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Abstract—In remote sensing image processing, relaxation is
defined as a method that uses the local relationship among neigh-
boring pixels to correct spectral or spatial distortions. In recent
years, relaxation methods have shown great success in classifica-
tion of remotely sensed data. Relaxation, as a preprocessing step,
can reduce noise and improve the class separability in the spec-
tral domain. On the other hand, relaxation (as a postprocessing
approach) works on the label image or class probabilities obtained
from pixelwise classifiers. In this work, we develop a discontinuity
preserving relaxation strategy, which can be used for postprocess-
ing of class probability estimates, as well as preprocessing of the
original hyperspectral image. The newly proposed method is an
iterative relaxation procedure, which exploits spatial information
in such a way that it considers discontinuities existing in the data
cube. Our experimental results indicate that the proposed method-
ology leads to state-of-the-art classification results when combined
with probabilistic classifiers for several widely used hyperspectral
data sets, even when very limited training samples are available.

Index Terms—Border delineation, hyperspectral image classifi-
cation, relaxation methods, spectral-spatial relaxation, probabilis-
tic relaxation (PR).

I. INTRODUCTION

EMOTELY sensed hyperspectral image classification has

been a very active area of research in recent years
[1]. Although techniques for unsupervised classification and/or
clustering have also been used in the literature [2], supervised
classification has been more popular in many applications [3].
Still, there are several important challenges when performing
supervised hyperspectral image classification [4], such as the
unbalance between high dimensionality and limited training
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samples, or the presence of mixed pixels in the data (which
may compromise classification results for coarse spatial res-
olutions). Another relevant challenge is the need to integrate
the spatial and spectral information to take advantage of the
complementarities that both sources of information can pro-
vide. Such integration can reduce the negative impact of the
aforementioned challenges.

According to the principle that, in remote sensing images,
neighboring pixels are likely to have the same contextual prop-
erties, spectral-spatial techniques can be effectively exploited
to improve the classification accurary [2]. For example, in [5],
simply adding the mean of neighboring pixel values for each
band to the original spectral feature vector of central pixel
has shown better classification performance than conventional
spectral methods. In [6], authors proposed to extract textural
features from the hyperspectral image using efficient image
enhancement algorithms and then combine them with spec-
tral information via kernels in a semisupervised graph-based
framework for classification. In other approaches, modeling
different kinds of the structural information contained in hyper-
spectral images by using morphological filters and integrating
with spectral information have been successfully used for
hyperspectral image classification [7]-[9].

The important category of spectral-spatial techniques com-
prises relaxation methods which are defined as methods that use
the local relationship among neighboring pixels to correct spec-
tral or spatial distortions. As preprocessing, spatial smoothing
over the hyperspectral data can remove noise and enhance spa-
tial texture information [10]-[12]. For example, in [11], in order
to classify land cover mathematical morphology-based noise
reduction filter has been used before the maximum-likelihood
(ML) classification algorithm. In [10], authors showed that
anisotropic diffusion algorithm can reduce the spatial and
spectral variability of the image, while preserving the edges
of objects, which will improve the classification accuracy of
hyperspectral imagery. On the other hand, as a postprocessing
method, relaxation-based approaches can be an effective tool to
improve classification accuracies [2]. These normally iterative
methods are broadly referred to as continuous relaxation (CR)
or probabilistic relaxation (PR) [13]-[16], which incorporate
spatial-contextual information into the obtained probabilistic
classification results. In other words, after a probabilistic pix-
elwise classification of the hyperspectral image, the process of
PR is applied to exploit the continuity, in probability sense, of
neighboring labels. Perhaps the most popular PR strategy is
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Fig. 1. Flowchart of the proposed method.
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Fig. 2. (a) Classes in a synthetic scene with n = 100 x 100. (b) Spectral signatures of randomly selected materials from the USGS digital library used in the
simulation. (c) Fractional abundance distributions considered for generating mixed pixels using a fixed window of size 9 x 9 pixels.

based on the use of Markov random fields (MRFs) [2], [17]-
[20]. Specifically, the MRF has been shown to be a very suc-
cessful technique for refining the classification results provided
by the probabilistic SVM classifier. For instance, spectral—
spatial hyperspectral image classification was performed in
[21], given an initial SVM classification map and a final MRF-
based relaxation process. This work suggests to incorporate a
“fuzzy no-edge/edge” function into the MRF-based relaxation
procedure for preserving discontinuities. An adaptive MRF
approach was proposed, in [22], for hyperspectral image clas-
sification. This work introduced a relative homogeneity index
for each pixel to determine an appropriate weighting coefficient

for the spatial contribution in the MRF-based relaxation proce-
dure. In [23], a novel and rigorous framework was proposed for
contextual hyperspectral image classification, which combines
SVMs and MRFs in a unique formulation. More recently, inte-
gration of the multinomial logistic regression (MLR) and MRF
algorithms has shown significant performance in hyperspectral
image classification. For instance, in [24], combining MRF-
based multilevel logistic (MLL) prior with subspace-based
MLR (MLRsub) algorithm was proposed for hyperspectral
image classification. In another effort to use MRF-based prior,
in [25], the hyperspectral classification results were obtained
by maximizing the marginal probability of the posterior
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distribution using the loopy belief propagation method, where
the posterior class probability was modeled as an MLR clas-
sifier and an MRF. Very recently, combining sparse MLR
(SMLR) algorithm [26] with a spatially adaptive total variation
(SpATV) regularization was proposed, which showed signifi-
cant performance [27]. However, one of the first approaches to
include spatial-contextual information in probabilistic classifi-
cation was probabilistic label relaxation (PLR), [2], [28], [29].
PLR strategies use the probabilities of neighboring pixels itera-
tively to update the class probabilities for the center pixel based
on a neighborhood function [2]. It has been observed, quite
often, the use of spatial information as relaxation, although,
on one hand, it clearly improves the classification accuracy
in smooth image areas, on the other hand, it degrades the
classification performance in the neighborhood of the class
boundaries. Fundamentally, this is a consequence of enforcing
smoothness across the boundaries. Based on this observation,
in this work, we develop a new relaxation strategy for hyper-
spectral image classification which aims at introducing spatial
relaxation while accurately preserving the edges of class bound-
aries. This edge preserving strategy relies on discontinuity maps
estimated from the original image cube. These maps are accu-
rate because they are inferred from the many image bands,
usually on the order of hundreds, with aligned discontinuities.
The proposed approach can also be used as a preprocessing
step to logically relax the original spectral vectors by consid-
ering discontinuities from the data cube. This step is able to
reduce noise and improve the class separability while preserv-
ing discontinuities by including edge information. However, as
a postprocessing, the proposed approach is based on the main
principles of PLR-based methods, which can be considered as
a form of PR since they iteratively improve the probabilistic
output of the considered classifier by naturally imposing spa-
tial consistency in the final classified image. This is important,
as some spatial postprocessing strategies tend to generate an
undesired blob-like effect in the final classification results. In
this regard, our experimental results indicate that the proposed
methodology leads to state-of-the-art classification results when
compared with other widely used PR-based methods (e.g., PLR
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TABLE I
OVERALL (OA) AND AVERAGE (AA) CLASSIFICATION ACCURACIES (%)
(AS A FUNCTION OF PARAMETER o) NOISE

ag
Methods Accuracies
0 0.05 0.10 0.15 0.20

OA 92.63 91.09 83.02 6992 56.16
MLR

AA 93.77 9209 8507 72.71 59.74

OA 93.08 9550 91.50 79.19 65.74
pPpMLR

AA 94.09 96.05 9246 81.17 68.49

OA 95.70 9577 87.76  72.69  57.82
MLRpr

AA 96.23  96.19 89.57 7563 6l1.64

OA 9457 9590 91.80 79.62 6590
ppMLRpr

AA 9543 9644 9276 81.76  68.94

and MRF). The probabilistic outputs and the fact that the pre-
sented method does not require prior information about the
scene are other important features of the proposed approach.

This paper is organized as follows. Section II describes the
main stages of the proposed classification framework, including
preprocessing, classification, and edge-preserving probability
relaxation. Section III presents an experimental validation of
the method, conducted using three well-known hyperspectral
data sets collected by the airborne visible infrared imaging
spectrometer (AVIRIS) over the Indian Pines, Indiana, and
Salinas Valley, California, and by the reflective optics spectro-
graphic imaging system (ROSIS) over the city of Pavia, Italy.
Section IV concludes the paper with some remarks and hints at
plausible future research.

II. PROPOSED FRAMEWORK

In this section, we first present probabilistic pixelwise clas-
sification method, which is applied in this work and then we
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1-Alfalfa

2-Corn-no till
3-Corn-min till

4-Corn

5-Grass/pasture
6-Grass/tree
7-Grass/pasture-mowed
8-Hay-windrowed
9-Oates
10-Soybeans-no till
11-Soybeans-min till
12-Soybeans-clean till
13-Wheat

14-Woods
15-Bldg-Grass-Tree-Drives
16-Stone-steel tower

(2)

1- Brocoli-green-weeds-1
2- Brocoli-green-weeds-2
3- Fallow

4- Fallow-rough-plow

5- Fallow-smooth

6- Stubble

7- Celery

8- Grapes-untrained

9- Soil-Vinyard-develop
10- Corn-senesced-green-weeds
11- Lettuce-romaine-4wk
12- Lettuce-romaine-5wk
13- Lettuce-romaine-6wk
14- Lettuce-romaine-7wk
15- Vinyard-untrained

16- Vinyard-vertical-trellis

Fig. 5. AVIRIS Salinas data set. (a) False color composition. (b) Ground-truth. (c) Discontinuity map.

1-Asphalt
2-Meadows
3-Gravel
4-Trees
5-Metal sheets
6-Bare soil
7-Bitumen
8-Bricks
9-Shadows

Fig. 6. ROSIS Pavia University data set. (a) False color composition. (b) Training data. (c) Ground-truth. (d) Discontinuity map.

describe the proposed relaxation approach which is used in both
preprocessing and postprocessing methods. The flowchart of
proposed method has been shown in Fig. 1.

A. Probabilistic Pixelwise Classification

Let X = {Xl, ..
input image, where x; = [;1, Z;2, . .

.,Xp} denote the observed data from an
., ;4)T denotes a spectral

vector associated with an image pixel 7 € .S, d is the number
of spectral bands, and S = {1,2,...,n} is the set of integers
indexing the n pixels of an image. In probabilistic pixelwise
classification, the goal is to make a decision for a pixel x;
regarding a label assignment y; € {1,2,..., K}. The decision
is made on the basis of the posterior probabilities that the pixel
belongs to each of the K classes, i.e., p(y; = k|x;). With these
definitions in mind, and adopting the maximum a posteriori
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OA AND AA CLASSIFICATION ACCURACIES (%) OBTA]NEDTI‘SAYBI;AIEFII;RENT METHODS FOR THE AVIRIS INDIAN PINES DATA SET
Methods
Class Train/test Proposed relaxation methods
MLR MLR-MLL
ppMLR MLRpr ppMLRpr

Alfalfa 15/ 54 86.67 (4.06) 92.96 (5.29) 98.61 (1.33) 97.31 (0.95) 97.96 (1.02)
Corn-no till 15/ 1434 50.36 (7.87) 61.98 (9.16) 82.49 (6.39) 70.25 (8.89) 85.54 (6.27)
Corn-min till 15/ 834 58.62 (10.93) 70.85 (13.01) 86.60 (6.57) 74.03 (14.26) 89.90 (7.09)
Corn 15 /234 69.70 (10.81) 90.49 (8.71) 94.94 (4.96) 95.60 (9.13) 97.44 (4.48)
Grass/trees 15 /497 82.27 (5.68) 88.16 (5.32) 91.18 (4.04) 90.99 (7.57) 91.64 (5.11)
Grass/pasture 15/ 747 88.80 (5.06) 96.06 (2.68) 97.48 (1.15) 99.65 (0.42) 98.25 (0.75)
Grass/pasture-mowed 15726 96.73 (2.87) 98.65 (2.26) 99.81 (0.86) 97.31 (4.69) 94.23 (22.34)
Hay-windrowed 15 /489 90.26 (4.35) 97.29 (3.14) 99.16 (0.71) 99.64 (1.36) 99.98 (0.06)
Oats 15720 99.75 (1.12) 100.00 (0.00) 100.00 (0.00) 43.50 (28.75) 92.00 (11.17)
Soybeans-notill 15 /968 53.36 (9.30) 68.16 (12.31) 87.57 (6.85) 74.83 (12.18) 88.57 (5.76)
Soybeans-min till 15 / 2468 49.59 (9.57) 60.65 (10.74) 80.68 (5.78) 68.07 (14.52) 86.29 (5.72)
Soybeans-clean till 15/ 614 58.36 (10.92) 76.69 (12.36) 88.88 (5.32) 84.45 (14.14) 93.20 (6.16)
Wheat 15/212 97.81 (2.31) 99.46 (0.41) 99.58 (0.34) 99.98 (0.11) 99.62 (0.42)
Woods 15/ 1294 86.81 (7.63) 94.11 (7.10) 93.96 (3.72) 95.89 (7.05) 95.24 (4.56)
Bldg-grass-tree-drives 15/ 380 44.30 (12.02) 57.25 (15.18) 94.99 (6.40) 72.33 (18.72) 95.96 (5.84)
Stone-steel towers 15795 92.16 (4.29) 96.58 (4.19) 98.63 (2.11) 97.95 (2.01) 96.79 (1.95)

OA 64.30 (2.29) 75.09 (2.86) 88.36 (1.67) 80.67 (3.12) 91.05 (1.87)

AA 75.35 (1.60) 84.33 (1.36) 93.41 (1.03) 85.11 (2.52) 93.91 (2.27)

K 60.03 (2.45) 72.03 (3.10) 86.88 (1.86) 78.22 (3.36) 89.87 (2.09)

probability (MAP) classification criterion, we can write the
discriminant function as follows:
Ve # k. (1)

yi =k if ply; = k|x;) > p(yi = ¢|x;)

Various probabilistic classification techniques have been suc-
cessfully used for hyperspectral data [24], [30], [31]. In this
work, we consider an MLR algorithm. MLR-based techniques
exhibit the advantage of modeling directly the posterior class
distributions. In this context, the densities p(y;|x;) can be mod-
eled by the MLR, which corresponds to a discriminative model
of the discriminative-generative pair for p(x;|y;) (Gaussian)
and p(y;) (multinomial). The MLR model is formally given
by [32]

exp (w®h(x;))
icyexp (w®h(x)))

where h(x) = [hy(x),...,h;(x)]T is a vector of [ fixed func-
tions of the input, often termed as features, w®) is the set of

p(yi = klx;,w) = )

logistic regressors for class k, and w = [w™®", ... wE-D"T,

Recently, [24] proposed to combine the MLR with a subspace
projection method called MLRsub. The idea of applying sub-
space projection methods to improve classification relies on the
basic assumption that the samples within each class can approx-
imately lie in a lower dimensional subspace. Thus, each class
may be represented by a subspace spanned by a set of basis
vectors, while the classification criterion for a new input sample
is the distance from the class subspace [24]. In [33], a modified
version of MLRsub is proposed, which uses the following input
function h(x;) in (2) and is given by

h(x;) = [[lx]% I UW 2, L [ USOPT G)

where U®) = {ugk),...,uilf,z)}, k=1,2,... K, is a set of
(¥)_dimensional orthonormal basis vectors for the subspace
associated with class k (r*) < d).

The fact that hyperspectral vectors tend to live in unions of
subspaces underlies the input function (3). In the following, we
simply refer to the MLRsub classifier adopted in this work as
MLR for simplicity.
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OA AND AVERAGE (AA) CLASSIFICATION ACCURACIES (%) OE?/?III:IE])II;Y DIFFERENT METHODS FOR THE AVIRIS SALINAS DATA SET
Methods
Class Train/test Proposed relaxation methods
MLR MLR-MLL
ppMLR MLRpr ppMLRpr

Brocoli-green-weeds-1 15 /2009 99.31 (0.55) 99.93 (0.40) 99.88 (0.27) 99.98 (0.13) 99.90 (0.24)
Brocol-green-weeds-2 15 /3726 98.42 (1.14) 99.12 (0.09) 99.41 (1.18) 99.79 (0.37) 96.67 (15.90)
Fallow 15/ 1976 91.81 (6.20) 94.21 (5.43) 98.85 (2.85) 95.65 (6.10) 96.08 (18.27)
Fallow-rough-plow 15/ 1394 98.35 (2.99) 98.70 (2.75) 99.79 (0.32) 99.94 (0.13) 98.90 (5.62)
Fallow-smooth 15 /2678 95.88 (2.70) 98.71 (1.53) 97.93 (1.00) 98.72 (0.22) 97.42 (6.96)
Stubble 15/ 3959 98.62 (1.08) 99.31 (0.37) 99.69 (0.36) 99.82 (0.22) 98.49 (7.43)
Celery 15 /3579 98.78 (0.62) 99.22 (0.20) 99.76 (0.17) 99.91 (0.01) 98.25 (9.13)
Grapes-untrained 15 /11271 66.18 (9.09) 74.39 (24.50) 81.76 (5.80) 77.46 (12.22) 84.68 (6.42)
Soil-vinyard-develop 15/ 6203 97.30 (0.90) 98.58 (1.04) 98.91 (0.76) 100.00 (0.01) 97.46 (9.05)
Corn-senesced-green-weeds 15/ 3278 81.72 (5.92) 85.67 (2.08) 90.69 (3.24) 88.77 (8.35) 92.17 (3.51)
Lettuce-romaine-4wk 15/ 1068 93.12 (3.61) 95.55 (1.89) 97.18 (2.80) 99.46 (0.77) 99.58 (0.52)
Lettuce-romaine-5wk 15 /1927 97.62 (2.98) 99.15 (0.00) 98.82 (1.97) 99.60 (1.28) 98.94 (1.98)
Lettuce-romaine-6wk 15 /916 98.70 (0.86) 99.01 (0.80) 98.73 (1.05) 98.86 (0.34) 98.73 (0.64)
Lettuce-romaine-7wk 15/ 1070 94.20 (3.01) 96.81 (3.41) 97.47 (2.25) 97.21 (1.77) 97.13 (2.25)
Vinyard-untrained 15 /7268 63.90 (9.33) 71.53 (41.58) 87.32 (9.06) 78.01 (14.28) 90.55 (8.65)
Vinyard-vertical-trellis 15/ 1807 94.16 (2.89) 96.32 (1.64) 96.71 (3.39) 98.36 (0.78) 96.93 (3.69)

OA 85.28 (1.51) 89.02 (6.54) 93.30 (1.70) 91.26 (2.30) 93.79 (4.46)

AA 91.76 (0.76) 94.14 (2.60) 96.43 (0.81) 95.72 (1.05) 96.37 (4.48)

K 83.67 (1.66) 87.80 (7.28) 92.56 (1.89) 90.29 (2.55) 93.11 (4.91)

B. Discontinuity Preserving Relaxation

In this work, we introduce a new relaxation method to
logically smooth the classification results or the original hyper-
spectral image using both spatial and spectral information while
preserving the discontinuities extracted from the data cube.

Let p=[p1,...,pa) € RE*™, p; = [pi(1),...,pi(K)]"
for i € S be the K-dimensional multivariate vector of prob-
abilities defined on site i. Let u = [uy, ..., u,] € R"™*X for
i €8, u; = [u;(1),...,u;(K)]T be the final vectors of prob-
abilities obtained from the relaxation process. In this work,
we implement a relaxation scheme that is the solution of the
following optimization problem:

min (1= 0)u—pl? + A3 3 <y —
i jEO;

s.t.. u; >0, 1Tui =1 “4)

where the constraints are justified by the fact that the vec-
tors u; represent probabilities 1 is a vector column of K s,
A (0 < A<1)is a weight parameter controlling the relative
impact of the both terms in the objective function, 0; denotes
the eight-neighborhood of pixel ¢ (other types of neighborhood

can be applied), and €, is a value in the site j € .S of edge image
€ given by

d
e=exp|— ) sobel(X") 5)
1=1

where sobel() denotes the Sobel filter, which detects the dis-
continuities in an image and the output at each pixel is 0 or 1.
The Sobel filter is applied on each spectral channel in a specific
direction and X () denotes the ith band of the original data cube
X. Note that here, to have a better interpretation of the edges,
we considered the average of the results obtained by applying
sobel() in two vertical and horizontal directions.

In the proposed relaxation scheme (4), the first term in the
objective function measures the data misfit and the second
term promotes smooth solutions weighted by the parameter
€4, which, according to its definition, is large when there
are no discontinuities between the neighboring pixels it con-
nects and small when there are discontinuities. The solution
of (4) corresponds, therefore, to tradeoff between adjustment
to the “noisy” classification, imposed by the first term, and
smoothness imposed by the second term. We stress, however,



LI et al.: A DISCONTINUITY PRESERVING RELAXATION SCHEME FOR SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION 631

MLR (64.15%)

MLR-MLL (73.11%)

PPMLR (86.66%)

MLRpr (80.13%)

ppMLRpr (90.98%)

Fig. 7. Classification maps obtained by different methods for the AVIRIS Indian Pines scene (PP refers to preprocessing and the OAs are reported in the

parentheses).

that due to the presence of map ¢, the smoothness is not applied
across the discontinuities.

At this point, we would like to make reference to edge-
preserving image restoration methods such as those based on
total variation (TV) [16] or based on anisotropic diffusion (AD)
[34]. In both cases (i.e., TV and AD), the objective is similar to
ours: to apply strong smoothing in areas away from edges and
avoid smoothing the edges. However, in our case, we know the
edges in advance, which is not the case of those methods. This
is a considerable advantage, which results from the availability
of many hyperspectral bands.

Problem (4) is strictly convex and, therefore, has a unique
solution. Herein, we apply a projected iterative Gauss Seidel
scheme, which consists in iteratively minimizing the objective
function in (4) with respect to each optimization variable w; (k)
and, after a complete sweep, project on the probabilities at each
pixel onto the probability simplex. The obtained algorithm is
shown in Algorithm 1, where ¢ters is the number of maximum
iterations defined in advance, Err(tt1) = ”“Tlll—t_”“t” is an error
parameter and 7 is the error threshold parameter controlling the
degree of convergence.

Algorithm 1. Discontinuity Preserving Relaxation (PR)

Input: p, ¢, )\, iters, Err™™) = ||p||, 7

Output: u

t=1

while Err(t+tD) — Brr®) < 7 or ¢t < iters do
for £ :=1to K do

(t+1) ECESVHOEDY D) isju(_t)(k)
w k)= (I=2+x i::ai o
el(ld %)I‘ (t+1 K (t41)
t t t
ui+ :ui+)/zk=1ui+ (k‘)

Lyt

Erpt+1) — llu
[lut]|

end while

At this point, we would like to call attention to the fact that,
apart from the constraints used in (4) linked to the fact that we
are estimating probabilities, the ratione used to carry out PR
can be used to denoise the original bands of the hyperspectral
image X ensuring the preservation of the discontinuities. The
correspondent algorithm, which may be used as a preprocess-
ing step, is shown in Algorithm 2, where Err.; denotes the
error parameter for the kth band, x.j, is the processed image of
the kth band, which corresponds to the original kth band, i.e.,
X:k = [T1k, - - -, Znk). Finally, we empirically find out that both
algorithms converge very fast, say, less than 20 iterations.

Algorithm 2. Discontinuity Relaxation

(Preprocessing)

Preserving

Input: X, ¢, ), iters, Err() = (IX|l, 7
Output: X
for k :=1toddo

t:=1

Err:(,i) = Err®)

while Err:(,:H) — Err:(,? <7, ort <iters do
D) _ A=Nzip+A 3o, 53}

ik (1_)‘)—"—)\27'687; €j

D) IR G
th T RGT
end while
end for

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we use both simulated and real hyperspectral
data to evaluate the proposed approach. The main goal of using
simulated data set is to evaluate the performance of the algo-
rithm in a fully controlled environment, while the experiments
with real experiments are intended to provide a quantitative
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MLR (86.97%) MLR-MLL (90.67%)

PPMLR (95.87%)

MLRpr (94.38%) PPMLRpr (96.80%)

Fig. 8. Classification maps obtained by different methods for the AVIRIS Salinas scene (PP refers to preprocessing and the OAs are reported in the parentheses).

The Soybean min-till class

MLR (66.13%)

PPMLR (75.77%)

MLRpr (65.72%)

ppMLRpr (81.20%)

Fig. 9. Probability image of the class Soybean min-till resulted from the proposed methods.

evaluation of the method in real-analysis scenarios. For sim-
plicity, in this section, we refer to spatial preprocessing as
“pp,” while “MLL” and “pr”” denote MLL-based [35], [36] and
PR-based spatial relaxation, respectively.

A. Experiments With Simulated Data

In our first experiment, we use a simulated image with eight
classes and 100 x 100 pixels, in which the spatial distribu-
tion is extracted from a real image and the spectral signatures
are selected from the U.S. Geological Survey (USGS) digital

spectral library.! The ground-truth image and the spectral sig-
natures of eight randomly selected mineral signatures allocated
to the main classes are shown in Fig. 2. We considered the fol-
lowing linear mixture model for generating a simulated mixed
pixel:

X; = Z m(j)’yj + n; (6)
J€O;
where m() [ = 1,...,8 are spectral signatures obtained ran-

domly from the USGS spectral library, and +y;, which follows a

![Online]. Available: http://speclab.cr.usgs.gov/spectral-lib.html
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@

®

Fig. 10. Bands of numbers 50, 100, and 150 of the original hyperspectal image (a—c) before and (d—f) after preprocessing.

random distribution with 0 < ; < land 3, , v; = 1, deter-
mines the abundance of the signatures which contribute to the
mixture model. Note that, here, the maximum abundance value
of ; is assigned to the objective class according to the ground-
truth image. 0; is a neighborhood with a specific size around the
central pixel ¢ over the considered ground-truth image. 0; deter-
mines a set of class labels to contribute in the mixture. So that
the pixels near the borders of the regions are generated by mix-
tures of different class labels and the pixels far from the borders
are considered pure.

In our simulations, we set the size of the neighborhood to
9 x 9 pixels. For illustrative purposes, Fig. 2(c) shows an exam-
ple of the abundance maps associated with the eight classes
of the simulation image. In each pixel of the scene, the frac-
tional abundances vary from 0% (black color) to 100% (white
color) and sum to unity. Note that, using the suggested proce-
dure, signature abundance is not constant over class regions and
the pixels closer to the discontinuities are more heavily mixed,
as expected in real scenarios. Zero-mean Gaussian noise with
covariance o1, i.e., n; ~ N(0,0%I), is finally added to the
generated synthetic image. For each class, we randomly chose
10 samples (in total 80 samples) from the ground-truth image
in Fig. 2(a) for training purposes.

We have conducted different experiments with the simulated
hyperspectral image described earlier. These experiments have
been carefully designed to analyze several relevant aspects of
our proposed method in a fully controlled environment. All of
the results reported in this paper with the simulated data sets
were obtained after 30 Monte Carlo runs in which we ran-
domly select eight different materials and also randomly select
different training sets.

B. Impact of Parameter A

In our first experiment, we analyze the impact of the tun-
able parameter )\ intended to control the relative impact of
both the terms in the proposed relaxation scheme. It should
be noted that, if A = 0, only the first term is considered and
the method remains as the original MLR algorithm. If A =1,
only the smoothing term is used. Fig. 3(a) plots the obtained
OA results as a function of A\, with & = 0.1 and the maximum
number of iterations as 20. From Fig. 3(a), we can conclude
that the relaxation performance indeed depends on the setting
of \. However, even with 0.7 < A < 0.9, the proposed relax-
ation method leads to significant classification results for the
considered problem. Fig. 3(b) shows convergence of the pro-
posed PR method with different values of A parameter. As can
be observed, the proposed approach converged very fast, i.e.,
less than 20 iterations, for all cases with different value of \.
Hence, in this paper, we set the parameter A = 0.9 and the max-
imum number of iterations as 20 for the remaining simulated
experiments.

C. Impact of Noise

In the other experiment with simulated data, we evalu-
ate the impact of noise on the proposed relaxation method.
Table I shows the classification results obtained by the proposed
approach using different values of noise standard deviation o.
Several conclusions can be obtained from Table I. First and
foremost, it is remarkable that the proposed approach, which
carefully uses the local relationship among neighboring pix-
els, has improved the performance of MLR-based classification
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OA AND AA CLASSIFICATION ACCURACIES (%) OBTAINEDT}‘;?(B];]EFIE\;ENT METHODS FOR THE ROSIS PAVIA UNIVERSITY SCENE
Methods
Class Train/test Proposed relaxation methods
MLR MLR-MLL

ppPMLR MLRpr ppMLRpr
Asphalt 15/ 6631 61.32 (5.93) 75.38 (7.74) 76.81 (6.95) 89.03 (6.09) 78.14 (8.38)
Meadows 15/ 18649 66.96 (9.98) 79.36 (12.78) 90.87 (5.14) 80.74 (12.94) 90.36 (6.37)
Gravel 15 /2099 57.06 (10.19) 57.39 (17.56) 79.47 (7.42) 71.59 (18.08) 81.55 (9.32)
Trees 15/ 3064 89.64 (9.79) 91.72 (12.68) 86.11 (8.44) 84.68 (15.58) 83.49 (8.49)
Metal sheets | 15/ 1345 96.02 (5.15) 98.35 (4.05) 97.17 (3.11) 97.99 (3.55) 97.73 (4.44)
Bare soil 15 /5029 45.45 (8.64) 42.48 (18.93) 68.79 (12.5¢) 59.58 (17.55) 70.61 (14.96)
Bitumen 15 /1330 78.92 (9.50) 89.55 (13.16) 81.48 (13.29) 96.42 (11.89) 80.09 (12.51)
Bricks 15 /3682 70.67 (8.09) 90.10 (5.13) 87.65 (5.50) 92.25 (6.35) 88.88 (4.33)
Shadows 15 /947 98.50 (2.50) 99.50 (1.26) 91.38 (6.36) 99.90 (0.11) 92.41 (5.13)
OA 67.00 (3.55) 76.50 (5.35) 84.83 (2.70) 81.81 (5.25) 85.05 (2.87)
AA 73.84 (1.95) 80.42 (3.49) 84.41 (3.00) 85.80 (4.12) 84.80 (2.69)
K 58.23 (3.72) 69.46 (6.27) 80.06 (3.44) 76.40 (6.34) 80.36 (3.62)

accuracy. Clearly, the performance of the proposed relaxation
method decreases as o increases. When the noise is low, using
the proposed method as PR shows better performance than pre-
processing, however, in high noise images, relaxation method
as preprocessing shows significant improvements. Note that
the results obtained using both preprocessing and PR, i.e.,
PpMLRpr, are always superior.

D. Real Experiments

Three different hyperspectral images were used for the exper-
iments. These data sets have different characteristics and con-
texts (two agricultural areas and an urban area, with different
spectral and spatial resolutions).

1) The first one is the well-known AVIRIS Indian Pines
scene [see Fig. 4(a)], collected over Northwestern Indiana
in June 1992 [3]. The scene is available online? and con-
tains 145 x 145 pixels and 220 spectral bands between
0.4 and 2.5 um. The spatial resolution of the scene is
20 m/pixel. A total of 20 spectral bands were removed
prior to experiments due to noise and water absorption
in those channels. The ground-truth image displayed in
Fig. 4(b) contains 10 366 samples and 16 mutually exclu-
sive classes having from 20 to 2468 samples. These data
are widely used as a benchmark for testing the accuracy
of hyperspectral data classification algorithms, mainly
because it constitutes a challenging classification problem
due to the presence of mixed pixels in available classes,
and also because of the unbalanced number of available
labeled pixels per class.

2[Online]. Available: https://engineering.purdue.edu/~biehl/MultiSpec/

2) The second image considered in experiments is the
AVIRIS Salinas image, collected over the Valley of
Salinas, Southern California, USA, in 1998. It contains
217 x 512 pixels and 204 spectral bands and is charac-
terized by 3.7 m/pixel spatial resolution. Fig. 5(a) shows
the ground-truth map with 16 mutually exclusive classes.
Due to the spectral similarity of most classes, this data set
also represents a very challenging classification problem.

3) The third image used in our experiments was collected
by the ROSIS instrument. These data were acquired over
the urban area of the University of Pavia, Pavia, Italy. The
flight was operated by the Deutschen Zentrum for Luftund
Raumfahrt (DLR, the German Aerospace Agency) in the
framework of the HySens project, managed and spon-
sored by the European Commission. The image size in
pixels is 610 x 340, with very high spatial resolution of
1.3 m/pixel. The number of data channels in the acquired
image is 103 (with spectral range from 0.43 to 0.86 pm).
Fig. 6(a) shows a false color composite of the image,
while Fig. 6(c) shows nine ground-truth classes of inter-
est, which comprise urban features, as well as soil and
vegetation features. In the original data set, out of the
available ground-truth pixels, 3921 were used for training
[see Fig. 6(b)] and 42 776 samples were used for testing.

Moreover, for the three considered hyperspectral images, the
discontinuities maps were generated using (5), which have been
shown in Figs. 4(c), 5(c), and 6(d), respectively.

1) Experimental Setup: Before describing our results, it is
important to first report the parameters and main considerations
in our experiments. For the experiments with the AVIRIS Indian
Pines and Salinas images, the training samples were randomly
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PPMLR (84.77%)

MLRpr (81.41%)

ppMLRpr (82.53%)

Fig. 11. Classification maps obtained by different methods for the ROSIS Pavia University scene (PP refers to preprocessing and the OAs are reported in the

parentheses).

selected from the available ground truth and the remaining
samples are used for validation. However, for the ROSIS Pavia
University image, small subsets of the original training sam-
ples were used. Note that we constructed very small training
sets by selecting only 15 labeled samples per class. Obtaining
a good performance of the classifier in the presence of very
limited training samples is very important as labeled training
data are often difficult and expensive to be collected in prac-
tice. Concerning the A parameter of the proposed relaxation
methods, we considered A\ = 0.9. For the stopping, the max-
imum number of iterations in all experiments was set to 20.
These settings, although suboptimal, lead to very good classifi-
cation performance. Note that, in all the experiments, the results
reported correspond to the average of the results obtained after
20 Monte Carlo runs.

2) Experiments for AVIRIS Images: Tables II and III report
the obtained classification accuracies for the AVIRIS Indian
Pines and Salinas images, respectively. The metrics reported
are the individual classification accuracies, as well as the
OA, AA, and « statistic. These tables provide the results for
each step of the proposed spectral—spatial relaxation method.

Moreover, the results have been compared with the recently
proposed spectral—spatial classification method MLRsubMLL
[24]. From the results reported in Tables II and III, we can con-
clude that our proposed method exhibits state of the art. For
instance, Table II reveals that the proposed relaxation method,
i.e., ppMLRpr obtained an OA of 91.05% for the AVIRIS
Indian Pines image, which contrasts with the OA of 64.30%
obtained by the MLR-based classifier. Compared to MLR-
MLL, the OA achieved by the presented method improved by
about 16% the OA obtained by this method. For the AVIRIS
Salinas image, we obtained comparable results.

A more detailed investigation of individual class accuracies
is important to assess quantitatively the impact of the pro-
posed method on class separability. As indicated in Tables IT
and III, the improvement is quite significant for the sets of
similar class labels. For example, the classification accura-
cies obtained by the MLR method with preprocessing for the
classes Corn-no till, Corn-min till, and Corn in the AVIRIS
Indian Pines scene were 82.49%, 86.60%, and 94.94%, respec-
tively, which are 32.13%, 27.98%, and 25.24% higher than
those obtained by the MLR algorithm. It is also remarkable
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TABLE V
STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION ACCURACIES
Z (classiﬁcation method 1 / classification method 2)
Data
ppMLRpr/MLR | ppMLRpr/MLR-MLL | ppMLRpr/ppMLR | ppMLRpr/MLRpr

Indian Pines 48.44 36.86 12.90 28.20

Salinas 56.61 37.64 20.06 22.88

Pavia University 64.63 34.93 13.63 21.05
TABLE VI

ALGORITHMS FOR INDIAN PINES (IP), SALINAS (S), AND PAVIA UNIVERSITY (PU) DATA SETS

Relaxation-based classification methods
Data | Acc.
SVM-MLL LORSAL-MLL | LORSAL-SegSALSA | SMLR-SpTV ppPMLR MLRpr PPMLRpr
OA 78.39 (5.36) 74.95 (2.93) 76.35 (2.91) 77.12 (1.73) 88.36 (1.67) 80.67 (3.12) 91.05 (1.87)
. AA 87.81 (2.29) 85.56 (0.99) 87.12 (0.83) 86.92 (0.99) 93.41 (1.03) 85.11 (2.52) 93.91 (2.27)
OA 88.94 (5.82) 89.78 (1.34) 90.10 (1.28) 93.22 (1.78) 93.30 (1.70) 91.26 (2.30) 93.79 (4.46)
° AA 94.61 (2.19) 94.26 (0.58) 94.48 (0.56) 91.11 (1.37) 96.43 (0.81) 95.72 (1.05) 96.37 (4.48)
OA 78.32 (6.65) 73.08 (5.53) 76.09 (5.74) 78.43 (6.62) 84.83 (2.70) 81.81 (5.25) 85.05 (2.87)
v AA 84.03 (3.81) 81.09 (2.26) 83.95 (2.25) 87.05 (3.12) 84.41 (3.00) 85.80 (4.12) 84.80 (2.69)

that the accuracies for these classes increased in 3.05%, 3.30%,
and 2.50%, respectively, when the proposed MLRpr method
with preprocessing was used. The same conclusion can be
obtained after comparing the individual class accuracies for
the sets of Grass/trees, Grass/pasture, Grass/pasture-mowed
and Soybeans-no till, Soybeans-min till, Soybeans-clean till.
For the AVIRIS Salinas image, it is also possible to consider
other sets of similar classes and obtain the same conclusion.
For instance, pixelwise classifier MLR obtained low accuracies
for class Vinyard-untrained, i.e., 63.90%. However, after apply-
ing the preprocessing method the accuracy for this class was
increased by 23.42%. This improvement is significant because,
e.g., the MLR+MLL method obtained 71.53% accuracy for this
class, which is just 7.63% higher than MLR result. It is also
noticeable that the accuracy obtained by the proposed method
ppMLRpr for the class Vinyard-untrained is 90.55%, which is
26.65% higher than the result obtained by the MLR algorithm.

For illustrative purposes, Figs. 7 and 8 show the obtained
classification maps for the AVIRIS Indian Pines and Salinas
data sets. Each of the maps corresponds to one of the 30 Monte
Carlo experiments, which were averaged to produce the results
reported in Tables II and III. From Figs. 7 and 8, it can be seen
that using spatial information (both at the preprocessing and
postprocessing level) can lead to more homogeneous regions in
classification maps, when compared to the pixelwise classifi-
cation maps. Most importantly, the proposed method exhibits
very good performance in the task of delineating the borders of
classes of interest.

Figs. 9 and 10 illustrate the performance of the proposed
relaxation method in detailed. For example, Fig. 9 shows the
changes of probabilities of class Soybean min-till for all the
pixels. We can conclude that our proposed method preserve

discontinuities during relaxation process. Similarly for prepro-
cessing (Fig. 10), the proposed method obviously smoothed
the original hyperspectral image while it considered edge
information.

E. Experiments for the ROSIS Pavia University Image

Table IV details the classification results obtained for the
ROSIS Pavia University scene. Several conclusions can be
obtained from this table. First and foremost, it is remarkable
that the proposed relaxation approach exhibited very good per-
formance using very limited number of training samples. For
instance, our proposed method obtained an OA of 85.05%,
which is 18.05% higher than the one obtained by the MLR
algorithm, whereas the MLR-MLL obtained an OA of 76.50%,
which is 9.5% higher than the result obtained by the MLR
algorithm. For illustrative purposes, Fig. 11 shows the obtained
classification maps for the Pavia University data set.

F. Evaluation of the Statistical Significance

The McNemar’s test [37] is a widely used technique in the
remote sensing community for evaluating the statistical signif-
icance of the difference in accuracy between two classification
methods. In this test, a value of | Z| > 1.96 indicates that there
is a significant difference in accuracy between two classification
results. The sign of Z is also a criterion to indicate whether the
first classifier compared is more accurate than the second one
(Z > 0) or vice versa (Z < 0). Table V reveals the differences
in classification accuracies between the proposed ppMLRpr
method and the other classification methods used in Tables II-
IV are statistically significant. The significant differences in
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accuracy between the case of using the ppMLRpr method and
MLR method were the most for the Pavia University data and
the least for the Indian Pines data. Furthermore, for all the the
data sets, the differences in accuracy between the ppMLRpr
method and ppMLR method were the least significant.

G. Comparison With Other Algorithms

Using the same data sets in Tables II-1V, Table VI provides
a comparison of the proposed relaxation algorithm with other
successful methods such as probabilistic SVM [38], [39], and
LORSAL [40] with multilevel logistic spatial prior (denoted
as SVM-MLL and LORSAL-MLL, respectively), LORSAL
with segmentation via the constraint split augmented lagrangian
shrinkage (SegSALSA) algorithm [15], and SMLR classifier
[26] following with SpATV relaxation algorithm [27]. Note
that, for all the tested methods, we carefully optimized the
related parameters. From Table VI, we can conclude that
PpMLRpr obtained significant results in terms of OA and AA in
comparison with those obtained by the other tested algorithms.
Moreover, if we compare the results obtained by MLRpr with
the results obtained by the other tested algorithms in view of
postprocessing, we can conclude that the proposed PR method
exhibits better performance.

IV. CONCLUSION

In this work, we have developed a new methodology for
spectral—spatial classification of remotely sensed hyperspectral
scenes. The inclusion of both spectral and spatial informa-
tion is an important aspect, as it has been shown that the
joint exploitation of the information in both domains can sig-
nificantly improve the final classification results. The main
features of our proposed approach can be summarized as fol-
lows. First, it provides spatially homogeneous regions after
probabilistic classification, thus exploiting the intrinsic corre-
lation which exists between neighboring pixels to improve the
final classification results. Second, it specifically models the
pixels at the borders of the regions to provide a better delin-
eation of the classified objects. In other words, our proposed
approach is able to provide accurate spectral-spatial classifi-
cation while preserving the edges and the boundaries between
classes, which is quite important as the inclusion of spatial
regularizers tends to blur the class boundaries and provide
nonsmooth delineations. Our experimental results, conducted
using a variety of (simulated and real) hyperspectral scenes and
spectral—spatial classification strategies, indicate that the pro-
posed approach provides state-of-the-art classification results.
In particular, the proposed method provides high classification
accuracies when very limited training samples are used, and
also provides accurate delineation of classes at the borders.
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