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Hyperspectral Blind Reconstruction from Random
Spectral Projections
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Abstract—This paper proposes a blind hyperspectral re-
construction technique termed spectral compressive acquisition
(SpeCA) conceived to spaceborne sensors systems, which are
characterized by scarce onboard computing and storage re-
sources and by communication links with reduced bandwidth.
SpeCA exploits the fact that hyperspectral vectors often belong
to a low dimensional subspace and it is blind in the sense
that the subspace is learned from the measured data. SpeCA
encoder is computationally very light; it just computes random
projections with the acquired spectral vectors. SpeCA decoder
solves a form of blind reconstruction from random projections
whose complexity, although higher than that of the encoder, is
very light in the sense that it requires only modest resources
to be implemented in real time. SpeCA coding/decoding scheme
achieves perfect reconstruction in noise free hyperspectral images
and is very competitive in noisy data. The effectiveness of the
proposed methodology is illustrated in both synthetic and real
scenarios.

Index Terms—Hyperspectral imaging, blind compressive sens-
ing, random projections, low dimensional subspace, linear spec-
tral unmixing, endmember extraction, abundance estimation,
random embeddings.

I. INTRODUCTION

Due to the extremely large volumes of data collected by
imaging spectrometers, hyperspectral data compression has
received considerable interest in the recent years. These data
are usually acquired by a satellite or an airborne instru-
ment and sent to a ground station on Earth for subsequent
processing. Usually the bandwidth connection between the
satellite/airborne platform and the ground station is reduced,
which limits the amount of data that can be transmitted. As a
result, there is a clear need for hyperspectral data compression
techniques, either lossless or lossy, that can be applied onboard
the imaging instrument [1].

Compared with the conventional compression paradigm,
the random projection (RP) techniques [2]–[5], which has
links with compressive sensing (CS) framework [6], [7], are
an attractive alternative in onboard hyperspectral imaging
systems, as the compression is performed while acquiring the
data, and the bulk of the processing to recover the original
data is carried out on the ground, where the constraints on
the computing power and the storing are much lighter than
those of the onboard imaging systems. In fact, a number of
hyperspectral CS and RP methodologies has recently been
introduced [2], [3], [4], [8]–[13].
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At this point, we remark that SpeCA can not be taken as
a conventional compression technique, but rather as a form
of dimensionality reduction. In fact, in addition to dimen-
sionality reduction, a true compression process necessarily
involves much more processing (e.g., quantization and entropy
coding), which altogether often yield a considerable higher
performance than the CS/RP based methods [14]. Of course,
this improved performance usually comes with a price: the
need for considerable computing power and storing onboad.

The reconstruction from RP, as in CS, addresses the problem
of recovering signals from a number of linear measurements
thereof. The success of CS depends critically on the assump-
tion that the underlying signals are sparse or compressible
when represented on a suitable frame; a signal is sparse with
respect to a given frame if most representation coefficients are
zero, and compressible if coefficients have a fast power-law
decay. It happens that hyperspectral images (HSIs) are highly
correlated in both the spatial and the spectral domains and thus
compressible, for example, with respect wavelet frames. It is
therefore possible to recover HSIs from a low number of linear
measurements, provided that suitable measurement vectors are
used. For example in [10], [13], the use of measurement matri-
ces whose elements are independently drawn at random from
Gaussian, Bernoulli or (in general) subgaussian distributions
yields CS strategies in which the number of measurements, or
samples, does not scale with the number of channels.

A. Proposed Approach and Contributions

Owing to hardware constraints, the implementation of
a given RP measurement strategy, involving, for example,
dense matrices, may be unattainable. Herein, we propose
a measurement strategy operating on the spectral domain,
with strong connections with the random embeddings [15];
it computes inner products between the measurement vectors,
independently drawn at random from Gaussian, Rademacher,
or Bernoulli distributions, and the data spectral vectors. This
measurement strategy is light from the hardware point of
view and, nevertheless, allows exact recovery from a number
of measurements per pixel slightly above the dimension of
the subspace and, therefore, does scale with the number of
bands. In addition, the complexity of the optimization problem
designed to recover the original data is very light.

A fundamental assumption of our approach is that the
spectral vectors live in a low dimensional subspace. This a very
good approximation in most hyperspectral images (HSIs) of
the real world [16], namely when the observed spectral vectors
are well approximated by linear mixing model (LMM). In this
case, the proposed method performs spectral unmixing while
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reconstructing the original data from the random projections;
the basis vectors of the subspace are the endmembers and the
basis coefficient are the material abundances.

B. Related Work

The assumption that the hyperspectral vectors live in low
dimensional subspace has been recently exploited in a number
of works [4], [9]–[13], [17], [18]. The works [9], [10], [13]
are nonblind in that they assume that the subspace is known
before hand, which is a considerable disadvantage compared
with SpeCA, as the later learns the subspace from the random
projections. A Compressive-Projection Principal Component
Analysis (CPPCA) scheme is introduced in [3] and further
developed in [4], [12], [19]. CPPCA is supported in the
Rayleigh-Ritz theory to estimate the main principal compo-
nents and their coefficients from the random projections. One
limitation of CPPCA is linked with the fact that the Rayleigh-
Ritz method requires well separated eigenvalues, which in HSI
images is often true for the first few largest eigenvalues, but
usually not true for the smaller eigenvalues, owing to the high
degree of correlation among the spectral vectors. In [2] the
authors propose a PCA-driven reconstruction which exploit the
fact that, under certain conditions, normal Principal Compo-
nent Analysis (PCA) on low-dimensional random projections
of data returns the same result as PCA on the original data set
would. The work [11] exploits the randomized singular value
decomposition (rSVD) method for the purpose of lossless HSI
compression. The core of rSVD is the computation onboard of
an orthogonal matrix spanning the data subspace. Compared
with SpeCA, this is a disadvantage as the latter does not need
to compute such matrix onboard.

C. Paper Organization

The remainder of the paper is organized as follows. Section
II describes SpeCA, a new RP methodology. Section III
presents a series of experiments with simulated and real
data intended to show the effectiveness of SpeCA. Finally,
section IV concludes the paper with some remarks and hints
at plausible future research lines.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

In this section, we introduce the SpecCA measurement strat-
egy and the reconstruction algorithm. Let X := [x1, . . .xn] ∈
Rnb×n denote a HSI with n spectral vectors (the columns
of X) of size nb (the number of bands of the sensor). We
assume that the spectral vectors xi, for i = 1, . . . , n, live in a
p−dimensional subspace S. This a very good approximation
in most real HSIs [16]. Let M := [m1, . . . ,mp] be a matrix
holding a basis for the subspace S on its columns. Therefore,
we may write

xi = Msi, i = 1, . . . , n, and X = MS,

where si ∈ Rp is the representation coefficients of xi with
respect to M, and S := [s1, . . . sn]. We remark that if the
LMM is applicable, M may be interpretable as the mixing
matrix, holding the spectral signatures of the endmembers,
and si as the abundance vector of the spectral vector xi [16].

A. The Measurement Strategy

Let’s define the measurement matrices A ∈ Rma×nb and
Bk ∈ Rmb×nb whose elements are independently drawn at
random from Gaussian, Rademacher, or Bernoulli distribu-
tions. Matrix A acts on the HSI spectral domain generating
ma measurements per pixel. The measurements obtained with
matrix A are Ya = AX. The measurements obtained with
the matrices Bk are Yb = [yb,1, . . . ,yb,nv

] ∈ Rmb×nv , where
yb,k = Bkxik ∈ Rmb , for k = 1, . . . , nv . Matrices Bk act on
pixels with indexes i1, i2, . . . , inv

randomly chosen from the
set 1, . . . , n, producing mb measurements per sample pixel.
Therefore, the total number of measurements per block of n
pixels is man+mbnv yielding a measurement rate per pixel of
ma +mbnv/n. We will see in section II-D that for n� nbp,
and in the absence of noise, perfect reconstruction is possible
with mbnv/n� 1.

In the following subsection, we provide two strategies to
implement the SpeCA acquisition onto a pushbroom hyper-
spectral system.

B. SpeCA Hardware Acquisition Solution

A variety of different hardware designs have been proposed
for CS applications [20], [21]. For example, the works [22] and
[23] propose a measurement strategy on the spatial domain by
using a Digital Micromirror Device (DMD) array. The work
[24] proposes a CS system for diffuse optical tomography.
Further solutions can be found in [25]–[27].

In this work, we provide two hardware solutions to im-
plement the SpeCA projections. The first solution is based
on the work [27] and it schematized in Fig. 1. The mea-
surement system is implemented directly on the instrument
optics; therefore, it circumvents the need to acquire the data
in full length spectral resolution. The optic system consists
mainly of three elements: the first one splits the light into
different wavelengths, the second element is a DMD which
is programmed to perform multiplication between the signal
and random elements; finally, the cylindrical lens sum the
reflected light from the DMD producing the final randomly
projected observations. The measurements corresponding to
matrix A are obtained by programming the DMD with the
same random values for all the pixels at each wavelength,
while the measurements corresponding to matrices Bk are
obtained by programming the DMD with different values for
each pixel at each wavelength.

A disadvantage of the solution just described is that it
requires specific hardware in the hyperspectral sensor; thus, it
would not be possible to implement it in an already launched
sensor if it does not have this specific hardware. To cope with
these limitations, we propose an alternative strategy which
consist in implementing the measurement process in electronic
hardware.

Fig. 2 schematizes the proposed alternative acquisition
strategy operating on a pushbroom hyperspectral acquisition
system using the electronic hardware of the sensor. The sensor
acquires a complete strip along the cross range direction at
once shot; the spectral vectors acquired along the strip are left
multiplied by A and a subset of them are left multiplied by
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Fig. 1. Scheme of a possible measurement device implemented on a pushbroom satellite sensor using an optic system.
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Fig. 2. Scheme of a possible measurement strategy implemented on a pushbroom satellite sensor, using the electronic hardware.

Bk. The sequence i1, ik . . . , inv
is repeated every block of n

pixels.
Although this strategy requires to acquire the data at full

spectral resolution, its main advantage, in addition to its
simplicity, is that it can be performed line by line and,
therefore, only one line need to be saved. In this way, the
required storage resources are drastically reduced.

C. The Reconstruction Algorithm

The proposed recovery algorithm starts by finding a factor-
ization Ya = FS, where F = AM ∈ Rma×p, A ∈ Rma×nb

is the measurement matrix defined above, and M ∈ Rnb×p

holds a basis for the subspace S. Matrix F may be obtained
using, for example, the VCA endmember extraction algorithm
[28], parametrized with p endmembers, or the SVD decompo-
sition and retaining the p left singular vectors corresponding
to the p larger singular values.

Assuming that F is full column rank then the solution
of Ya = FS with respect to S is unique and given by

S = (FTF)−1FTYa. Unfortunately, we can not recover
M from the equation F = AM because the underlying
systems of equations is undetermined. To obtain M, we use
the measurements Yb jointly with S.

Using the properties of the vec and the kronecker operators
[29], we have

yb,k = Bkxik (1)
= BkMsik (2)

= (sTik ⊗Bk)vec(M), k = 1 . . . nv. (3)

By stacking all the above equations we obtain the linear system

D vec(M) = yb, (4)

with yb = vec(Yb), and D = [(ŝi1⊗BT
1 ), . . . , (ŝinv

⊗BT
nv
)]T .

The solution of (4) is vec(M) = (DTD)−1DTyv provided
that D is full column rank, which imply the following condi-
tions:

i) nvmb ≥ nbp, i.e. matrix D must be square or tall
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ii) the matrix Sb ≡ [si1 , si2 . . . , sinv
] must be full row

rank; otherwise, the components of the rows of M
orthogonal to span(S) would not be observable

iii) the matrix B ≡ [BT
i1
,BT

i2
. . . ,BT

inv
] must be full row

rank; otherwise, the components of the columns of
M orthogonal to span(B) would not be observable.

The following theorem state sufficient conditions for perfect
reconstruction of X in the absence of noise.

Theorem 1. Assume that the HSI matrix X ∈ Rnb×n has
rank p ≤ min{nb, n} and that the measurement matrices
A ∈ Rma×nb and Bk ∈ Rmb×nb , k = 1, . . . , nv , with
ma ≥ p and mbnv ≥ nbp, are independently drawn at
random from Gaussian N (0, 1), or Rademacher(1/2), or
Bernoulli(1/2) distributions. Let Ya = FS ∈ Rma×n be a
factorization of Ya, where F ∈ Rma×p and S ∈ Rp×n. Define
Sb ≡ [si1 , si2 . . . , sinv

] such that a subset of the columns of
Sb of size no smaller than nbp is at general linear position. In
these conditions, X is exactly recovered from the compressed
measurements Ya and Yb by computing X = MS, where M
is given by the solution of (4).

Proof. See Appendix.

The general position condition stated in the above theorem
means that among the column vectors of Sb, there must be a
set of size greater or equal than nbp such that no hyperplane
contains more than p vectors. This condition is not easy to
check. However, given that we use nv � nbp, that condition
is, in practice, systematically satisfied.

To Summarize, SpeCA reconstruction relies on two steps:
1) Computation of the coefficients S with respect to a basis
of the subspace spanned by the measurements Ya obtained
with the fixed matrix A acting on every pixel; 2) Estimation
of a signal subspace basis from S and from the measurements
Yb obtained with the pixel dependent matrices Bk. As stated
in Theorem 1, step 1) depends on ma ≥ p measurements per
pixel obtained with A, and the step 2) depends on mbnv ≥
nbp measurements obtained with the pixel dependent matrices
Bk. We remark that whereas matrix A acts on every pixel,
matrices Bk may act only in a small subset of pixels as long as
the number of measurements obtained with it satisfies mbnv ≥
nbp. It is clear therefore that the role of the two measurement
processes is not interchangeable.

Algorithm 1 shows the pseudo code for the proposed
method. Lines 2 and 3 implement the measurements and lines
6 to 12 carry out the HSI reconstruction. Symbol (·)† in line 7
denotes the Moore-Penrose pseudoinverse. Both processes are
illustrated in Fig. 3. The Matlab implementation of the SpeCA
algorithm is available online 1

D. A brief note about the measurement rate and SpeCA
complexity

As shown in Theorem 1, in order to ensure perfect recon-
struction, the measurement rate must fulfill two conditions.

1http://www.lx.it.pt/∼bioucas/code/Demo SpeCA.zip

Algorithm 1: Spectral Compressive Acquisition (SpeCA)
Input: A ∈ Rma×nb , Bk ∈ Rmb×nb , k = 1, . . . , nv ;

// measurement operators
Input: p; // dimension of the subspace

Output: X̂ , M̂, Ŝ ; // estimates
1 begin Measurements
2 Ya := AX;
3 Yb := [yb,1, . . . ,yb,nv ], yb,k := Bkxik , k = 1, . . . , nv;
4 end
5 begin HSI Reconstruction
6 Find a factorization Ya := FS, where F ∈ Rma×p;

// Use either VCA or SVD to find F

7 Ŝ := F†Ya; // Use Yb and Ŝ to estimate M
8 yb,i := Bkxik := BkMŝik ⇔ yb,i := (ŝTik ⊗Bk)vec(M);
9 yb := vec(Yb), D := [(ŝi1 ⊗BT

1 ), . . . , (ŝinv
⊗BT

nv
)]T ;

10 vec(M̂) := solution
{
D vec(M) = yb

}
;

11 M̂ := vec−1(vec(M̂)) ; // Reconvert to matrix

12 X̂ := M̂Ŝ ;
13 end

Fig. 3. Flowchart of the compression and the reconstruction process.

The first one is ma ≥ p and is related with the estimation of Ŝ.
The second one is nvmb ≥ nbp, which is a necessary condition
for matrix D be full column rank. We conclude therefore that
the measurement rate per pixel is ma+nvmb/n. In the results
shown in the next section, we set nv = n and mb = 1 yielding
a number of measurements per pixel of ma + 1.

Assuming a measurements rate of ma+1 samples per pixel
then the complexity of the associated with the measurements is

http://www.lx.it.pt/~bioucas/code/Demo_SpeCA.zip
http://www.lx.it.pt/~bioucas/code/Demo_SpeCA.zip
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of the order of manbn floating point operations (flops). This
complexity is extremely light, in accordance with the main
objective of this work. The complexity of the reconstruction
algorithm is dominated by the term p3n3b associated with the
solution of the linear system implicit in (4).

E. Estimation of p

The dimension of the subspace S plays a crucial role in
SpeCA. Since we do not know this parameter beforehand, it
must be estimated. A simple line of attack consists in setting
ma corresponding to an overestimate of p and then inferring
the true vale from Ya by exploiting the fact that, in the absence
of noise, the rank of that matrix is precisely p. Furthermore,
as we illustrate in the next section, SpeCA reconstructions are
very little sensitive to overestimated values of p.

Of course, the proposed scheme to set the value of p is
suboptimal and deserves further research, which is, however,
out of the scope of this paper.

III. RESULTS

In this section, we conduct experiments using simulated
and real data to illustrate the performance of the proposed
approach. As performance indicators, we use the normalized
mean squared error (NMSE) between the original image and
the reconstructed image (after data compression and decom-
pression) and the peak signal-to-noise ratio (PSNR). The first
one is given by

NMSE ≡ ||X̂−X||2F /||X||2F , (5)

and the PSNR is defined as

PSNR ≡ 10 log10
max(X)2nbn

||X̂−X||2F
, (6)

where max(X) denotes the maximum over the components of
X.

A. Synthetic data

In our first experiment, we use a synthetic data set generated
from spectral signatures randomly selected from the United
States Geological Survey (USGS) 2. The simulated image
consists of a set of 5 × 5 squares of 10 × 10 pixels each
one, for a total size of 110 × 110 pixels. The first row of
squares contains the endmembers, the second row contains
mixtures of two endmembers, the third row contains mixtures
of three endmembers, and so on. Zero-mean Gaussian noise
was added to the synthetic scenes in with signal-to-noise ratios
(SNR) defined as SNR ≡ 10 log10

‖X‖2F
E‖N‖2F

, where E denotes
mean value and N is the additive noise. Fig. 6 displays
the ground-truth abundances maps used for generating the
simulated imagery.

The first experiment aims to show the impact of the parame-
ters mb and nv on the image reconstruction. In this experiment,
we set the parameter ma = 5, the parameter nv takes values
in a range from 0.4n to n, and the parameter mb in a range

2http://speclab.cr.usgs.gov/spectral-lib.html

from 1 to 4; thus the averaged number of measurements per
pixel mbnv/n is between 0.4 and 4. Fig. 5 shows the results
in terms of PSNR for SNR ∈ {20, 30, 40}dB. The plots show
that, as expected, increasing the value of the parameters nv and
mb does not improve significantly the reconstruction accuracy.
This is because, as far as the number of measurements nvmb

satisfies the conditions sated in Theorem 1, the basis of the
subspace M̂ is correctly recovered.

In the remaining experiments we set mb = 1 and nv =
n, therefore the measurement rate is then δ = (ma + 1)/nb
measurements per pixel per band. We remark that the condition
nvmb ≥ nbp is satisfied with a large margin.

Table I shows the PSNR for the synthetic image using
different values of ma ∈ {3, 4, 5, 7, 9, 11}, for different
implementations of SpeCA and without noise. In SpeCA -
SVD, the estimation of F in line 6 in Algorithm 1 has been
done taking the first p eigen-vectors of the correlation matrix
YaY

T
a . In SpeCA - VCA the computation of F has been

obtained with the VCA algorithm [28], thus the results can be
interpreted as endmembers and abundances fraction maps.

As expected the results show that when the number of
measurements ma ≥ p SpeCA yields perfect reconstruction
no matter the version of the algorithm used. When ma < p
SpeCA still produces useful reconstructions, although, as
expected, the reconstruction error increases as ma decreases.

Fig. 6 displays PSNR (in dB) values for the synthetic image
using different values of ma ∈ {3, 4, 5, 7, 9, 11} with different
noise levels. In this case we use VCA algorithm for the
estimation of F. We may conclude that in noisy conditions
the accuracy degrades smoothly.

Fig. 7 illustrates SpeCA robustness to p. The true value
is p = 5 and we have run SpeCA with p ∈ {3, 4, . . . , 10}.
The figure displays PSNR results provided by SpeCA - SVD
algorithm, for different SNR and ma = 11. Clearly, the over-
estimation of p affects very little the reconstruction accuracy.

B. Cuprite

In this experiment, we use the well-known AVIRIS Cuprite
data set, available online in reflectance units after atmospheric
correction. This scene has been widely used to validate the
performance of endmember extraction algorithms. The portion
used in experiments corresponds to a 240 by 180 pixels subset
of the sector labeled as f970619t01p02 r02 sc03a.rfl in the
online data. The scene comprises 224 spectral bands between
0.4 and 2.5 µm, with full width at half maximum of 10 nm and
spatial resolution of 20 meters per pixel. Prior to the analysis,
several bands were removed due to water absorption and low
SNR in those bands, leaving a total of 188 reflectance channels
to be used in the experiments.

In this experiment, we evaluate SpeCA robustness with
respect to estimation errors in p, the dimension of the signal
subspace. Having into consideration the estimate p̂ = 14 pro-
vided by Hysime [30], we input SpeCA with p = ma taking
values between 5 and 19, corresponding to a measurement
rate (ma + 1)/nb between 0.03 and 0.1. Fig. 8 shows the
mean and standard deviation of the PSNR computed from 10
Monte-Carlo runs for SpeCA.
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(a) Endmember #1 (b) Endmember #2 (c) Endmember #3 (d) Endmember #4 (e) Endmember #5

Fig. 4. True abundance maps of endmembers in the synthetic hyperspectral data.

TABLE I
SIMULATED DATA. AVERAGE PSNR (IN dB) OBTAINED FROM 10 MONTE-CARLO RUNS FOR DIFFERENT VERSION OF THE METHOD WITHOUT NOISE.

ma = 3 ma = 4 ma = 5 ma = 7 ma = 9 ma = 11

SpeCA - SVD 30.01 31.84 287.62 295.19 295.15 295.48
SpeCA - VCA 28.72 33.89 278.56 278.95 279.05 278.25
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Fig. 5. PSNR (in dB) for the SpeCA method for different values of the
parameters mb and nv and different SNR when ma = 5, using the synthetic
data set.
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Fig. 6. PSNR (in dB) for the SpeCA method for different samples per pixel
ma and different SNR, using the synthetic data set. Note that the measurement
rate is (ma + 1)/nb.
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Fig. 7. PSNR between the original and reconstructed image when using
different estimations of the size of the subspace p̂, in the case of the SpeCA
- SVD algorithm for different SNRs and ma = 11.

For comparison purposes, we also show results obtained
with state-of-the-art CPPCA [4] and Qi-Hughes methods [2].
The parameters of these methods were hand tuned for optimal
performance. In both algorithms, we optimize the number of
principal components L to recover. For the different number of
measurements ma ∈ {5, 7, 9, 11, 13, 15, 17, 19}, the optimal
value of L is, respectively, {3, 3, 3, 4, 5, 5, 5, 5} in the case
of CPPCA and {4, 4, 5, 7, 8, 10, 10, 12} in the case of the
Qi-Hughes method. Furthermore, in the case of CPPCA, we
optimized the number of partitions of the data set, J , in
the range 40, . . . , 2040 with a step size of 200, resulting in
an optimum value of J = 1640. From these results, we
may conclude that SpeCA produces the best reconstructions,
with a very good quality even when ma is considerable
smaller than the true subspace dimension. Qi-Hughes method
provide a reconstruction very stable no matter the number of
measurements, but worse than SpeCA in all cases. CPPCA
lacks stability when the number of measurements is bellow
the true signal subspace, but improves its results and stability
with a higher number of measurements per pixel.

Fig. 9 shows the NMSE for each pixel in the Cuprite scene
using ma = 5 and ma = 18 respectively. When ma = 5
most of the pixels are reconstructed with a very small error
(dark blue corresponding to a value around 0.5 · 10−3)); a
very small set of pixels have larger reconstruction errors (red
corresponding to a value around 3.5 · 10−3), as they have part
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Fig. 8. Mean and variance of the PSNR in the Cuprite data set for SpeCA,
CPPCA and Qi-Hughes method for different samples per pixel.

(a) ma = 5

(b) ma = 18

Fig. 9. NMSE for each pixel in the Cuprite dataset when (a) ma = 5 and
(b) ma = 18. Note that the measurement rate is (ma + 1)/nb.

of their energy outside of the range of Ya. When ma = 18
most of the pixels have a very small error (dark blue 2 ·10−4)
and only few have a larger error of about 12 · 10−4.

Figs. 10 and 11 show, respectively, a plot of the ordered
normalized mean square error per pixel and the reconstructed
and the original signatures with highest, mean, and lowest
error using different values of ma. We conclude that the large
majority of the pixels have a very low reconstruction error,
close to a perfect reconstruction. Even in the worst case, the
reconstruction obtained with ma = 18 is useful in many
applications.

Finally, Fig. 12 shows the results in terms of PSNR with

(a) ma = 5

(b) ma = 18

Fig. 10. NMSE per pixel ( ‖x̂i − xi‖/‖xi‖) for the real Cuprite dataset,
using ma = 5 at left and ma = 18 at right. The pixels are ordered from the
pixel with lowest error at left to the pixel with highest error at right. Note
that the measurement rate is (ma + 1)/nb.

measurement matrices A and Bk sampled from Gaussian,
Rademacher, and Bernoulli distributions. The results are simi-
lar with a little advantage for the Bernoulli distribution. Thus,
we conclude that SpeCA is robust with respect to the statistics
used to generate the elements of A and Bk, at least regarding
the three distributions considered.

C. Pavia University

In this experiment we used the hyperspectral image acquired
over the University of Pavia (Italy) by the ROSIS-03 (Re-
flective Optics Systems Imaging Spectrometer) hyperspectral
sensor. The geometrical resolution of the image is 1.3m. In
this experiment we used the subset with the first 340 × 340
pixels of the Pavia University data set. The original data is
composed of 115 spectral bands, ranging from 0.43 to 0.86 µm
with a band of 4 nm. However, noisy bands were previously
discarded, leading to 103 channels.

In this case we input SpeCA with p = ma in all cases,
using different samples per pixel from 6 to 20, thus ma from
5 to 19, which correspond to a subsample rate from 0.06 to
0.2.
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Fig. 11. Original and reconstructed pixel in the best (a,d), worst(c,f) and mean (b,e) case for the dataset of Cuprite using different values of ma. Note that
the measurement rate is (ma + 1)/nb.
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Fig. 12. Mean PSNR after 10 Monte Carlo runs of SpeCA with the Cuprite
data set using different types of random matrices for different samples per
pixel ma. Note that the measurement rate is (ma + 1)/nb.

CPPCA and Qi-Hughes paremeters were optimized as in
the previous example. Regarding the number of principal
components L to recover, and for the different number of
measurements ma ∈ {5, 7, 9, 11, 13, 15, 17, 19}, the optimum
value was, respectively, {2, 3, 4, 5, 5, 6, 7, 8} in the case of
CPPCA and {3, 3, 4, 6, 8, 10, 11, 11} in the case of Qi-Hughes
method. For CPPCA, the number of partitions of the data set,
J , were optimized in the range 40, . . . , 2040 with a step size
of 200, resulting in an optimum value of J = 840.

Fig. 13 shows the mean PSNR and standard deviation after
10 Monte-Carlo runs for SpeCA, CPPCA and Qi-Hughes
methods for the different considered samples per pixel. This
experiment shows that SpeCA provides the best results.
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Fig. 13. Mean and variance of the PSNR in the Pavia University data set for
SpeCA, CPPCA and Qi-Hughes method for different samples per pixel.

D. Processing time

The last experiment aims at showing that SpeCA also is
very light from the computational point of view. For this
experiment, we used Matlab implementations, that although
may not be optimal, give guidelines about the computational
complexity. The system used has a quad-core Intel i7- 4790
CPU, 3.6-GHz clock speed and 32-GB RAM. The experiments
were run on a Linux Mint 17 OS with the 2013a version of
Matlab software.

Table II shows SpeCA, CPPCA and Qi-Hughes execution
times for the decoding using different number of measure-
ments per pixel. The parameters used in the case of CPPCA
and Qi-Hughes methods were the optimal values described
in previous section. SpeCA is the fastest method in all cases
and provides an execution time relatively low supporting the
claim that SpeCA is a very light from the computational point
of view and thus suitable for real-time applications.



9

TABLE II
EXECUTION TIME IN SECONDS, FOR SPECA, CPPCA AND QI-HUGHES METHOD, USING DIFFERENT MEASUREMENTS PER PIXEL OVER THE CUPRITE

DATASET.

Samples per pixel 6 8 10 12 14 16 18 20

SPECA time in secs 2.44 4.32 6.48 10.36 12.67 19.67 20.60 25.09
CPPCA time in secs 15.30 15.58 15.94 21.38 27.05 27.60 28.14 27.24

Qi-Hughes time in secs 25.09 25.98 34.01 50.23 59.87 76.11 79.97 101.91

IV. CONCLUSIONS AND FUTURE RESEARCH LINES

This paper introduced SpeCA, a new method to perform
compressive mesurements via random projections over hyper-
spectral images. SpeCA performs compression in the spectral
domain and exploits the low dimensionality of HSIs. SpeCA
is blind in the sense that it estimates both the basis of the
subspace and the respective coefficients, contrarily to other
similar CS techniques, which need to know the basis of the
subspace beforehand. SpeCA yields perfect reconstruction in
the absence of noise, provided that the number of measure-
ments is larger that a critical limit. When the number of
measurements is below the critic limit, SpeCA performance
degrades smoothly. SpeCA is very light from the compu-
tational point of view, which is a desired feature in real-
time applications. In the future, further work will be focused
on the implementation of SpeCA using high performance
computing architectures such as GPUs in order to perform
image reconstruction in real time.

APPENDIX
PROOF OF THEOREM 1

Proof. Given the measurement matrices Ya = AX ∈ Rma×n

and Yb = [yb,1, . . . ,yb,nn
] ∈ Rmb×nv , with yb,k = Bkxik ,

for k = 1, . . . , nv , the objective is to prove that the original
HSI is given by X = MS ∈ Rnb×n, where M ∈ Rnb×p

and S ∈ Rp×n. Matrix M is the solution of the linear system
D vec(M) = vec(Yb), where

D = [(ŝi1 ⊗BT
1 ), . . . , (ŝinv

⊗BT
nv
)]T . (7)

Matrix F results from any factorization Ya = FS, with F ∈
Rma×p.

Given that A ∈ Rma×nb is drawn at random from Gaussian
N (0, 1), or Rademacher(1/2), or Bernoulli(1/2) distributions,
then the set of rows of A are in a general linear position
with probability one. Since ma ≤ nb, the rows of A form a
linearly independent set and no linear combination falls in the
null space of XT . Since ma ≥ p, then Ya spans the range
of XT . Therefore, Ya has rank p and thus may be factorized
as Ya = FS, where F ∈ Rma×p is full column rank and
S ∈ Rp×n is full column rank.

Since X ∈ Rnb×n has rank p ≤ min{nb, n}, we may write
X = ES′, where E ∈ Rnb×p is any full column rank matrix
which spans the range of X and S′ ∈ Rp×n is full row
rank. From AX = FS, we conclude that AES′ = FS and
that S′ = (AE)

†
FS, where (AE)†, using the same arguments

as above, is full rank. Therefore, we conclude that X = MS,
where M = E(AE)

†
F.

In order to compute M, we use the set of equations yb,k =
BkMsik , for k = 1, . . . , nv , where we have used the fact
xik = Msik . If we apply the operator vec to both sides of
yb,k = BkMsik , we obtain the linear system of equations

D vec(M) = vec(Yb), (8)

where D ∈ R(nvma)×(nbp) is given by (7). The system (8) has
a unique solution if and only if the null space of D is {0},
which implies that nvma ≥ nbp and is equivalent to

{M : BkMsik = 0, k = 1, . . . , nv} = ∅ (9)

Noting that Bk, for k = 1, . . . , nv , are drawn at random from
Gaussian N (0, 1), or Rademacher(1/2), or Bernoulli(1/2)
distributions, that there exist, by hypothesis, a subset of the
columns of Sb ≡ [si1 , si2 . . . , sinv

] no smaller than nbp that
is at general linear position, and using the same reasoning as
above, we conclude that the set (9) is empty.
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