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Abstract—Leveraging current state-of-the-art denoisers to
tackle other inverse problems in imaging is a challenging task,
which has recently been the topic of significant research effort.
In this paper, we present several contributions to this research
front, based on two fundamental building blocks: (i) the recently-
proposed plug-and-play framework, which allows combining iter-
ative algorithms for imaging inverse problems with state-of-the-
art image denoisers, used in black-box fashion; (ii) patch-based
denoisers, using Gaussian mixture models (GMM). We exploit
the adaptability of GMM to learn class-adapted denoisers, which
opens the door to embedding a patch classification step in the
algorithmic loop, yielding simultaneous restoration and semantic
segmentation. We apply the proposed approach to several stan-
dard imaging inverse problems (deblurring, compressive sensing
reconstruction, and super-resolution), obtaining results that are
competitive with the state of the art.

Index Terms—Image restoration, image reconstruction, Gaus-
sian mixtures, ADMM, plug-and-play, class-adapted priors.

I. INTRODUCTION

OVER the last decade, many methods have been proposed
for image denoising. The ones that perform best, al-

though very distinct on their approach, provide results that are
very close to one another. This corroborates the hypothesis
that these methods are not far from the theoretically best
possible performance [1]. Whereas the vast majority of state-
of-the-art denoisers are patch-based [2]–[6], that is, instead
of dealing with the whole image, they divide it into small
blocks and treat each of them independently, in more involved
inverse imaging problems it is not clear how to generalize such
approaches. This is, nonetheless, an important and relevant
research direction, where [7]–[10] are but a few examples.

Recently, Venkatakrishnan et al [11] proposed a framework
that leverages the advances in image denoising to solve
other inverse problems, such as image deblurring, compressive
imaging, super-resolution, among others. In their so-called
plug-and-play (PnP) approach, the authors propose to plug
a general-purpose denoiser into the iterations an alternating
direction method of multipliers (ADMM) algorithm [12]. In a
nutshell, the denoiser is used as a black-box and we need
only to adjust how to deal with the observation operator,
which depends on the particular problem at hand. Other algo-
rithms, such as primal-dual, iterative shrinkage/thresholding
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algorithm (ISTA), the fast versions of ISTA (FISTA [13]
and TwIST [14]), approximate message passing (AMP), or
regularization by denoising (RED), can also naturally leverage
off-the-shelf denoisers; for more details about these methods,
we refer the reader to [15]–[20].

In this paper, we build upon the original PnP framework,
which uses ADMM, and combine it with learned denoisers
based on Gaussian mixture models (GMM), to address sev-
eral image restoration/reconstruction problems. Furthermore,
instead of learning a generic denoiser to be used in any
setting, we train models that are targeted to specific classes
of images, namely: text, faces, fingerprints, medical images.
The rationale is that those denoisers should be able to capture
well the characteristics of each class, and hence perform
better than general-purpose denoisers [21], [22]. In parallel
to this work, several authors have also proposed improving
denoising/restoration results by narrowing down the set of
exemplars/database to particular classes of images [23]–[26].

We begin by considering the scenario where the image class
is assumed to be known a priori, and thus we may use a
GMM-based denoiser targeted to that class directly; this is
the case, for example, if it is known that the image being
restored is of a face or a fingerprint. We then extend the
approach to the case where the image being restored is from
an unknown class and/or may contain regions from different
classes (e.g., text and faces, or text and natural images). The
proposed method may be seen as performing simultaneous
segmentation and restoration, thus exploiting synergies be-
tween these two tasks [27]. Notice that our main goal is not
to obtain a good or meaningful segmentation, but to use the
segmentation to allow class-specific models to be exploited at
each location of the image, thus our focus is on the restoration
performance of the method. Nevertheless, we believe that this
type of approach may contribute to bridging the gap between
low-level (restoration) and mid-level (segmentation) image
processing/analysis. Other approaches to joint restoration and
segmentation include the work in [28], which considers only
two-region segmentation, the work in [29], which is based on
a Nash-equilibrium principle, or the more recent approach in
[30], using deep learning.

Combining ADMM with a GMM-based denoiser (or any
other black-box denoiser, for that matter), under the PnP
framework, begs an obvious question: does the resulting algo-
rithm keep the convergence guarantees of standard ADMM?
In this paper, we rely on the findings presented in [31], [32]
to show how the proposed method can be modified to ensure
a positive answer to this question. However, as this is not the
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focus of the paper, we purposely disregard the modifications,
and plug the GMM-denoiser as presented in [5]. In practice,
we still always observe convergence to a stationary point.

The paper is organized as follows. Section II describes the
ADMM algorithm and how it can be applied to tackle several
inverse imaging problems. Section III explains the intuition
behind the PnP framework, as well as our choice of denoiser.
Section III also builds upon the concept of targeted priors,
by proposing two distinct ways of leveraging models that are
trained for specific classes of images. Section III-D briefly de-
scribes how to ensure the proposed algorithm converges, based
on the guarantees presented in [31], [32], while Section IV re-
ports several experiments, exhibiting very competitive results.
Finally, Section V concludes the paper and discusses directions
for future research.

II. TOOLS AND PROBLEM FORMULATION

A. ADMM

We begin by providing a very brief review of the ADMM
algorithm. Dating back to the 1970’s [33], the last decade has
shown that ADMM is a flexible and efficient tool, currently
widely used in inverse imaging problems, as well as in
machine learning, and several other areas [12], [34]. Strong
convergence properties and modular structure are some of the
properties that make ADMM such a convenient tool.

In its canonical formulation [12], ADMM is used to address
problems of the form

min
x∈Rn, v∈Rm

f (x)+g(v) (1)

subject to Ax+Bv = b,

where functions f : Rn → R̄ = R∪ {+∞} and g : Rm → R̄
are closed, proper, and convex, and matrices A and B, and
vector b are of appropriate dimensions. The ADMM tackles
(1) iteratively, by alternating minimizations with respect to x
and v, while keeping the other fixed, and updating of the so-
called Lagrange multipliers, u, that is

x(k+1) = argmin
x

f (x)+
ρ

2

∥∥Ax+Bv(k)−b+u(k)∥∥2
2, (2)

v(k+1) = argmin
v

g(v)+
ρ

2

∥∥Ax(k+1)+Bv−b+u(k)∥∥2
2, (3)

u(k+1) = u(k)+Ax(k+1)+Bv(k+1)−b. (4)

An issue of practical relevance is the choice of parameter
ρ, which may strongly affect the practical performance of the
algorithm and which is an active research topic [35].

B. Solving Imaging Inverse Problems via ADMM

In this paper, we will consider three different inverse prob-
lems, namely: cyclic deblurring, (block) compressive imaging,
and super-resolution. We start by providing a brief description
of each of these problems, as well how to tackle them using
ADMM. The classical formulation of these problems is

y = Hx+n, (5)

where y ∈Rm is the observed data, x ∈Rn is the (vectorized)
underlying image to be inferred, H is the observation matrix,

and n is assumed to be Gaussian zero-mean with known
variance σ2. Matrix H depends on the type of problem: in
image deblurring, H represents a convolution operator; in
compressive imaging, H is a random measurements matrix; in
super-resolution, H represents a blurring operator followed by
sub-sampling. In general, H is either non-invertible or severely
ill-conditioned; consequently, inferring x requires the help of
a prior/regulariser that promotes particular characteristics on
the image estimate. One of the standard choices is to look for
the maximum a posteriori (MAP) estimate (under prior p(x))

x̂ = argmax
x

p(y|x)p(x), (6)

= argmin
x
− log p(y|x)− log p(x), (7)

= argmin
x

1
2σ2 ‖Hx−y‖2

2 +φ(x), (8)

where (8) follows from the hypothesis that the noise is Gaus-
sian with zero mean and variance σ2, and φ(x) = − log p(x)
(up to an additive constant) is also known as the regulariser.

Comparing (8) with (1), it is straightforward to identify
f (x) = 1

2‖Hx− y‖2
2, and g(v) = σ2φ(v), under the constraint

x= v, thus A= I, B=−I, and b= 0. Injecting these equalities
in (2) and (3), we conclude that the latter corresponds to the
proximity operator [36] of (σ2/ρ)φ, computed at x(k+1)+u(k):

v(k+1) = prox(σ2/ρ)φ

(
x(k+1)+u(k)). (9)

Recall that the proximity operator of some convex function
ψ : Rn→ R̄ is defined as

proxψ(y) = argmin
x

1
2
‖x−y‖2

2 +ψ(x), (10)

and can be seen as the MAP solution of a denoising prob-
lem, where the argument of proxψ is the noisy data, the
noise is Gaussian i.i.d. with unit variance, and the prior is
p(x) ∝ exp(−ψ(x)). This interpretation is at the root of the
so-called PnP framework [11], as discussed in the next section.

With f (x) = 1
2‖Hx− y‖2

2, problem (2) becomes quadratic,
with solution

x(k+1) =
(
HT H+ρI

)−1(HT y+ρ(v(k)−u(k))
)
, (11)

where the computational bottleneck is the matrix inversion.
Although it may seem at first that this inversion should be
avoided, if it can be computed efficiently, then it is in fact
an advantage, since the resulting algorithm turns out to be
very fast in practice [37], [38]. Furthermore, in the problems
considered in this paper, these inversions can in fact be
computed efficiently, as shown in the following paragraphs.

1) Cyclic Deblurring: in the case of cyclic/periodic de-
blurring, H ∈ Rn×n is a block-circulant matrix with circulant
blocks, thus the inversion can be done in the 2D discrete
Fourier domain. In this case, H can be factored as H=UT DU,
where U represents the 2D discrete Fourier transform matrix,
UT = U−1 is its inverse (with (·)T denoting conjugate trans-
pose), and D is a diagonal matrix. Consequently,

(HT H+ρI)−1 =(UT DUUT DT U+ρI)−1 =UT (|D|2+ρI)−1U.
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The inversion of the diagonal matrix |D|2+ρI has linear cost,
and the multiplications by U and UH can be done via the FFT
algorithm, with cost O(n log(n)).

2) Compressive Imaging: In compressive imaging [39],
[40], H∈Rm×n is a Gaussian measurement matrix, with m< n.
The solution to (2) is again given by the n× n inversion in
(11), which may be too expensive to compute. Resorting to
the matrix inversion lemma, it is possible to reduce the cost
of the inversion by a factor of roughly (n/m)3 (assuming that
inverting a general n×n matrix costs O(n3)):

(HT H+ρI)−1 =
1
ρ

(
I−HT (HHT +ρI)−1H

)
, (12)

where the required inversion is now of size m×m. Note, also,
that this inversion is done only once, and can be precomputed,
stored, and used at each iteration of the algorithm.

Another way of tackling this problem in an efficient manner
is to consider that the Gaussian measurement matrix is applied
to non-overlapping blocks of the image. With this, we are able
to keep the same measurement ratio, reducing substantially the
size of the matrix that needs to be inverted [41], [42].

3) Super-resolution: In image super-resolution H = SB,
where S∈Rm×n is a sub-sampling operator or down-sampling
matrix with factor d (with n = d 2 m) along the columns and
rows of the image, and B ∈ Rn×n is a periodic blurring
operator as in the deblurring case. Once again, since B is
block circulant with circulant blocks, it can be factored into
B = UT DU. Moreover, since operator S down-samples the
image, ST corresponds to up-sampling and filling the missing
samples with zeros; consequently, SST = Im ∈Rm×m (identity
matrix) and ST S∈Rn×n is a binary diagonal matrix with ones
at the observed positions and zeros elsewhere. Following [43],
[44], the inversion in (11) can be computed in closed form as(
HT H+ρI

)−1
=
(
BT ST SB+ρI

)−1
,

=
(
UT DT UST SUT DU+ρI

)−1
,

= UT (DT UST SUT D+ρI
)−1 U,

= UT
(

DT
(

1
d2 Jd2 ⊗ Im

)
D+ρI

)−1

U, (13)

where Jd2 ∈ Rd2×d2
is a matrix of ones and ⊗ denotes

the Kronecker product. However, in (13), the matrix to be
inverted is of size n× n, which may be prohibitive. Further
simplification can be achieved by first exploiting properties of
the Kronecker product (with 1a denoting an a−dimensional
vector filled with ones),

DT
(

1
d2 Jd2 ⊗ Im

)
D =

1
d2 DT ((1d21T

d2

)
⊗ (ImIm)

)
D

=
1
d2 DT (1d2 ⊗ Im)

(
1T

d2 ⊗ Im
)

D

=
1
d2

(
DT [Im, · · · ,Im]

T )([Im, · · · ,Im]D)

=
1
d2

(
DT D

)
(14)

(where D = [Im, · · · ,Im]D) and then applying the matrix inver-
sion lemma to obtain(

HT H+ρI
)−1

=
1
ρ

(
In−DT (d2

ρIm +DDT )−1 D
)
, (15)

where the inversion is now of size m×m, which reduces the
computational cost by a factor of

(
d2
)3

= d 6 [43].

III. PROPOSED METHOD

A. Plug-and-Play

The plug-and-play (PnP) framework was motivated by
noticing that equation (10) can be interpreted as the MAP esti-
mate (recall (8)) in a pure denoising problem (with unit noise
variance), i.e., with H= I, function ψ acting as regulariser. The
rationale behind PnP is that, instead of designing a convex
regulariser for which it is possible to efficiently compute
the proximity operator, this proximity operator (which is
essentially a denoiser) can be replaced by some state-of-the-
art denoiser. In other words, the denoiser is plugged into the
iterative algorithm, playing the role of the proximity operator
of the regularizer [11]. We stress that iterative algorithms
other than ADMM can also be used in a PnP fashion. For
example, [15] uses a primal-dual splitting, which can include
hard constraints, while the work in [16] uses FISTA [13]
and has the advantage of being able to handle non-linear
observation operators. In this work, we stick to the origi-
nal PnP framework, which uses ADMM, for the following
reasons: the inverse problems described above include only
linear observation operators; the inversion in Eq. (11) can
be efficiently computed in closed form, as explained in the
previous section.

Amongst the many state-of-the-art denoising methods, we
opted for a GMM-based, patch-based denoiser. The reasons
for this choice are threefold: (i) it has been shown by several
authors that a GMM is a good prior for clean image patches
[4], [5], [45], [46]; (ii) a GMM prior can be efficiently learned
from an external dataset of clean images [4], [45] or directly
from noisy patches [5]; (iii) by learning the GMM prior from
an external dataset of clean images, we open the door to
developing class-specific priors/denoisers [21]. In principle,
class adaptation should yield better results because, by training
on images of a particular class allows the prior to better capture
the characteristics of that class.

The GMM denoiser used in this paper was proposed in
[5], but the training of the model is done using an external
dataset, as in [45], instead of the noisy patches. After ex-
tracting patches from a dataset of clean images, the GMM is
learned using the well-known expectation-maximization (EM)
algorithm. Then, this model is used as a prior to denoise the
observed patches which, in this particular situation, can be
done by computing the minimum mean squared error (MMSE)
estimate in closed form [5]. For the sake of completeness, the
main aspects of the patch-based GMM denoiser are repeated
here. Consider the additive Gaussian noise model for each
image patch1 y = x + n, with n ∼ N (0,σ2I), and a GMM

1Notice that whereas in the rest of the paper x and y denote full images,
here they refer to an arbitrary individual patch.
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prior

p(x) =
K

∑
m=1

αmN (x;µm,Cm), (16)

where α1, ...,αK are the mixing weights and N (·;µ,C) denotes
a Gaussian density of mean µ and covariance matrix C.
Without loss of generality, assume zero-mean components, that
is µ j = 0, for j = 1, . . . ,K. Because the sum of two zero-mean
Gaussians is a zero-mean Gaussian with covariance equal to
the sum of the covariances, the marginal p(y) is

p(y) =
K

∑
m=1

αmN (x;0,Cm +σ
2I). (17)

By Bayes’ law, p(x|y) = p(y|x) p(x)/p(y), i.e.,

p(x|y) = 1
p(y)

K

∑
m=1

αm p(y|x)N (x;0,Cm) (18)

=
1

p(y)

K

∑
m=1

αm pm(y)
p(y|x)N (x;0,Cm)

pm(y)
, (19)

where pm(y) = N (y;0,Cm +σ2I). The MMSE estimator of x
is the posterior expectation, x̂ = E [x|y] =

∫
x p(x|y)dx, thus

x̂ =
1

p(y)

K

∑
m=1

αm pm(y)
∫

x
p(y|x)N (x;0,Cm)

pm(y)
dx︸ ︷︷ ︸

x̂m

. (20)

Each x̂m is the MMSE estimate of x from y, using a single
Gaussian prior (the m-th component of the GMM). This is
well-known to be x̂m = Cm(Cm +σ2)−1y, finally yielding

x̂ =
∑

K
m=1 αm N (y;0,Cm +σ2I) x̂m

∑
K
m=1 αm N (y;0,Cm +σ2I)

, (21)

or, using compact notation,

x̂ =
K

∑
m=1

βm(y) vm(y), (22)

where
vm(y) = Cm

(
Cm +σ

2I
)−1

y, (23)

and

βm(y) =
αm N (y;0,Cm +σ2 I)

∑
K
m=1 αm N (y;0,Cm +σ2 I)

. (24)

Notice that βm(y) is the posterior probability that (noisy) patch
y belongs to the m-th component of the GMM and vm(y) is
the MMSE estimate of that patch, if we knew it had been
generated by the m-th component of the GMM. Notice that
both βm and vm depend on the noisy y; consequently, although
vm(y) is a linear (affine, to be precise if µm 6= 0) function of
y, the MMSE estimate x̂ is a nonlinear function thereof.

After computing the MMSE patch estimates, x̂1, ..., x̂N , they
are returned to their location and combined by averaging. The
simplest choice is to use a straight average, which corresponds
to solving the optimization problem (see, e.g., [47])

x̂ ∈ argmin
x∈Rn

N

∑
i=1
‖x̂i−Pix‖2

2, (25)

where Pi ∈ {0,1}p×n is a binary matrix that extracts the i-th
patch (assumed to have p pixels) from the image (thus PT

i puts
the patch back into its place) and N is the number of patches.
The solution to (25) is

x̂ =
( N

∑
i=1

PT
i Pi

)−1 N

∑
i=1

PT
i x̂i. (26)

Assuming that the patches are extracted with unit stride and
periodic boundary conditions, every pixel belongs to exactly p
patches and ∑

N
i=1 PT

i Pi = pI, thus its inverse is p−1I and (26)
corresponds simply to averaging the p estimates of each pixel
(one for each of the p patches that contain it).

B. Targeted Priors
By targeted (or class-adapted) priors (equivalently, denois-

ers), we mean those that are learned from images of a partic-
ular class, such as faces or text. In this paper, we distinguish
two ways of leveraging this type of image priors. First, we
consider the case where it is known that the image in hand
belongs to a certain class (i.e., that class is predominant in the
image). Although this hypothesis is not satisfied in generic
images, there are many applications where it is, namely in
text and face image restoration, or in specific medical imaging
modalities, where a known organ is being imaged.

Subsequently, we consider the scenario where several
classes may be present in the image. In this case, rather than
considering a single class-adapted GMM prior, we consider C
different models, each targeted to one of a set of C classes. In
other words, we have C different priors, each given by

p(x|c) =
K(c)

∑
m=1

α
(c)
m N (x;µ(c)m ,C(c)

m ), (27)

where c ∈ {1, ...,C} is the class label. To estimate the i-th
patch, we begin by classifying it into one of the classes, and
then use the corresponding GMM to obtain an MMSE estimate
of that patch (given by (22)), conditioned on its noisy version.

In this paper, we use two different ways to classify each
patch. The simplest approach consists in classifying each patch
independently, using the maximum likelihood (ML) criterion,

ĉi = arg max
c∈{1,...C}

p(xi|c), (28)

where ĉi denotes the class estimate of the i-th patch. A
more sophisticated approach, which provides a more spatially
coherent segmentation of the image, is to consider a Markov
random field (MRF [48]) prior p(c) (where c denotes the field
of all the patch class labels), more specifically a Potts prior:

ĉ = arg max
c∈{1,...,C}N

log p(c)+∑
i

log p(xi|ci). (29)

We solve (29) using the α-expansion graph-cut algorithm
proposed in [49]; for more details about MRF, in particular
Potts priors for image segmentation, see [48]–[50]. We stress
that our goal is to leverage the classification to provide a better
restoration or reconstruction, not to obtain a state-of-the-art
segmentation. By plugging this joint segmentation-denoising
procedure in the iterations of ADMM, we take advantage of
the synergy between these two problems, in the sense that
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segmentation improves the restoration results and, at the same
time, a better restoration contributes to a better segmentation.

C. Proposed PnP-GMM Algorithm

Finally, the complete proposed algorithm is as shown in
Algorithm 1. In the case of a single known class, the classifica-
tion step is omitted. The algorithm assumes that the parameters
of each of the classes present in the image have been previ-
ously estimated from a collection of clean images belonging
to those classes. We denote the set of parameters of each
class as θ

(c) = {µ(c)1 , ....,µ(c)
K(c) ,C

(c)
1 , ....,C(c)

K(c) ,α
(c)
1 , ....,α

(c)
K(c)},

for c ∈ {1, ...,C}, and the complete collection of parameters
as θ = {θ(1), ...,θ(C)}.

Algorithm 1: Class-Adapted PnP-GMM
Data: y, H, θ

Result: Estimate x̂
1 Set ADMM parameter ρ;
2 Initialization: k = 0, u(k) = 0, v(k) = 0;
3 repeat
4 Compute x(k+1) via (11);
5 Compute s = x(k+1)+u(k);
6 Estimate γ = noiseVariance(s);
7 Classify the patches of s via (28) or (29);
8 for i ∈ set of patches do
9 v̂i = denoise

(
si,γ,θ

(ĉi)
)

10 end
11 v(k+1) = (1/p)∑i∈patches PT

i v̂i;
12 u(k+1) = u(k)+x(k+1)−v(k+1) ;
13 k← k+1;
14 until convergence;

A comment about line 6 of the algorithm is in order.
To maintain the formal equivalence between the denoising
operation and the proximity operator of some regularizer,
the noise variance assumed by the denoiser should be set
to σ2/ρ (see (9)). It turns out that, as shown by preliminary
experiments (not reported here), better results are obtained by
estimating the variance of the noise present in the image being
denoised at each iteration, s, rather than keeping it fixed at the
formal choice σ2/ρ.

D. A Note About Convergence

The convergence of the ADMM algorithm using a GMM-
denoiser was studied in detail in [31], [32]. To summarize, the
convergence proof reduces to showing that the GMM-denoiser
can be modified in order to ensure that it corresponds to a
proximity operator, thus the standard convergence guarantees
of ADMM apply [51]. In [32], the modification results natu-
rally from the fact that, in the problem therein addressed, the
GMM prior and the image being estimated are from the same
scene, thus we keep the posterior weights (see (24)) fixed,
which makes the MMSE estimate an affine function.

In this paper, although we train each model with images
from specific classes, none of them depicts the same scene
that we are restoring. Thus, keeping the weights βm fixed

from the start, as in [32], does not make sense. To circumvent
the resulting non-linearity, we assume that, after a number of
iterations, the weights stop changing significantly, and freeze
them, thus ensuring convergence from that point on. The first
few iterations can be seen as a transient stage which, in
practice, only changes the initial estimate of the target image.
Furthermore, fixing the weights implies that the segmentation
no longer changes. In the next section, we illustrate with an
example in image deblurring that, in practice, convergence is
still observed (see Figure 4, in Section IV-B).

IV. EXPERIMENTAL RESULTS

This section presents results obtained with the methods
described above. In order to simplify the analysis, in all
experiment, we use GMMs with 20 components per class and
patches of size 8×8.

A. Image Denoising

We begin by comparing the performance of the GMM-
based denoiser with that of the well-known state-of-the-art
methods BM3D [3], NCSR [52], and a recent convolutional
neural network approach (termed DnCNN) [53]; the results
are reported in Table I. It should be noted that in the case of
image denoising, although we could tackle it via an instance of
ADMM with H = I, we use the simpler approach of applying
the denoiser directly. The denoisers in the columns labeled
BM3D, NCSR, and Internal, operate on the noisy image
without resorting to any external data. The method in the
column labeled Generic corresponds to using a GMM learned
from a dataset of clean generic images, in particular a random
subset of the Berkeley image segmentation dataset [54]. The
methods labeled Text and Face use GMMs targeted to text,
trained on images made available in [21], and to faces, using
the Gore dataset [55]. Finally, in the method labeled as Multi-
class, the algorithm starts by using the generic GMM prior,
but then it decides at each iteration which prior is best for
each patch, as described above. Besides the priors mentioned
above, we also learned GMMs for fingerprint images2 and
magnetic resonance images of the brain3. Concerning the
DnCNN, we used the flexible model provided together with
the code, which handles different noise levels; that model was
trained using 128× 3000 patches of size 50× 50, from 400
images (180×180) of the Berkeley segmentation dataset. The
complex architecture coupled with such a large training set
lead to the best results on most of the test settings presented, at
the expense of a very high computational cost during training.

For training the several external GMMs, we used about 5×
105 clean patches, extracted from randomly selected images
of each database. The mean of the patches is subtracted in the
beginning of the training phase, leading to zero-mean models,
and the estimated covariance matrix is full. The EM algorithm
is run for 100 iterations or until the relative improvement of
the log-likelihood on two consecutive iterations drops below
a threshold (set to 10−5 in all the experiments).

2Available at: http://bias.csr.unibo.it/fvc2004/
3Available at: http://www.medinfo.cs.ucy.ac.cy/index.php/downloads/datasets
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Fig. 1: Top row: 12 benchmark (generic) images; Bottom row: samples for text, face, fingerprints, and examples comprising multiple classes.

Concerning GMM-based denoisers, the results in Table I
suggest that methods leveraging the input noisy image (inter-
nal) perform better than purely external methods, on generic
images. This is to be expected, because the prior is learned
from the noisy image itself, and thus we may say it is adapted
to that specific image. Moreover, on images belonging to a spe-
cific class or containing several classes, using a combination
of internal model learning together with class-adapted models
provides a more robust and higher-quality solution. In Table I,
the shaded cell emphasizes the best result using the GMM-
denoiser. An exception to this observation is found for the face
images and can be explained by the relatively small image size
(only 80×60), which may not contain enough patches to train
an accurate model from the observed noisy input.

In the remaining experiments with the external priors, the
approach that selected the most adequate prior locally (labeled
as Multi, for multiple classes) is more robust. In fact, when
the input image belongs to a particular class, using multiple
priors that are automatically selected leads, in the worst case
scenario, to only a minor loss of performance, whereas using
the wrong prior, for example a text prior when the input image
is actually a face, leads to a significant performance drop.

The last row of Table I reports an experiment with real
data, which includes 11 photographs of static scenes taken
in a controlled environment [56]. In particular, the noisy
images were taken with three different cameras, on high ISO
settings and the authors also provide the ground truth images
which were obtained by averaging 500 samples of the same
scene. We used the 15 smaller images (cropped to 512×512),
and the GMM-based denoiser achieves the highest PSNR.
Moreover, the results also give supporting evidence to the
hypothesis that using locally selected priors leads to slightly
better performance, even in the case of generic images, due to
the higher flexibility of the overall model.

Finally, Figure 2 illustrates the difference between choosing
the simple maximum likelihood criterion (28) or the computa-
tionally more expensive Potts prior (29). From a PSNR point
of view, it is not obvious which type of segmentation will
produce better results which is ultimately our objective. How-
ever, since the latter provides a much smoother segmentation
of the image and broadens the range of possible applications,
we will use it in the experiments that follow, disregarding the
additional computational cost.

B. Image Deblurring

We assess the performance of the proposed PnP algorithm
with different GMM priors, namely a prior for generic images,

(a) (b) (c)

(d) (e) (f)

Fig. 2: Denoising: (a) original image; (b) noisy image (σ = 30);
(c) denoised with BM3D [3] (PSNR = 27.80dB); (d) denoised with
Multi-class GMM; (e) ML patch classification (PSNR = 27.94dB)
(f) patch classification with Potts prior (PSNR = 27.92dB). Labels:
black - generic prior; grey - text prior; white - face prior.

a prior targeted to specific classes of images, and a combi-
nation of both, in comparison with the state-of-the-art non-
blind deblurring algorithm IDD-BM3D [7], on a total of six
experiments (i.e., different blur kernels and noise levels; see
Table II). Moreover, for comparison purposes, we also use PnP
with out-of-the-box BM3D and DnCNN denoisers.

For each experiment we run 200 iterations of ADMM on
12 standard generic benchmark images, 10 images of text,
face, and fingerprints, and three montages combining different
classes, namely generic with text, and a document including
text and a face, and an image with all the five classes. As
seen in the denoising results, learning the model from the
noisy input patches usually leads to better performance thus,
halfway through ADMM, we replace the general-purpose prior
by another one, learned from the current image estimate. The
underlying assumption is that, by then, we already have a good
enough estimate of the final image. Besides the parameters of
the GMM priors described above, one more parameter needs
to be selected: the penalty parameter of ADMM, ρ, which was
hand-tuned for best results over a grid of up to 20 possible
values between 10−3 and 10. Regarding the convergence of
the algorithm, with an adaptive noise level, we can not claim
convergence to a global minimum, as in [32], as changing the
parameter also changes the minimum itself.

Table III summarizes the results of deblurring experiments.
We start by noticing that, as a general-purpose method, the
proposed PnP algorithm does not achieve state-of-the-art per-
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TABLE I: Comparison (PSNR) of several versions of GMM-based denoising versus BM3D [3], NCSR [52], and [53], for several values of
noise standard deviation σ. Internal: the GMM is learned from the noisy image (as in [5]); Generic: the GMM is learned from a collection
of generic images; Text: the GMM is learned from a collection of text images; Face: the GMM is learned from a collection of face images;
Multi: generic or internal (respectively, Gen- or Int-) GMM denoiser, together with locally selected external prior with 4 classes (face, text,
fingerprints, brain MRI); patch classification step using ML criterion or Potts prior (denoted by -P). The best result for each experiment is
shown in bold and the second best in italic. Shaded cells show the best result using GMM-denoiser.

Image/Dataset σ BM3D NCSR DnCNN Internal Generic Text Face Gen-Multi Gen-Multi-P Int-Multi-P

Set12

5 38.07 38.12 38.26 38.16 37.78 36.63 35.40 37.83 37.84 38.16
15 32.38 32.43 32.86 32.33 31.92 30.97 30.75 32.01 32.02 32.33
30 29.14 29.02 29.64 28.94 28.58 28.08 28.02 28.67 28.67 28.94
50 26.73 26.54 27.28 26.60 26.29 26.11 26.04 26.37 26.36 26.57

Text (avg.)

5 39.82 39.03 39.56 40.59 39.63 39.82 28.40 40.43 40.22 40.73
15 31.08 31.05 32.61 32.01 30.34 31.35 23.32 31.69 31.60 32.14
30 25.64 26.10 27.70 26.87 24.93 26.35 21.07 26.47 26.43 26.92
50 20.83 22.29 23.79 23.29 21.34 22.85 19.35 22.78 22.75 23.19

Face (avg.)

5 39.86 39.63 40.01 39.65 39.67 37.53 40.33 40.29 40.29 39.68
15 33.53 33.02 33.97 32.50 33.10 31.57 33.90 33.82 33.85 32.55
30 29.54 28.77 30.01 28.31 29.11 28.43 29.84 29.64 29.74 28.26
50 26.85 25.68 27.12 25.25 26.26 25.92 26.91 26.68 26.81 25.17

Fingerprint (avg.)

5 39.56 39.59 39.26 39.62 39.21 37.77 39.37 39.57 39.56 39.62
15 34.75 34.53 34.46 34.44 34.02 33.29 34.37 34.57 34.54 34.47
30 31.44 31.17 31.05 30.91 30.58 30.28 30.89 30.96 31.02 30.97
50 28.99 28.62 28.22 28.47 28.42 28.30 28.56 28.59 28.68 28.52

Cameraman + Text

5 38.46 38.21 38.48 38.59 38.36 37.99 32.11 38.56 38.58 38.73
15 31.58 31.52 32.34 31.74 31.30 31.09 27.27 31.74 31.77 31.95
30 27.80 27.74 28.75 27.83 27.33 27.79 24.94 27.93 27.96 28.10
50 24.52 25.00 26.11 25.17 24.58 25.25 23.24 25.26 25.27 25.35

Face + Text

5 35.38 37.07 38.22 36.79 36.49 35.99 25.58 36.38 36.34 36.78
15 28.78 29.39 30.78 29.64 28.37 28.89 21.13 29.16 29.12 29.67
30 23.82 24.74 25.83 24.87 23.03 24.18 19.23 24.27 24.26 24.93
50 19.96 21.38 22.17 21.66 19.78 21.03 17.96 20.96 21.04 21.67

5 Classes

5 38.00 38.33 38.59 38.20 37.83 36.77 32.12 38.03 38.03 38.24
15 31.96 31.99 32.65 31.81 31.28 30.91 27.26 31.79 31.78 31.92
30 27.87 27.86 28.84 27.79 27.03 27.34 24.85 27.75 27.76 27.94
50 24.64 24.72 25.96 25.02 24.24 24.81 23.18 24.94 24.99 25.11

Real - 36.29 36.39 36.36 37.11 37.16 - - 37.22 37.19 37.12

TABLE II: Deblurring: Kernel point-spread function and additive
noise variance for each experiment.

Experiment Kernel PSF σ2

1 1/(1+ x2
1 + x2

2), x1,x2 =−7, . . . ,7 2
2 1/(1+ x2

1 + x2
2), x1,x2 =−7, . . . ,7 8

3 Uniform, 9×9 ≈ 0.3
4 [1 4 6 4 1]T [1 4 6 4 1]/256 49
5 Gaussian, std = 1.6 4
6 Gaussian, std = 0.4 64

formance. On the other hand, when dealing with images of
particular classes, the PnP algorithm exhibits better results.
Yet, the most important conclusion we can draw from these
experiments has to do with the use of class-adapted versus
generic priors. When the input image belongs to a single and
known class, using a prior targeted to that class yields the
best results, as would be expected (see the results for the text
and face images, in the PnP-GMM (Targ) row). Considering
several possible classes and letting the algorithm decide which
prior to use locally is a more computationally expensive
approach but it is more robust and provides results that are just

as good in most of the experiments. Additionally, it provides
a straightforward way to segment the image, which may be
useful in some applications, such as document analysis [57].
In any case, either of these approaches outperform general-
purpose methods, when the targeted priors cover the input
class, and the multi-class approach outperforms the generic
one every time, as the prior is broader.

Figure 3 illustrates how we can leverage the synergy be-
tween reconstruction and segmentation to improve the final
results: on the one hand, as we deblur the input image we are
able to achieve a better segmentation; on the other hand, taking
into account the segmentation we can apply targeted priors
locally, and thus improve the restoration. In this example, once
again, we used the MRF-based classification criterion (29),
as it provides a smoother segmentation of the image; white
represents patches that are best represented with the prior for
faces, grey for text, and black for the other priors, including
the generic, fingerprints, and brain MRI.

Finally, Table IV presents results obtained on four real
blurred images. Once again, the images were carefully ob-
tained on a controlled environment, and thus the ground truths
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Deblurring: (a) input image; (b) blurred image (Experiment 1); (c) deblurred with IDD-BM3D [7] (ISNR = 9.71dB); (d) deblurred
with PnP-GMM with α-expansion (ISNR = 10.53dB); (e) α-expansion (1st iteration); (f) α-expansion (10th iteration); (g) α-expansion (50th
iteration); (h) α-expansion (100th iteration). Labels: black - generic / brain MRI / fingerprints prior; grey - text prior; white - face prior.

of the eight real kernels are also available, allowing us to
test our non-blind deblurring method (see [58]). For each
blurring kernel, we average the results over the four images,
using the same methods as before, namely the proposed PnP-
GMM method with the generic prior and with locally selected
multiple priors (same classes as before), PnP-BM3D, and
PnP-DnCNN. We do not compare with IDD-BM3D because
we could not achieve any reasonable results for this testing
scenario; a possible reason for this is that IDD-BM3D requires
a very good initialisation, provided by another method of the
same authors, called BM3D-DEB [59], and the latter fails to do
so. All the methods relying on ADMM, used the same penalty
parameter, on all test settings, that is, ρ = 0.05, which is a
value that produces reasonable overall results on the previous
experiments. This was done to approximate a real scenario
where the ground truth image is not available and thus we
can not perform grid search for the best possible outcome.
Furthermore, all the experiments were conducted with 40db
input blurred signal-to-noise ratio (BSNR). Whereas in the
denoising experiment we observe that DnCNN produces the
best results, in image deblurring this is not the case. We
conjecture that this is due to the network being trained and
highly tuned to handle Gaussian noise, leading otherwise to
suboptimal performance. Moreover, due to the absence of any
of the classes considered in the targeted GMMs, the generic
methods perform best.

Figure 4 illustrates the typical behaviour of the proposed
PnP-GMM algorithm using a single model. As mentioned in
Section III-D, although we do not guarantee the convergence
of the method, in practice, we observe that the primal and
dual residuals, computed as described in [12], vanish as the
number of iterations increases, and the ISNR also stabilizes.
The discontinuities halfway through the iterations are due to
the replacement of the generic prior by the prior trained on
the current image estimate, which shows that this approach
contributes to improving the final result.

C. Compressive Imaging

In this Section, we repeat the analysis that was done for
the image deblurring problem, this time letting the algorithm
run for 300 iterations and replacing the generic prior by a
learned model every 100 iterations, which showed improved
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Fig. 4: Convergence of PnP-GMM.

Fig. 5: Top row: dataset of 4 benchmark (generic) images; Middle
and bottom rows: real blurring kernels from [58].

performance. As before, the penalty parameter of ADMM
was hand-tuned for best results. We compare the results of
the proposed PnP algorithm against the method proposed in
[42], which is based on a sparse representation of groups
of image patches, for two different compression ratios. In
compressive imaging with random Gaussian measurements,
the spatial structure of the original image is totally absent
from the observations, hence it is a reasonable approach to
use the generic prior. Alternatively, we can use the generic
prior together with the other class-adapted models, to account
for the situations where the image is known to be, at least
partly, from one of the considered classes. Note that we chose
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TABLE III: ISNR results on image deblurring experiments. Methods:
IDD-BM3D [7]; PnP with off-the-shelf BM3D and DnCNN denois-
ers; PnP with generic GMM prior (Gen); PnP with targeted GMM
prior (Targ); PnP with multiple GMM priors and patch classification
(Multi). The best result for each experiment is shown in bold and the
second best in italics.

Image Test images: Set12
Experiment 1 2 3 4 5 6
IDD-BM3D 8.76 6.87 10.11 4.08 4.59 5.02
PnP-BM3D 7.41 6.07 9.40 3.06 3.69 4.84

PnP-DnCNN 7.14 3.94 9.69 1.43 2.31 5.23
PnP-GMM (Gen) 8.08 4.99 9.51 3.01 3.84 4.91

PnP-GMM (Multi) 8.01 5.84 9.27 2.96 3.78 4.90
Image Test images: Text (avg.)

Experiment 1 2 3 4 5 6
IDD-BM3D 12.49 9.45 16.94 5.92 6.53 5.70
PnP-BM3D 13.73 10.19 19.27 7.03 8.78 3.97

PnP-DnCNN 15.21 11.65 20.44 8.35 9.81 6.00
PnP-GMM (Gen) 14.50 11.08 20.34 8.02 9.85 5.35
PnP-GMM (Targ) 15.21 11.98 20.57 9.02 10.70 5.78
PnP-GMM (Multi) 15.29 12.00 20.71 9.05 10.68 6.05

Image Test images: Face (avg.)
Experiment 1 2 3 4 5 6
IDD-BM3D 13.01 10.54 14.40 6.86 9,76 6.32
PnP-BM3D 14.45 12.09 16.02 8.19 10.87 6.47

PnP-DnCNN 11.53 4.98 14.60 1.85 2.68 6.87
PnP-GMM (Gen) 13.96 11.53 16.13 7.68 10.01 6.95
PnP-GMM (Targ) 13.94 11.67 16.50 7.96 10.62 7.15
PnP-GMM (Multi) 13.82 11.49 16.47 7.86 10.54 6.86

Image Test images: Fingerprint (avg.)
Experiment 1 2 3 4 5 6
IDD-BM3D 9.66 8.22 11.75 5.92 6.77 6.90
PnP-BM3D 9.57 8.12 12.32 6.25 6.81 7.12

PnP-DnCNN 8.96 5.69 10.84 3.17 4.95 7.04
PnP-GMM (Gen) 9.45 8.27 12.28 6.03 6.92 7.05
PnP-GMM (Targ) 9.55 8.42 12.44 6.20 6.95 7.13
PnP-GMM (Multi) 9.39 8.35 12.54 5.98 6.72 7.12

Image Test image: Cameraman + Text
Experiment 1 2 3 4 5 6
IDD-BM3D 10.83 8.71 12.39 5.40 6.27 4.89
PnP-BM3D 11.13 8.64 12.66 5.15 7.12 3.72

PnP-DnCNN 10.70 7.52 12.56 4.75 6.46 3.66
PnP-GMM (Gen) 11.28 8.95 12.71 5.49 7.50 4.19

PnP-GMM (Multi) 11.58 9.34 13.25 6.25 7.75 4.20
Image Test image: Face + Text

Experiment 1 2 3 4 5 6
IDD-BM3D 9.71 6.57 11.24 2.43 1.79 4.28
PnP-BM3D 10.42 7.13 12.02 3.73 2.63 1.31

PnP-DnCNN 10.28 7.64 11.90 4.47 2.69 2.46
PnP-GMM (Gen) 10.39 7.01 11.26 4.06 2.84 2.98

PnP-GMM (Multi) 10.53 7.39 12.14 3.90 2.89 2.84
Image Test images: 5 classes

Experiment 1 2 3 4 5 6
IDD-BM3D 10.38 7.53 10.49 3.33 3.08 5.33
PnP-BM3D 10.04 6.66 10.63 2.66 3.29 4.92

PnP-DnCNN 9.19 6.01 10.42 2.23 2.39 6.02
PnP-GMM (Gen) 10.98 7.93 11.33 3.38 3.69 5.58

PnP-GMM (Multi) 10.94 7.95 11.41 3.64 3.94 5.62

GSR [42] as baseline because an implementation of the code is
available, thus guaranteeing that same input image and random
matrix is utilized on both methods. The results are summarized
on Table V and, once again, using multiple priors achieves
better results than a single generic prior on most cases.

TABLE IV: Deblurring: ISNR results on semi-real image deblurring
experiments. Methods: PnP with BM3D; PnP with DnCNN; PnP with
generic GMM prior (Gen); PnP with multiple GMM priors and patch
classification (Multi). The best result for each experiment is shown
in bold and the second best in italics.

Method Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6 Kernel 7 Kernel 8
PnP-BM3D 19.89 20.55 18.97 25.81 20.10 27.30 24.61 24.39

PnP-DnCNN 19.16 19.19 18.18 21.93 20.06 27.69 23.13 21.39
PnP-GMM (Gen) 20.15 20.72 19.22 25.75 20.42 27.49 24.53 24.29

PnP-GMM (Multi) 20.02 20.52 19.09 25.17 20.39 27.43 24.43 23.95

D. Image Super-Resolution

This section reports results of image super-resolution ex-
periments. Unlike in the previous experiments, we empirically
observe that 50 iterations are enough to reach a plateau,
with further iterations bringing only marginal changes and,
furthermore, replacing the generic prior by a trained model
halfway through the iterations also brings no considerable
improvement. The inversion of the observation operator, see
Eq. (15), is done resorting to the authors implementation4,
from [43], but replacing the total-variation (TV) denoiser with
our patch-based (class-adapted) GMM denoiser. Regarding the
input images, since all of them are in grayscale, there is
no need to convert to luminance/chrominance (YCbCr) color
space as is typically reported in super-resolution experiments.

Interestingly, we compare the performance of our method
with another PnP approach [60], where the authors show
that the plugging the denoiser proposed in [52] into ADMM
could actually improve the results over generalizing the same
denoiser to tackle super-resolution, as the authors had done
in [52]. Once again, we also include our PnP approach
with plugged-in BM3D and DnCNN denoiser for comparison.
Table VI illustrates the results on two different experiments:
the first one, for a down-sampling factor of 4 and no noise,
that is, d = 4 and σ = 0, and the second with down-sampling
factor d = 3, and standard deviation of the input noise σ = 10.
All the methods seem to be on the same ballpark; however,
it is worth mentioning that our PnP-GMM approach handles
every situation the same way, whereas PnP-NCSR [60] tackles
the noiseless case differently. In the same line of thought,
which argues that class-adapted models should perform better
than general-purpose ones, methods tuned to specific situations
should also be better.

V. CONCLUSIONS

In this paper, we leveraged the flexible PnP framework to
tackle a variety of inverse imaging problems, under a GMM
patch-based image prior. In particular, this choice of prior
has two important features: (i) we can learn the model from
external datasets of clean images [45], opening the door to
class-adapted models, which have recently been shown to yield
better performance than the traditional general-purpose priors
[21], [22]; (ii) being a probabilistic model allows classifying
each patch in a set of possible classes, jointly performing
restoration and segmentation [27].

Experimental results presented in this paper show that the
GMM prior is a good choice as competitive results can

4Available at http://zhao.perso.enseeiht.fr/
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TABLE V: PSNR on compressive imaging with Gaussian measurement matrix. Methods: GSR [42]; PnP with off-the-shelf BM3D and
DnCNN denoisers; PnP with generic GMM prior (Gen); PnP with multiple GMM priors and patch classification (Multi). The best result for
each experiment is shown in bold and the second best in italics.

Image class: Set12 Text (Avg.) Face (Avg.) Fingerprints (Avg.) Cameraman + Text Face + Text 5 Classes
Compression ratio: 10% 30% 10% 30% 10% 30% 10% 30% 10% 30% 10% 30% 10% 30%

GSR [42] 26.58 32.92 14.75 26.03 31.85 41.23 35.51 41.25 18.73 26.65 13.33 22.42 22.08 31.42
PnP-BM3D 23.89 31.75 16.40 25.75 30.56 42.19 30.41 40.87 19.61 26.73 15.31 20.83 21.90 28.61

PnP-DnCNN 26.18 33.32 18.10 33.09 27.73 40.33 29.68 39.70 20.99 31.24 13.32 25.07 21.52 31.70
PnP-GMM (Gen) 24.75 31.98 18.92 30.41 32.99 42.42 33.78 41.56 20.04 28.98 15.51 24.37 22.18 31.92

PnP-GMM (Multi) 24.27 32.55 19.10 31.48 32.13 42.88 32.27 41.39 20.75 30.15 15.79 25.28 22.19 32.10

TABLE VI: PSNR on image super-resolution experiments. Methods: PnP with NCSR [60]; PnP with off-the-shelf BM3D denoiser; PnP with
generic GMM prior (Gen); PnP with multiple GMM priors and patch classification (Multi). The best result for each experiment is shown in
bold and the second best in italics.

Image class: Set12 Text (Avg.) Face (Avg.) Cameraman + Text Face + Text 5 Classes
Compression ratio: 1 2 1 2 1 2 1 2 1 2 1 2

PnP-NCSR 24.66 23.92 14.23 16.75 28.61 27.25 19.09 20.53 16.63 16.67 21.85 22.38
PnP-BM3D 25.16 25.06 14.67 16.92 28.42 27.14 19.35 20.39 16.60 16.31 21.99 21.89

PnP-GMM (Gen) 25.57 25.06 14.54 16.42 28.27 27.20 19.36 20.30 16.84 16.69 22.01 22.61
PnP-GMM (Multi) 25.71 25.20 14.82 16.97 28.36 27.28 19.34 20.38 16.79 16.67 22.09 22.71

be achieved in a variety of tasks, always using the same
models. Furthermore, the results corroborate the hypothesis
that targeted priors lead to better performance, not only in
denoising, but in other inverse imaging problems as well.
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