classify the entire image. To
account for this scenario, we use classification with rejection by
providing the classifier with an option not to classify a pixel and
consequently reject it. We present and analyze two approaches
for supervised hyperspectral image classification that combine the
use of contextual priors with classification with rejection: 1) by
jointly computing context and rejection and 2) by sequentially
computing context and rejection. In the joint approach, rejection
is introduced as an extra class that models the probability of clas-
sifier failure. In the sequential approach, rejection results from
the hidden field associated with a marginal maximum a posteriori
classification of the image. We validate both approaches on real
hyperspectral data.

Index Terms—Classification with context, classification with
rejection, hyperspectral image classification.

I. INTRODUCTION

S UPERVISED image classification is pivotal in a large
number of hyperspectral image applications [3]. The

problem of supervised hyperspectral image classification is
generally ill-posed. Contextual information is used in image
classification as a regularizer to impose desired characteristics
in the resulting classification, e.g., through the use of multi-
level logistic priors based on Markov random fields [4], widely
used in hyperspectral image classification [5], or graph-based
methods [6], [7]. Whereas there are alternatives to supervised
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hyperspectral image classification, such as curve fitting of
absorption bands [8], the need for contextual information-based
regularization is still present. By itself, however, contextual
information does not totally remove the effects of classification
errors associated with overlapping classes, small or incomplete
training sets, and the existence of unknown classes.

Classification errors can be mitigated if we adapt the behav-
ior of the classifier to avoid classifying samples (pixels in the
case of images) with high potential for incorrect classifications.
This can be achieved by equipping the classifier with rejection,
thus obtaining an increase in classification performance at the
expense of not classifying the entire image.

Classification with rejection was first analyzed in [9], where
Chow’s rule for optimum error-reject trade-off was presented.
Given the knowledge of posterior probabilities and of the costs
of erring and rejecting, Chow’s rule allows the derivation of a
rejection rule based on the thresholding of probabilities such
that empirical classification risk is minimized. Extensive work
exists on the design of systems for classification with rejec-
tion (see [10] and references therein); however, the application
of pixelwise classification with rejection to images has been
limited to medical image classification [11], [12].

In hyperspectral images, the acquisition of representative,
nonoverlapping, and balanced pixelwise training sets is costly,
pixels can belong to unknown classes, and the need for high
accuracy may surpass the need to classify the entire image.
These characteristics are shared among a class of image classi-
fication problems, e.g., the task of histopathology image classi-
fication [11], [12], where the combination of classification with
context and classification with rejection has shown improved
classification performances. We thus hypothesize that applying
rejection to classification can be fruitful in hyperspectral image
classification problems as well.

Classification with rejection can be conceptualized as a cou-
pling of a classifier (that maps feature vectors into class labels)
with a rejector (that maps class labels into a binary decision to
reject or not). There is an interplay between the performance
of the classifier and the required performance of the rejector:
the higher the accuracy obtained by the classifier, the harder it
becomes for the rejector not to reject correctly classified pix-
els. This means that performance improvements of combining
rejection and context are clearer when the performance of the
classifier is lower. We will show that by using classification with
rejection systems (as schematized in Fig. 1), we are able, with
small training sets, to achieve classification performances close
to those obtained with larger training sets.

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. General diagram of supervised hyperspectral image classification with rejection. The classification block corresponds to a supervised classifier trained
with labeled training pixels and applied to unlabeled test pixels. The contextual rejection block combines the classification with rejection with the classification
context. In Section III, two instantiations of contextual rejection are discussed.

In this paper, we combine classification with rejection with
classification with context in two different ways, corresponding
to two different instantiations of the general scheme in Fig. 1:

1) joint computation of context and rejection (JCR) as in
[1], where rejection is considered as an extra class and
computed alongside with context;

2) sequential computation of context and rejection (SCR) as
in [2], where rejection is computed after the context by
use of a rejection field.

We extend and compare these two different formulations for
supervised hyperspectral image classification with rejection.

The contribution of this paper is two fold: 1) the applica-
tion of classification with rejection to the hyperspectral image
classification problem and 2) the development of algorithms for
contextual classification with rejection for hyperspectral image
classification.

The paper is organized as follows. Section II provides the
background on the contextual classification techniques and per-
formance measures for classification with rejection. Section III
describes our classification method with rejection and context,
with Section III-A corresponding to JCR and Section III-B to
SCR. Section IV presents experimental results and Section V
concludes the paper.

II. BACKGROUND

We now introduce the necessary notation and background for
the computation of classification with context by presenting the
SegSALSA algorithm and for the evaluation of performance of
classifiers with rejection.

Let x ∈ R
d×n denote an n-pixel hyperspectral image with d

spectral bands, where xi ∈ R
d denotes the vector of d spec-

tral values at pixel corresponding to the image pixel i. Let
S = {1, . . . , n} be the set that indexes the image pixels, L =
{1, . . . ,K} be the set of possible K labels, and y ∈ Ln be a
labeling of the image.

A. Classification With Context—SegSALSA

The goal behind classification with context is to combine
pixelwise classification results with a contextual (often spatial)
prior. Desired properties, such as piecewise smooth labelings,
are imposed on the labelings through the use of contextual pri-
ors. Classification with context is achieved by the SegSALSA
algorithm [13], [14] that combines the idea of a hidden field
driving a segmentation [15], with a vectorial total variation

prior [16], [17] in a convex segmentation formulation solved
by the SALSA algorithm [18].

Adopting a Bayesian perspective, the maximum a posteriori
(MAP) labeling ŷ is given by

ŷ = arg max
y∈Ln

p(y|x) = arg max
y∈Ln

p(x|y)p(y) (1)

where p(y|x) denotes the posterior probability of the labeling
y given the feature vectors x, p(x|y) denotes the observation
model, and p(y) denotes the prior probability of the labeling.
Assuming conditional independence of the features given the
labels, we have

p(x|y) =
∏
k∈L

∏
i∈S

p(xi|yi = k).

To introduce the hidden field [15], let z be a K × n matrix
containing a collection of hidden random vectors zi ∈ R

K , for
i ∈ S . The joint probability of labels y and field z is defined as

p(y, z) = p(y|z)p(z)
with the assumption of conditional independence of the labels
y given the field z

p(y|z) =
∏
i∈S

p(yi|zi).

This allows us to express the joint probability of the features,
labels and fields (x,y, z) as

p(x,y, z) = p(x|y)p(y|z)p(z).
Armed with the hidden field z and the joint probabilities, we

can now marginalize on the discrete labels

p(x, z) =
∏
i∈S

⎧⎪⎪⎨⎪⎪⎩
marginalization︷ ︸︸ ︷∑

yi∈L
p(xi|yi)p(yi|zi)

⎫⎪⎪⎬⎪⎪⎭ p(z). (2)

The marginalization in (2) corresponds to the marginaliza-
tion of the joint probability of the features x, the labels y, and
the hidden field z across the discrete labels y. This allows us
to have the joint the probabilities of the features and the hid-
den field p(x, z), depending only on the continuous hidden
field z, as the features x are known. The marginal maximum
a posteriori (MMAP) is then

ẑMMAP = arg max
z∈RK×n

p(x, z)
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with the soft classification obtained by p(y|ẑMMAP) and the
labeling obtained by finding the labeling y that maximizes the
soft classification.

As the kth component of the ith random vector [zi]k is
modeled by the conditional probability p(yi = k|zi), two con-
straints are introduced in the hidden field z as a result:
nonnegativity [zi]k ≥ 0 and sum-to-one 1T

Kzi = 1.
The conditional probabilities p(yi|xi), collected in the

vector pi = [p(yi = 1|xi), . . . , p(yi = K|xi)], are modeled
with a sparse multinomial logistic (MLR) with the Logistic
Regression via Split Augmented Lagrangian (LORSAL) algo-
rithm [19] as follows. Let k(xi) be a kernel function computed
between the spectra of the ith pixel xi and the spectra of the
pixels belonging to the training set, we have that the a posterior
probabilities can be modeled as

p(yi = �|xi, [w1, . . . ,wK ]) =
ew

T
� k(xi)∑K

j=1 e
wT

j k(xi)

where wj is the regression vector for the jth class. We learn
the regression vectors using the LORSAL algorithm, with an
element-wise independent Laplacian prior for the regression
vectors, and computing the maximum a posteriori estimate
of W = [w1, . . . ,wK ] by solving the following decoupled
optimization problem:

argmax
W,Ω

l(W) + log p(Ω), subject to W = Ω

where l(W) demotes the log-likelihood of W and p(Ω) ∝
e−λ‖Ω‖1 promotes the sparsity of the regression vectors.

As we deal now with the MMAP instead of the MAP, the
prior is no longer applied on the discrete labels y but on the
continuous hidden field z. We adopt a vectorial total variation
(VTV) prior [16], [17] for the hidden field z as it promotes
piecewise smoothness of the field, preservation and alignment
of the discontinuities across the classes, and it is convex. The
prior p(z) is defined such that

− ln p(z) ≡ λTV

∑
i∈S

√
‖Dhzi‖2 + ‖Dvzi‖2 (3)

where Dh is the horizontal difference operator, Dv the ver-
tical difference operator, and λTV a regularization parameter.
The regularization parameter λTV controls the relative weight
of the vectorial total variation prior compared to the connec-
tion of the hidden field to the class probabilities, thus the
value of λTV affects the piecewise smoothness of classifica-
tion. A larger value of λTV results in smoother segmentations
whereas a smaller value of λTV results in segmentations with
speckles.

From the initial integer optimization problem in (1), the con-
textual classification problem is then formulated as a convex
optimization problem

ẑMMAP = argmin
z∈RK×n

−
∑
i∈S

[
ln
(
pT
i zi

)]− ln p(z)

subject to: z ≥ 0, 1T
Kz = 1T

n . (4)

Fig. 2. Example of classification with rejection of image. Classification (a) with
correctly classified pixels in green and incorrectly classified pixels in orange.
Rejection (b) with rejected pixels in gray and nonrejected pixels in white.
Classification with rejection (c) with intersection of rejected/nonrejected and
correctly/incorrectly classified pixels.

This problem can be solved efficiently with SALSA (con-
straint split augmented Lagrangian shrinkage algorithm) [18],
an instance of the alternating direction method of multipliers.
The SALSA algorithm allows us to solve a convex optimization
problem with an arbitrary number of terms, such as (4), using a
flexible variable splitting mechanism without the incurring on
the computational costs associated with double loops present
in the Douglas–Rachford Splitting algorithm in [20]. The prob-
lem (4) can then be solved with a complexity of O(Kn log n).
We point the interested reader to [13] for the formulation of
SegSALSA as an instance of the SALSA algorithm.

B. Performance Measures for Classification With Rejection

The performance of classification with rejection is frequently
assessed by comparing the accuracy of the subset of nonrejected
samples (in our case pixels), the nonrejected accuracy A, with
the the fraction of rejected pixels r (as in [21]–[24]). Let R
be the set of rejected pixels (R̄ denotes the set of nonrejected
pixels) and C the set of correctly classified pixels (C̄ denotes the
set of incorrectly classified pixels) with S = R∪ R̄ = C ∪ C̄,
as illustrated in Fig. 2.

We represent the rejected fraction r as

(5)

corresponding to the fraction of pixels that are rejected. The
nonrejected accuracy A can be represented as

with

A =
|C ∩ R̄|
|S|

1

1− r
= A(r) (6)

corresponding to the fraction of nonrejected pixels that are cor-
rectly classified. We note that A(0) corresponds to the total
accuracy of the classifier, with no rejection in place.

The nonrejected accuracy, combined with the rejected frac-
tion, is unable to compare directly the behavior of two clas-
sifiers with rejection working at different rejected fractions. A
clear example of this inability is the following. Let us consider
three cases with a classifier that classifies the same set of pixels
as follows:
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In all three cases, 64% of the pixels are correctly classi-
fied; however, the pair rejected fraction/nonrejected accuracy
will not be able to compare the three cases working at different
rejected fractions.

To account for this, we extend the concept of nonrejected
accuracy to the classification quality Q [25].

Definition 1: Classification quality: given a classifier defined
by the pair correctly classified and incorrectly classified pixels
(C, C̄) and a rejector defined by pair rejected and not rejected
pixels (R, R̄), the classification quality Q measures the pro-
portion of pixels that are either correctly classified and not
rejected or incorrectly classified and rejected, relative to the
total number of pixels

(7)

The classification quality combines the performance of the
classifier on the subset of nonrejected pixels with the perfor-
mance of the rejector on the subset of misclassified pixels.
The maximum value of classification quality is 100% and it
is achieved when R̄ = C and R = C̄, i.e., if all the correctly
classified samples are not rejected and if all the incorrectly clas-
sified samples are rejected, corresponding to a perfect rejector
that achieves a nonrejected accuracy of 100% with the mini-
mum number of pixels rejected. When the opposite occurs, the
classification quality achieves its minimum value of 0%.

In (7), the classification performance on the subset of nonre-
jected pixels can be obtained as

|C ∩ R̄|
|S| = A(r)(1− r) (8)

and the rejector performance on the subset of misclassified
pixels obtained as

|C̄ ∩ R|
|S| = (1−A(0))− |C̄ ∩ R̄|

|S|
|C̄ ∩ R̄|
|S| =

|R̄|
|S| −

|C ∩ R̄|
|S| = (1− r)−A(r)(1− r)

|C̄ ∩ R|
|S| = −A(0) + r +A(r)(1− r). (9)

By combining (8) and (9), we are able to represent the
classification quality as

Q(r) = 2A(r)(1− r) + r −A(0) (10)

with Q(0) = A(0).
The value of Q amounts to the proportion of correct deci-

sions that the ensemble classifier and rejector performs. This
means that a classifier with rejection that rejects a fraction r
of pixels with a value of classification quality of Q is equiva-
lent, in terms of correct decisions made, to a classifier with no

rejection r = 0 and accuracy numerically equal to A(0) = Q.
The classification quality allows us to directly compare the per-
formance of classification systems with rejection working at
different rejected fractions.

We denote Q(r) +A(0) as classification quality with off-
set, allowing us to compare classification qualities of different
operating points of a classifier with rejection when the total
accuracy without rejection is unknown but equal across differ-
ent operating points. This is the situation we have in the three
cases presented.

Armed with the classification quality, we can now compare
the performance of the three aforementioned cases of a clas-
sifier with rejection. Under the assumption of unknown and
equal total accuracy with no rejection A(0), we can obtain the
following values of classification quality with offset.

This example shows that the operating point for case 1, where
the 79% of the data are classified with 81% of nonrejected
accuracy, achieves a higher number of correct joint decisions,
independently of the total accuracy without rejection, than the
other two cases. Thus, the use of classification quality allows
a clear discrimination of the performance of the classification
system with rejection at different operating points.

III. REJECTION AND CONTEXT

With the background for the classification with context estab-
lished, we now approach the problem of classification with
rejection applied to our supervised classification problem.

Classification with rejection can be achieved based on the
existence of two simple mechanisms as follows:

1) an implicit ordering of the pixels according to their
potential to be rejected;

2) a concept of a threshold that controls the amount of pixels
that are rejected.

This can be easily achieved by considering an extension of
Chow’s rule for two class classification with rejection, i.e., the
derivation of a probability threshold for a binary classification
problem that minimizes the empirical risk given a cost matrix
and the posterior probabilities [9]. Let us consider an image
with K nonrejection classes, and a K + 1 class that corre-
sponds to rejection. The pixelwise MAP classification of the
ith pixel is

ŷi = arg max
yi∈L∪{K+1}

p(yi|xi) (11)

where p(yi = K + 1|xi) = γ represents the probability of
rejection. The maximum probability of the K nonrejected
classes of each pixel imposes an implicit ordering of the pixels
(higher probability leading to lower potential to be rejected) and
the amount of rejection is controlled by probability of rejection
γ, the threshold.
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Fig. 3. Schemes for computation of context and rejection. (a) JCR—joint com-
putation of context and rejection. (b) SCR—sequential computation of context
and rejection.

The simple rejection scheme in (11) is limited by its pixel-
based behavior. There is no awareness of context. In image
classification, the use of context is of paramount importance as
neighboring pixels are likely to belong to the same class. The
same reasoning applies to the rejection. The potential for a pixel
to be rejected should not be independent of whether the pixel
is surrounded by other pixels that are rejected or surrounded
by pixels that are not rejected. As discussed in Section I, the
use of context in image classification, namely in hyperspectral
image classification, is responsible for significant increase in
performance.

To solve the need for contextual awareness of rejection, we
combine rejection and context. We consider two different ways
to combine classification with rejection with classification with
context. We can jointly compute context and rejection—JCR
[as seen in Fig. 3(a)]—by considering rejection to be an extra
class, subject to the same contextual cues that the other classes
are. This is explored in Section III-A, where we instantiate JCR
with the the SegSALSA algorithm applied to an extended set
of probabilities, containing rejection as a K + 1 class. On the
other hand, we can harness the potential of the SegSALSA
algorithm to provide a hidden field that provides us with an
implicit ordering of the pixels according to their potential to
be rejected—the maximum value of the hidden field for each
pixel—that takes into account the contextual cues. This allows
us to compute sequentially the rejection after the context—SCR
[as seen in Fig. 3(b)]. We follow this approach in Section III-B,
where we instantiate SCR with the rejection computed from the
hidden field resulting from the SegSALSA algorithm with K
classes through the computation of a rejection field.

A. Joint Computation of Context and Rejection

To compute jointly context and rejection, we consider rejec-
tion as an extra class. Rejection is conceptualized as an extra
class that should be selected when there is evidence of prob-
able misclassification by the classifier. In this formulation,
the threshold γ in (11) is connected to the probability of
misclassification by the classifier.

Let pri denote the probability of the classifier misclassify-
ing the ith pixel; we can easily extend the set of labels L =
{1, . . . ,K} to include the extra class K + 1 corresponding to
rejection L′ = {1, . . . ,K,K + 1}. With the new rejection class
in place, we need to normalize the probabilities. The new class
probabilities p′ become

p′(yi|xi) =

{
pri , if yi = K + 1

(1− pri )p(yi|xi), otherwise.
(12)

SegSALSA-JCR: The JCR leads to an extended SegSALSA
formulation of (4), where the hidden field is now of dimension
z ∈ R

(K+1)×n and the probability vector pi becomes p′
i

ẑMMAP = arg min
z∈R(K+1)×n

−
∑
i∈S

(
ln
(
p′T

i zi

))
− ln p(z)

subject to: z ≥ 0, 1T
Kz = 1T

n .

The rejection extra class is subject to the same vectorial total
variation prior as the other classes. By considering rejection as
an extra class, we are able to seamlessly combine classification
with context with classification with rejection in the SegSALSA
formulation.

The basic assumption for the JCR is that of rejection as an
extra class with a probability associated to classifier failure. A
scaling parameter γ controls the relative weight of the probabil-
ity of classifier misclassification with regard to the probability
of the other classes. By varying the value of γ we are able to
vary the amount of rejection obtained, with larger values of γ
corresponding to larger values of the rejected fraction. We now
present two different rejection schemes based on two different
models for classifier:

1) uniform probability of classifier failure—classifier failure
is equiprobable across all the pixels;

2) entropy-weighted probability of classifier failure—
classifier failure is more likely in pixels with higher
entropy associated to their classification.

1) JCR-U—Uniform Probability of Classifier Failure: This
uniformly weighted model assumes that, regardless of the prob-
ability distribution for each of the labels on a pixel, there is a
constant probability of failure of the classifier, i.e., for all the
pixels, the probability of misclassification, and thus rejection, is
constant. The rejection depends only on the scaling parameter
γ that defines how frequently misclassification is assumed

pri = γ.

a) Class probabilities of extended set of labels: The class
probabilities for the extended set of labels L′ are

p′(yi|xi) =

{
γ, if yi = K + 1

(1− γ)p(yi|xi), otherwise.
(13)

In this model, misclassifications are assumed to be equiprob-
able across the entire image.

2) JCR-E—Entropy Weighted Probability of Classifier
Failure: This entropy-weighted model assumes that the prob-
ability of failure of the classifier scales with the entropy
associated with the probability vector from the classification,
i.e., pixels with higher entropy are more likely to be misclas-
sified, and thus rejected. The rejection depends both from the
scaling parameter γ that defines how frequent the misclassifi-
cation is assumed, and from the uncertainty associated with the
classification modeled by the entropy weighting

pri = γH(pi)

where H(pi) denotes the entropy of the probability distribution
pi = [p(yi = 1|xi) . . . p(yi = K|xi)].
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a) Class probabilities of extended set of labels: The class
probabilities for the extended set of labels L′ are

p′(yi|xi) =

{
γH(pi), if yi = K + 1

(1− γH(pi))p(yi|xi), otherwise.
(14)

In this model, misclassifications are assumed to be more
probable in pixels with higher entropy.

3) Limitations of JCR: A major limitation of considering
rejection as an extra class modeling classifier failure is the
inability to define a priori the amount of rejection obtained.
Whereas γ in (13) and (14) corresponds to the scaling factor
associated with the probability of classifier failure, the use of
context through SegSALSA makes it impossible to predict the
rejected fraction before the computation of SegSALSA. This
means that, given an ordering of the pixels according to their
potential to be rejected before the computation of context, there
is no guarantee that the ordering of the pixels will be the same
after the computation of context.

B. SCR—Sequential Computation of Context and Rejection

To mitigate the aforementioned limitations associated with
the JCR, we consider a second approach where rejection is com-
puted after the context, i.e., a sequential approach. We start
by noting that by using SegSALSA to compute the context,
in addition to the labeling ŷ, we have the hidden field ẑMMAP

resulting from the optimization problem (4) from where the
labeling is computed.

SegSALSA-SCR: This hidden field z provides an indication of
the degree of confidence associated with the label of each pixel.
If [zi]k > [zj ]l, i.e., if the kth component of the hidden vector
associated with the ith pixel [zi]k has a larger value than the
lth component of the hidden vector associated with jth pixel
[zj ]l, then we are led to believe that assigning the label l in
the jth pixel corresponds to a lower degree of confidence than
assigning the label k in the ith pixel.

Let us consider the labeling ŷ

ŷ = arg max
y∈Ln

p(y|ẑMMAP)

and the associated maximum probabilities of the labeling zŷ,
such that

zŷi
= p(ŷi|ẑMMAP). (15)

If [zi]ŷi
> [zj ]ŷj

, there is strong evidence that a higher
degree of confidence exists in the labeling of the ith pixel as
ŷi than in the labeling of the jth pixel as ŷj . We denote the
resulting field zŷ as rejection field.

By sorting zŷ, we obtain an ordering of the pixels according
to their relative confidence. Thus, from the hidden field z and
the resulting rejection field zŷ , we obtain an implicit ordering of
the pixels according to their potential to be rejected. The selec-
tion of a fraction of the lowest confidence pixels to be rejected
yields a simple, yet effective scheme for rejection. This method
allows one not only to define arbitrary values of the rejected
fraction, but also to change the values on the fly, without the
need to re-solve any contextual problem.

Fig. 4. Approximation effects of joint versus sequential context and rejection.
(a) Classification. (b) JCR. (c) SCR.

By promoting preservation and alignment of the discontinu-
ities across the classes, the vectorial total variation prior (3),
when applied to the hidden field z, influences the behavior of
the rejection field zŷ. This results on an emergent prior behav-
ior on the rejection field. The preservation and alignment of the
discontinuities is thus imposed on the rejection field.

1) Approximation Effects of Rejection by Rejection Field:
By obtaining rejection through the use of a rejection field com-
puted from the hidden field, pixels cannot switch label as a
result of the introduction of rejection. The influence that a pixel
and its assigned label (before rejection) exerts on neighbor-
ing pixels does not disappear when the pixel is rejected. This
is illustrated in Fig. 4, where the top-right pixel, assigned to
class 1 (green), is influenced by the green label assigned to
the bottom-right pixel, otherwise being assigned to the class 2
(blue). If the rejection is computed jointly with context (rejec-
tion as an extra class), the rejection of the bottom-right pixel
stops the interaction (green) that forces the top-right pixel to
belong to class 1 (green), and consequently the top-right pixel
switches to class 2 (blue). If the rejection is computed from
a rejection field, the interaction (green) that forces the top-
right pixel to belong to class 1 (green) persists even though the
bottom-right pixel is rejected. In practice, the changes caused
by these effects apply only to a very small portion of the data.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed methodologies of joint and sequen-
tial computation of context and rejection, we apply them to
the task of supervised hyperspectral image classification of two
well-known hyperspectral scenes: 1) AVIRIS Indian Pines and
2) ROSIS Pavia University scene. In both scenes, the labeled
ground truth is only available for a portion of the image. We
apply the methodologies on the entire image and assess the per-
formance on the subset of pixels that belongs to the labeled
ground truth. We aim to show the following characteristics of
supervised hyperspectral image classification with rejection:

1) classification with context and rejection can outperform
classification with context only;

2) classification with rejection does not affect all the classes
equally;

3) by using classification with context and rejection with
small training sets, we are able to achieve performances
comparable to context only with larger training sets.

This is achieved by assessing the performance of the joint
(SegSALSA-JCR-U and SegSALSA-JCR-E) and sequential
(SegSALSA-SCR) schemes for context and rejection using
SegSALSA to compute the context. The multinomial logistic
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regression (MLR) weights are modeled with LORSAL [19],
thus obtaining the LORSAL-SegSALSA-JCR-U, LORSAL-
SegSALSA-JCR-E, and LORSAL-SegSALSA-SCR methods
for image classification with context and rejection. The
SegSALSA algorithm requires the existence of class proba-
bilities, which restrict us to the use of classifiers that output
probabilities. The use of an MLR modeled with LORSAL
can be easily replaced by the use of a probabilistic extension
to support vector machines (SVM), such as relevance vector
machines [26]. The LORSAL parameters used are λ = 0.01,
θ = 0.001 with radial basis function (RBF) kernels with a
width of 1. For the SegSALSA algorithm, the value of λTV is
2. Computational complexities of both LORSAL-SegSALSA-
SCR and LORSAL-SegSALSA-JCR approaches are dominated
by the SegSALSA, which is O(Kn log n), with K the num-
ber of classes and n the number of image pixels. This means
that computing LORSAL-SegSALSA-SCR has complexity of
O(Kn log n) and computing LORSAL-SegSALSA-JCR has
complexity of O((K + 1)n log n). In LORSAL-SegSALSA-
JCR-U and LORSAL-SegSALSA-JCR-E, a sweep on the scal-
ing parameter of γ from 0 to 1 is performed to observe the
joint variation of nonrejected accuracy, classification quality,
and fraction of rejected pixels.

A. Indian Pine

The AVIRIS Indian Pine scene (Fig. 5) was acquired by the
AVIRIS sensor in NorthWest Indiana, USA. The scene con-
sists of 145× 145 pixel section with 200 spectral bands (with
water absorption bands already purged) and contains 16 mutu-
ally nonexclussive classes, with the classification accuracy and
classification quality being measured on those 16 classes.

The classification maps present in Fig. 5 show clearly the
effects of classification with context and rejection: a signifi-
cant number of misclassified pixels are rejected, thus increas-
ing classification performance. We start from an accuracy of
51.39% with the MAP classification (with the training set com-
posed of 10 pixels randomly selected per class, roughly 1.6%
of the entire labeled data set) in Fig. 5(b), and by computing the
context alone with LORSAL-SegSALSA achieve an accuracy
of 69.55% in Fig. 5(c).

In Fig. 5(d)–(f), we show the classification maps for the
rejected fraction that corresponds to the maximum classifica-
tion quality. This means that starting from the 69.55% accu-
racy of LORSAL-SegSALSA, the value of rejected fraction is
selected such that the number of correct decisions (rejected the
pixel when incorrectly classified, and not reject the pixel when
correctly classified) is maximized. For LORSAL-SegSALSA-
JCR-U, we achieve a nonrejected accuracy of 80.31% at a
rejected fraction of 20.65% leading to a classification quality
of 78.56%. This means that by not classifying the entire image,
we depart from an accuracy of 69.55% on the entire image to
an accuracy of 80.31% on 79.35% of the image, with 78.56%
of the pixels either correctly classified and not rejected, or
incorrectly classified and rejected. For LORSAL-SegSALSA-
JCR-E, we achieve a nonrejected accuracy of 76.01% at a
rejected fraction of 15.85% leading to a classification quality of
74.23%. For LORSAL-SegSALSA-SCR, we achieve 79.97%

Fig. 5. Classification results for Indian Pines (10 pixels per class as train-
ing set), with rejection in black. (a) Ground truth. (b) MAP classification
using LORSAL and (c) classification with context—LORSAL-SegSALSA.
Classification with context and rejection with maximum classification qual-
ity for (d) LORSAL-SegSALSA-JCR-U, (e) LORSAL-SegSALSA-JCR-E, and
(f) LORSAL-SegSALSA-SCR. Overall and classwise nonrejected accuracy,
rejected fraction, and classification quality in Table I.

of nonrejected accuracy at a rejected fraction of 23.75% and a
classification quality of 76.16%.

The introduction of rejection does not affect all the classes
equally. Some classes are more positively affected by rejection,
whereas the classification performance of other classes suffers.
The classwise classification performances are shown in Table I,
with classwise performance improvement highlighted in green
and classwise performance decrease highlighted in red.

In Fig. 6, we illustrate the variation of the performance
measures for classification with rejection as a function of the
rejected fraction. It is clear, there is a steady increase of nonre-
jected accuracy by increasing the amount of the image rejected.
On the other hand, by using the classification quality, we can
compare the number of correct decisions made as we change
the rejected fraction. From not rejecting any portion of the
image, leading to a classification quality equal to the accu-
racy of the LORSAL-SegSALSA, we are able to increase the
performance until it peaks, corresponding to a higher accu-
racy on the nonrejected pixels without rejecting too much of
the image. We note the close position of peaks of the classi-
fication qualities for the LORSAL-SegSALSA-JCR-U and the
LORSAL-SegSALSA-SCR approaches.

To compare the approaches of classification with rejection
with the state of the art methods, we need to consider an
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TABLE I
PERFORMANCE OF CLASSIFICATION WITH REJECTION FOR INDIAN PINE (10 PIXELS PER CLASS AS TRAINING SET). OVERALL AND CLASSWISE

NONREJECTED ACCURACY, REJECTED FRACTION, AND CLASSIFICATION QUALITY CORRESPONDING TO MAXIMUM OVERALL CLASSIFICATION.
INCREASE IN PERFORMANCE (GREEN) AND DECREASE IN PERFORMANCE (RED). BEST CLASSWISE CLASSIFICATION PERFORMANCE IN BOLD TYPESET.

1As all the pixels corresponding to the oats class are rejected, it is not possible to compute the nonrejected accuracy.

Fig. 6. Performance for classification with rejection of the Indian Pine
scene (10 pixels per class as training set). Classification with LORSAL-
SegSALSA-SCR (black), and by LORSAL-SegSALSA-JCR-U (red) and
LORSAL-SegSALSA-JCR-E (blue). (a) Classification quality. (b) Nonrejected
accuracy.

increase of the training set dimension. In Table II, we compare
the performance of our methods with the results available in
[27] for multiple classifiers with large training sets (10% of
the pixels as training set): classifiers without context, classifiers
with context, and classifiers with context based on superpix-
elization (where an unsupervised segmentation produces an
oversegmented partitioning of the image and forces pixels
belonging to the same partition element to belong to the same
class). We compare the performance of our methods with equiv-
alent and smaller training sets (10% and 5% of pixels randomly
selected as training set, respectively).

For the classifiers without context, we consider SVM
[28] and LORSAL [19]. For the classifiers with context,
we consider SVM with composite kernels (SVM-CK) [29],
LORSAL with multilevel logistic Markov random field priors
(LORSAL-MLL) [19], sparse representation-based classifica-
tion (SRC) [30], multinomial logistic regression with gen-
eralized composite kernel (MLR-GCK) [31], and LORSAL-
SegSALSA [13]. For the classifiers with context based on
superpixelization, we consider the superpixel-based classifi-
cation via multiple kernels (SC-MK) [27] and its simplified
version (INTRASC-MK) [27].

TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE FOR INDIAN PINE.

OVERALL ACCURACY (WITH NO REJECTION) FOR MULTIPLE CLASSIFIERS

WITH 10% OF PIXELS AS TRAINING SET. COMPARISON WITH SCR AND

JCR FOR 5% AND 10% OF PIXELS AS TRAINING SET FOR DIFFERENT

REJECTED FRACTIONS. COMPARABLE NONREJECTED ACCURACIES FOR

CLASSIFICATION WITH CONTEXT ONLY (MAGENTA) AND FOR

CLASSIFICATION WITH CONTEXT ONLY BASED ON SUPERPIXELS (CYAN).

The use of classification with context and rejection is
able to obtain significant performance improvements. We note
that, by using classification with context and rejection with
smaller training sets, both in sequential (SCR) and joint
(JCR) approaches, we are able to achieve performances on the
nonrejected data equivalent to those achieved by using classi-
fication with context only in larger training sets (highlighted
in magenta in Table II) not considering the superpixel-based
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Fig. 7. Effect of weak versus strong classifiers in classification with rejection.
SegSALSA-JCR and SegSALSA-SCR approaches with increasing training
size. Stronger classifiers (larger training sets) achieve peak classification quality
with smaller values of rejected fraction than weak classifiers (smaller training
sets). (a) SegSALSA-JCR-U. (b) SegSALSA-JCR-E. (c) SegSALSA-SCR.

methods. For example, with 5% of the pixels as training set, and
while rejecting close to 15% of the pixels, we are able to achieve
performances close to the ones achieved by context only with
10% of the pixels as training set, such as LORSAL-MLL, SRC,
MLR-CGK, and SegSALSA.

On the other hand, we can achieve accuracies equivalent
to the accuracies of superpixel-based methods (highlighted in
cyan in Table II), with equivalent training set size, by using
rejection. By using context and rejection, we are able to close
the gap between the state of the art methods using superpix-
els (98.06% overall accuracy) and SegSALSA (92.26% overall
accuracy). The rejection of 15% of the pixels in SCR allows us
to attain values of nonrejected accuracy (97.64%) comparable
to the state of the art.

As pointed in Section I, the performance improvements
resulting from the combination of rejection and context are
more significant for weaker classifiers with lower performance.
This is illustrated in Fig. 7, where the strength of the classifier is
a result of the training set size (from 0.5% to 20% of the labeled
pixels used as training set). It is interesting to note that the shift
of the peak of classification quality to lower values of rejected
fraction as the classification problem gets easier and the clas-
sifier gets more accurate. There is an increased dependency on
the rejector as the classifier gets weaker.

B. Pavia University

The Pavia University scene (Fig. 8) was acquired with the
ROSIS sensor in Pavia, Italy. The scene consists of a 610×
340-pixel hyperspectral image with 103 spectral bands contain-
ing nine not mutually exclusive classes, with the classification
accuracy and classification quality being measured on those
nine classes.

The classification maps in Fig. 8 show an easier problem for
the LORSAL and LORSAL-SegSALSA, with higher classifica-
tion performances with context only (shown in Table III) when
compared to the Indian Pine scene. The rejector will have a
harder task to improve the performance, leading to maximum
classification qualities with smaller respective rejected frac-
tions, i.e., a larger proportion of correct decisions is achieved
by rejecting less.

Fig. 8. Classification results for Pavia University (rejection in black).
(a) Ground truth. (b) MAP classification using LORSAL and (c) classification
with context—LORSAL-SegSALSA. Classification with context and rejec-
tion with maximum classification quality for (d) LORSAL-SegSALSA-JCR-U,
(e) LORSAL-SegSALSA-JCR-E, and (f) LORSAL-SegSALSA-SCR. Overall
and classwise nonrejected accuracy, rejected fraction, and classification quality
in Table III.

We start from an accuracy of 70.13% with the MAP classi-
fication (with the training set composed of 10 pixels randomly
selected per class, roughly 0.2% of the entire labeled data set) in
Fig. 8(b) and by computing the context alone with SegSALSA
achieve an accuracy of 80.67% in Fig. 8(c).

In Fig. 8(d)–(f), we show the classification maps that corre-
spond to the maximum classification quality. This means that
starting from the 80.67% accuracy of LORSAL-SegSALSA,
we reject such that the number of correct decisions is maxi-
mized. For LORSAL-SegSALSA-JCR-U, we achieve a non-
rejected accuracy of 82.25% at a rejected fraction of 3.12%
leading to a classification quality of 81.81%. For LORSAL-
SegSALSA-JCR-E, we achieve a nonrejected accuracy of
86.45% at a rejected fraction of 12.75% leading to a classifi-
cation quality of 82.93%. This means that by not classifying
the entire image, we depart from an accuracy of 80.67% on the
entire image to an accuracy of 86.45% on 86.25% of the image,
with 82.93% of the pixels either correctly classified and not
rejected, or incorrectly classified and rejected. For LORSAL-
SegSALSA-SCR, we achieve 84.54% nonrejected accuracy at
a rejected fraction of 9.16% and a classification quality of
82.08%.

The classwise classification performances are shown in
Table III. Taking the example of the LORSAL-SegSALSA-
JCR-E results, only the classification performance of the mead-
ows class is increased, with the performance of the other classes
decreasing slightly. However, the abundance of the meadows
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TABLE III
PERFORMANCE OF CLASSIFICATION WITH REJECTION FOR PAVIA UNIVERSITY. OVERALL AND CLASSWISE NONREJECTED ACCURACY, REJECTED

FRACTION, AND CLASSIFICATION QUALITY CORRESPONDING TO MAXIMUM OVERALL CLASSIFICATION QUALITY. INCREASE IN PERFORMANCE

(GREEN) AND DECREASE IN PERFORMANCE (RED). BEST CLASSWISE CLASSIFICATION PERFORMANCE IN BOLD TYPESET.

Fig. 9. Performance for classification with rejection of the Pavia University
scene. Classification with rejection by LORSAL-SegSALSA-SCR (black),
and LORSAL-SegSALSA-JCR-U (red) and LORSAL-SegSALSA-JCR-E
(blue) cost. (a) Classification quality. (b) Nonrejected accuracy.

class compensates the results, with a resulting increase in over-
all classifier performance. There is no decrease on nonrejected
accuracies, in LORSAL-SegSALSA-JCR-E a large portion of
correctly classified samples are being rejected across all the
classes with exception of the meadows class.

In Fig. 9, we illustrate the variation of the performance
measures for classification with rejection as a function of the
rejected fraction. The peak in classification quality is achieved
for values of rejected fraction smaller than the ones in the Indian
Pine case. This is a result of an easier classification problem:
the high performances achieved by the classifier lead to a low
impact of the rejector. As most of the data are correctly classi-
fied, it is harder for the rejector to correctly reject pixels. This
means that the rejected fraction that optimizes the classification
quality, the number of correct decisions made, is much smaller
than in the Indian Pine case.

C. Approximation Effects

Whereas the JCR approaches, with LORSAL-SegSALSA-
JCR-U in Indian Pine and LORSAL-SegSALSA-JCR-E in
Pavia University, achieve higher performance than the SCR
approach for smaller training sets (10 pixels per class), they are
computationally more expensive. First, there is not a clear direct
connection between the value of γ and the rejected fraction; this
connection is largely affected by the computation of the context.
Whereas, an increase of the value of γ can lead to larger rejected
fractions, it is not possible to predict how much is rejected by

Fig. 10. Approximation effects of SCR versus JCR. Detail of nonre-
jected accuracy–rejection curve. Classification with LORSAL-SegSALSA-
SCR (black), and with LORSAL-SegSALSA-JCR-U (red) and LORSAL-
SegSALSA-JCR-E (blue). Increase of accuracy in the joint approaches due to
the introduction of the rejected option. (a) Indian Pine. (b) Pavia University.

the joint context and rejection. This is clear in Table II, where
we are able to precisely define a priori the rejected fraction for
the LORSAL-SegSALSA-SCR approaches, but not able to do
so for the LORSAL-SegSALSA-JCR approaches.

Second, obtaining the results for joint context and rejection
requires a parameter sweep on the value of γ. This implies, for
each value of γ, the computation the SegSALSA algorithm, or
any other context computing algorithm, with K + 1 classes. For
the SCR approach, the rejection is computed after the context,
allowing us to obtain all possible values of the rejected frac-
tion in a single computation of the SegSALSA algorithm, or
any other context computing algorithm that provides a rejection
field. However, the sequential approach is subject to the approx-
imation effect described in Fig. 4. This is clear when we observe
in detail the accuracy rejection curves, both for Indian Pine and
Pavia University (Fig. 10). For the LORSAL-SegSALSA-JCR-
U (in red), there is an increase of classification accuracy with no
rejection happening. This corresponds to a change on the label-
ing simply by the inclusion of the rejection class, as illustrated
in Fig. 4. The effect of the alteration of the labeling by intro-
duction of the rejection class cannot be captured in any SCR
approach, as the only change on the labeling allowed is for a
pixel to be rejected.

V. CONCLUDING REMARK

In this paper, we introduced classification with rejection in
hyperspectral image classification problem as a way to cope
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with classification errors arising from known and unknown
sources. We presented two different approaches for achieving
classification with rejection using context based on joint and
sequential computations of context and rejection. We present
experimental results of the methods for supervised hyperspec-
tral image classification with rejection, with context computed
using the SegSALSA algorithm. By classifying with rejection,
not only we are able to deal with imperfect knowledge in the
training set and with smaller training sets, but also able to attain
performance gains equivalent to increasing the training set size.

ACKNOWLEDGMENT

The authors would like to thank D. Landgrebe at Purdue
University for providing the AVIRIS Indian Pines scene, and
P. Gamba at the University of Pavia for providing the ROSIS
Pavia University scene. The authors would like to thank the
anonymous reviewers and associate editor for their valuable
comments and suggestions to improve the quality of the paper.

REFERENCES

[1] F. Condessa, J. Bioucas-Dias, and J. Kovačević, “Robust hyperspec-
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“Image classification with rejection using contextual information,” IEEE
Trans. Med. Imaging, 2016, http://arxiv.org/abs/1509.01287, to be pub-
lished.

[13] J. Bioucas-Dias, F. Condessa, and J. Kovačević, “Alternating direc-
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