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Abstract—Hyperspectral remote sensing images (HSIs) usually
have high spectral resolution and low spatial resolution. Con-
versely, multispectral images (MSIs) usually have low spectral and
high spatial resolutions. The problem of inferring images that
combine the high spectral and high spatial resolutions of HSIs
and MSIs, respectively, is a data fusion problem that has been
the focus of recent active research due to the increasing avail-
ability of HSIs and MSIs retrieved from the same geographical
area. We formulate this problem as the minimization of a convex
objective function containing two quadratic data-fitting terms and
an edge-preserving regularizer. The data-fitting terms account for
blur, different resolutions, and additive noise. The regularizer, a
form of vector total variation, promotes piecewise-smooth solu-
tions with discontinuities aligned across the hyperspectral bands.
The downsampling operator accounting for the different spatial
resolutions, the nonquadratic and nonsmooth nature of the reg-
ularizer, and the very large size of the HSI to be estimated lead
to a hard optimization problem. We deal with these difficulties by
exploiting the fact that HSIs generally “live” in a low-dimensional
subspace and by tailoring the split augmented Lagrangian shrink-
age algorithm (SALSA), which is an instance of the alternating
direction method of multipliers (ADMM), to this optimization
problem, by means of a convenient variable splitting. The spatial
blur and the spectral linear operators linked, respectively, with
the HSI and MSI acquisition processes are also estimated, and
we obtain an effective algorithm that outperforms the state of the
art, as illustrated in a series of experiments with simulated and
real-life data.

Index Terms—Alternating direction method of multipliers
(ADMM), convex nonsmooth optimization, data fusion, hyper-
spectral imaging, superresolution, vector total variation (VTV).

I. INTRODUCTION

IMAGES are an efficient way to describe and store visual
information about our world. This paper will deal with a

special kind of image, the so-called spectral images. A spectral
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image or data cube is a set of 2-D images, also termed bands,
representing the reflectance or radiance of a scene in different
parts of the electromagnetic (EM) spectrum. They find appli-
cations in the fields of remote sensing (agriculture, mineralogy,
etc.), astronomy, and biomedicine, for example [1]. Our focus
will be on the remote sensing field, where spectral images are
typically generated from airborne or spaceborne sensors.

In this context, it is common to distinguish between hy-
perspectral and multispectral images (HSIs and MSIs, re-
spectively). The difference is application dependent, but HSIs
typically have high spectral resolution in the visible, near-
infrared, and shortwave infrared spectral ranges [1]. As a result
of this high resolution, HSIs have a large number of bands,
each one corresponding to a somewhat narrow part of the EM
spectrum. For example, the Hyperion Imaging Spectrometer
has about 200 spectral bands, each covering 10 nm of the
spectrum, with a spatial resolution of 30 m [2].1 On the other
hand, MSIs generally offer a higher spatial resolution, but each
band covers a larger range of the spectrum, resulting in a
much smaller number of bands. For example, the IKONOS
satellite collects MSIs covering four bands (blue, green, red,
and near-infrared) with a spatial resolution of 3.2 m [3].2 In
other words, HSIs have comparatively high spectral and low
spatial resolutions, whereas MSIs have low spectral and high
spatial resolutions.

It is of interest to fuse the information from these two
data sources, to synthesize images with simultaneously high
spectral and high spatial resolutions. A related problem that has
been extensively studied is pansharpening, which addresses the
fusion of MSIs and panchromatic images (PANs), the latter of
which are single-band images usually covering the visible and
the near-infrared spectral ranges [4]–[6]. PANs typically have
a spatial resolution that is even higher than the one of MSIs.
The HSI–MSI fusion problem is significantly more difficult to
solve than pansharpening, owing to three factors: 1) Although
both are ill-posed, there is a much larger number of variables to
estimate in HSI–MSI fusion; 2) the hyperspectral data typically
have large dimensionality, which can act computationally more
as a crutch than an asset; and 3) often, the spectral range
covered by the HSI is significantly larger than the one covered
by the MSI, and therefore, many bands of the HSI are not
included in any band of the MSI.

Recently, some techniques dedicated to the fusion of HSIs
and MSIs have been proposed. A common trend is to associate

1More information at http://eo1.usgs.gov/sensors/hyperion.
2More information at http://www.digitalglobe.com/sites/default/files/

DG_IKONOS_DS.pdf.
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this problem with the linear spectral unmixing one, which
assumes that the underlying data can be described by a mixture
of a relatively small number of “pure” spectral signatures,
corresponding to the materials that are present in the scene
[1], [7]. Since both HSIs and MSIs capture the same scene,
the underlying materials (the so-called endmembers) should be
the same. Therefore, a spectral dictionary extracted from one
of the images should also be able to explain the other one.
Due to the high spectral resolution of HSIs, the dictionary is
extracted from these data and is then used to reconstruct the
multispectral data via sparse regression. The estimate of the
original high-resolution HSI is then obtained from the regres-
sion coefficients and from the dictionary. This technique was
introduced in [8] for HSIs, but there are older works exploiting
similar ideas for MSIs [9]. For example, Kawakami et al. [10]
fused hyperspectral images with images from RGB cameras,
starting by estimating the endmember mixing matrix from the
hyperspectral data through a �1-minimization problem, solved
via a nonsmooth Gauss–Newton algorithm. The endmember
matrix, jointly with the spectral responses of the RGB sensor,
was then used as a basis to reconstruct the RGB image, by
formulating an optimization problem that imposed sparsity.
In [11], Huang et al. unmixed the hyperspectral data via the
K-SVD algorithm, and reconstructed the MSI using orthogonal
matching pursuit to induce sparsity. The method was tested
with Landsat/ETM+ and Aqua/MODIS images. Song et al. [12]
first learned two dictionaries from the two different data and
then used a dictionary-pair learning method to establish the
correspondence between them. Again, their method was tested
using Landsat/ETM+ with Aqua/MODIS data, however only
taking into account the spectrally overlapping bands. A similar
and older technique is the one from Yokoya et al., which
alternately unmixes both sources of data to find the signatures
and the abundances of the endmembers [13].

A different framework was proposed by Hardie et al. in [14],
in which a fully Bayesian approach was followed, by im-
posing prior distributions on the problem. This work was the
foundation for other works: Zhang et al. introduced a method
that works in the wavelet domain [15] and later published
an expectation–maximization algorithm to maximize the pos-
terior distribution [16]. Wei et al. used a Hamilton Monte
Carlo algorithm to deal with the high-dimensional space of
the posterior distribution [17]. In [18], Chen et al. introduced
a method that treats image registration and image fusion as a
joint process. The fusion of HSIs with just the panchromatic
band is a different, but related, problem [19]–[21]. Using only
the hyperspectral image, different authors [22], [23] treated this
problem as a simple superresolution one.

A. Contributions

This paper is built around the standard linear inverse prob-
lem model for HSIs and MSIs. This model is used to formulate
data fusion as a convex optimization problem. We use a form
of vector total variation based regularization [24], taking into
account both the spatial and the spectral characteristics of
the data. In order to perform the optimization, we follow an
alternating direction method of multipliers (ADMM) approach

by using the split augmented Lagrangian shrinkage algorithm
(SALSA) [25], and we explore the inherent redundancy of
the images with data reduction techniques, to formulate the
problem in a computationally efficient way. This method, which
we term HySure, for hyperspectral superresolution, allows us to
fuse hyperspectral data with either MSIs or PANs.

In the literature, the HSI–MSI fusion problem is very often
dealt with as a nonblind one, in the sense that the spatial and
spectral responses of the sensors are assumed known (see,
e.g., [13], [15]–[17]). In practice, however, the information
that is available about these responses is often scarce and/or
somewhat inaccurate. In this paper, we take a blind approach,
assuming that these responses are unknown, and we formulate
another convex problem to estimate them, making only minimal
assumptions: we assume that the spatial response has limited
support and that both responses are relatively smooth. The
estimate of the spectral response can be improved by using
information on the correspondence between bands from the two
images, and if that information is available, it is often easily
obtained from data on the spectral coverage of the various bands
from the two sensors.

This paper extends [26] in several different directions: it
details the optimization process more clearly, it establishes the
framework used to estimate the spatial and spectral responses
of the sensors, and it presents a number of new experimental
results.

B. Outline

The remainder of this work is organized as follows.
Section II describes the data fusion method, including the
proposed model and the formulation of the optimization prob-
lem. The approach followed to perform the optimization is
presented in Section III. Section IV deals with the estimation of
the sensors’ spatial and spectral responses. Section V presents
experimental results. Section VI concludes.

II. DATA FUSION METHOD

A. Observation Model

MSIs and HSIs can be thought of as 3-D arrays or tensors,
which are often called data cubes. However, for notational
convenience, the representation followed in this paper will
consider HSIs and MSIs to be 2-D matrices, where each line
corresponds to a spectral band, containing the lexicographically
ordered pixels of that band. We use bold lowercase to denote
vectors (e.g., x, y) and bold uppercase to denote matrices
(e.g., H, M).

Let the matrix representing the observed hyperspectral data
be Yh ∈ R

Lh×nh , with Lh bands and spatial dimension nh,
and let Ym ∈ R

Lm×nm denote the observed multispectral data,
with Lm < Lh bands and spatial dimension nm > nh. Matrix
Z ∈ R

Lh×nm denotes the high spatial and spectral resolution
data to be estimated.

With this representation, we model the hyperspectral mea-
surements as

Yh = ZBM+Nh (1)
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where matrix B ∈ R
nm×nm is a spatial blurring matrix rep-

resenting the hyperspectral sensor’s point spread function in
the spatial resolution of Z; it is assumed band independent
and under circular boundary conditions. These two assump-
tions are made for simplicity. When dealing with nonblind
data fusion, allowing the blur to vary across bands would not
change the complexity of the algorithm. In the blind case,
the increase in complexity would be relatively small. Regard-
ing the boundary conditions, assuming them to be periodic
has two main advantages. First, it allows to use fast Fourier
transforms (FFTs) to compute convolutions. Second, matrix
inversion, usually a costly operation, is easily performed, again
through the use of FFTs, under certain conditions that are
met in this case. Although periodic boundary conditions are
not completely realistic, we experimentally found that they do
not lead to any significant artifacts in the fused image, while
allowing a dramatic reduction in the amount of computation. A
technique based on ADMM that makes no assumptions about
the boundaries has been proposed in [27], [28], but we did not
find the corresponding increase in complexity justified for the
images we have worked on.

Matrix M ∈ R
nm×nh , whose columns are a subset of the

columns of the identity matrix, accounts for a uniform sub-
sampling of the image, to yield the lower spatial resolution
of the hyperspectral image. Nh represents independent iden-
tically distributed (i.i.d.) noise. The assumption that the noise
is identically distributed across bands is also made for sim-
plicity. Accommodating statistically independent noise across
bands and pixels, but with band-dependent variance, would be
straightforward.

We model the multispectral measurements as

Ym = RZ+Nm (2)

where R ∈ R
Lm×Lh holds in its rows the spectral responses of

the multispectral instrument, one per multispectral band, and
Nm represents i.i.d. noise.

In this paper, matrices B and R are estimated from the data,
by formulating a quadratic optimization problem. Section IV
will address that topic.

B. Dimensionality Reduction

Hyperspectral data normally have a large correlation be-
tween bands: the spectral vectors, of size Lh, usually “live”
in a subspace of dimension much lower than Lh [29], [30].
Therefore, we can write

Z = EX (3)

where E ∈ R
Lh×Ls is a matrix whose Ls columns span the

same subspace as the columns of Z, and X ∈ R
Ls×nm are the

representation coefficients. Small values of Ls, i.e., Ls � Lh,
translate into a description of the data in a relatively low-
dimensional space.

This dimensionality reduction has two advantages. One is
that it is computationally more efficient to work in a lower
dimensional space than in the original space of Z, making
algorithms that use these representations comparatively fast.

The other advantage is that, since the number of variables
to be estimated is significantly reduced, the estimates will
normally be more accurate than if we worked in the original
dimensionality. As an illustration of the amount of reduc-
tion that is possible, assume that the hyperspectral image has
200 bands. With Ls = 10, which is a typical value, only 5% of
the number of original variables need to be inferred.

Different approaches can be followed to factorize matrix
Z, and two of them will be briefly mentioned here. One is
to take into account the physical process that gave origin to
Yh. In the linear unmixing approach [29], it is assumed that
the spectral response of each pixel is a linear combination of
the pure spectral signatures of the underlying endmembers. In
this case, E would be the spectral signature matrix obtained
from Yh, and X would represent the abundance fractions of
the endmembers for every pixel of Z. There are numerous
algorithms in the literature that address the unmixing problem
(e.g., vertex component analysis (VCA) [31]). Several of the
methods discussed in Section I use the linear mixing model.

Another approach is to use singular value decomposition
(SVD) to obtain the factorization Yh = UΣVT, where U and
V are orthogonal matrices, and Σ is a rectangular diagonal
matrix containing the singular values, which are assumed to
be in nonincreasing order. Denote by Σ̂, Û, and V̂, respec-
tively, the truncated matrices obtained by discarding the rows
and columns with the smallest singular values from Σ and
the corresponding columns of U and V. A low-dimensional
approximation of Yh is given by ÛΣ̂V̂T . In this approach, we
make E = Û. Due to the low intrinsic dimensionality of the
hyperspectral data, most of the singular values are rather small,
allowing a very significant dimensionality reduction while re-
taining a rather faithful approximation of Yh. If Nh = 0 and
all discarded singular values are zero, this representation spans
the true signal subspace. If the former condition on Nh is not
obeyed but Nh is i.i.d., this representation corresponds to the
maximum likelihood estimate of that subspace. However, if
the noise is non-i.i.d., the estimation of the subspace is more
complex (see, e.g., [32] for details, and for algorithms oriented
to subspace estimation in hyperspectral applications).

With any of these two factorizations, we replace (1) with

Yh = EXBM+Nh (4)

where the error due to the dimensionality reduction has been
incorporated into Nh.

Remote sensing images often are somewhat noisy. The use
of truncated SVD is also a very common approach to perform
denoising, a topic that we shall address in Section V.

C. Regularization

The problem that we are trying to solve is strongly ill-posed
and therefore needs adequate regularization. The regularizer
that we use is given by

ϕ(XDh,XDv)
def
=

nm∑
j=1

√√√√ Ls∑
i=1

{
[(XDh)ij ]

2 + [(XDv)ij ]
2
}
(5)
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where (A)ij denotes the element in the ith row and jth column
of matrix A, and the products by matrices Dh and Dv compute
the horizontal and vertical discrete differences of an image, re-
spectively, with periodic boundary conditions. This regularizer
is a form of vector total variation (VTV) [24]. Its purpose is
to impose sparsity in the distribution of the absolute gradient
of an image, meaning that transitions between the pixels of an
image should be smooth in the spatial dimension, except for
a small number of them, which should coincide with details
such as edges. Total variation (TV) was proposed for the first
time in [33] and is extensively used in image restoration [25],
[27], [34]–[39]. It has two different discrete formulations, the
anisotropic and isotropic ones [40]; in this paper, we use the
isotropic formulation. In [41], Zhao et al. proposed an isotropic
TV scheme for HSI deblurring in a band-by-band manner. This
means that each band was regularized independently from the
other ones. This approach has a shortcoming: It does not take
into account that edges and other details normally have the same
locations in most bands. The vector form of the regularizer,
which we use in this paper, promotes solutions in which edges
and other details are aligned among the different bands. VTV
has previously been used in a pansharpening application [42]
and in the denoising of HSIs [43].

We apply the regularizer to the reduced-dimensionality data
X and not to Z itself. This is indeed reasonable since the
subspace spanned by E is the same as the one where Z resides
(or an approximation, when using truncated SVD), and by
regularizing X, we are indirectly regularizing Z.

D. Optimization Problem

Let ‖X‖F def
=

√
Tr(XXT ) denote the Frobenius norm of

X, and let (·)T denote the transposition operator. We can now
formulate an optimization problem based on our model with the
proposed regularizer

minimize
X

1

2
‖Yh −EXBM‖2F

+
λm

2
‖Ym −REX‖2F + λϕϕ(XDh,XDv). (6)

The first two terms are data-fitting terms, imposing that the
estimated image should be able to explain the observed data
according to the model defined in (4) and (2). The last term is
the regularizer. The parameters λm and λϕ control the relative
importance of the various terms. We shall discuss the selection
of these parameters in Section V-C.

Problem (6) is convex but is rather hard to solve due to the
nature of the regularizer, which is nonquadratic and nonsmooth.
Additional difficulties are raised by the large size of X (the vari-
able to be estimated) and by the presence of the downsampling
operator M in one of the quadratic terms, preventing a direct
use of the Fourier transform in optimizations involving this
term. We deal with these difficulties by using SALSA [25]. An
alternative approach would consist in employing a primal–dual
method [44], [45]. Unlike our approach, primal–dual methods
do not require the solution of linear systems of equations

on each iteration. However, since the system matrix in our
problem is diagonalizable using light computations, SALSA
yields much faster algorithms than those based on primal–dual
methods, according to our experience. The next section and the
Appendix describe the details of the optimization method.

III. OPTIMIZATION METHOD

ADMM involves the introduction of auxiliary variables
into the optimization problem, through the so-called variable
splitting technique. We split the original optimization variable
X into a total of five variables: one that we still call X and
four auxiliary variables, i.e., V1–V4. The optimization problem
becomes

minimize
X,V1,V2,V3,V4

1

2
‖Yh −EV1M‖2F

+
λm

2
‖Ym −REV2‖2F + λϕϕ(V3,V4)

subject to V1 = XB

V2 = X

V3 = XDh

V4 = XDv. (7)

For notational simplicity, we define the matrices V and H

V
def
=

⎡⎢⎢⎣
VT

1

VT
2

VT
3

VT
4

⎤⎥⎥⎦ , H
def
=

⎡⎢⎢⎣
BT

I
DT

h

DT
v

⎤⎥⎥⎦
and the cost function as follows:

f(V)
def
=

1

2
‖Yh −EV1M‖2F

+
λm

2
‖Ym −REV2‖2F + λϕϕ(V3,V4).

We can express (7) as

minimize
X,V

f(V)

subject to V = HXT . (8)

This problem has the following augmented Lagrangian [46]:

L(X,V,A) = f(V) +
μ

2
‖HXT −V −A‖2F (9)

where A is the so-called scaled dual variable [47], and μ
is a positive constant, which is called penalty parameter. We
are now ready to apply the ADMM method, which yields the
algorithm shown in Fig. 1. As we can see, SALSA solves the
original complex optimization problem through iteration on a
set of much simpler problems. The constraints are taken into
account, in an approximate way, by minimizing the augmented
Lagrangian of the problem relative to the auxiliary variables.
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Fig. 1. Pseudocode for the HySure algorithm. For details, see the Appendix.

The minimization with respect to X is a quadratic problem
with a block cyclic system matrix, which can be efficiently
solved by means of the FFT. Minimizing with respect to the
auxiliary variables is done by solving three different problems,
whose solutions correspond to three Moreau proximity opera-
tors [48]. The minimization with respect to V1 is a quadratic
problem that is efficiently solved via FFTs, and the minimiza-
tion relative to V2 is also quadratic; these two problems involve
matrix inverses which can be computed in advance. Finally,
the minimization with respect to V3 and V4 corresponds to a
pixel-wise vector soft-thresholding operation.

The details of the optimization, as well as an analysis of
the algorithm’s complexity, are presented in the Appendix.
The number of splitting variables could have been reduced, by
eliminating V1, for example. This could have been done via
a scheme similar to the one proposed in [41], working with
Kronecker products. We chose not to do so since the form of
the algorithm that we presented above is simpler to derive, and
the computational and memory gains of doing one less splitting
did not seem to be very significant.

The algorithm described earlier satisfies the conditions for
the convergence of SALSA established in [25], which require
matrix H to have full column rank (which is true in our case,
due to the presence of identity matrix I), and function f(·) to be
closed, proper, and convex (which is also true since it is a sum of
closed, proper, and convex functions). Under these conditions,
and for arbitrary μ > 0, V(0) and A(0), if problem (8) has a
solution X∗, then the sequence {X(k)} will converge to X∗;
if a solution does not exist, then at least one of the sequences
{V(k)} or {A(k)} will diverge. The actual value of the penalty
parameter μ is not important as a condition for convergence,
but can have a strong influence on the convergence speed of the
algorithm. The choice of μ is discussed in Section V-C.

IV. ESTIMATING THE SPATIAL BLUR AND THE

SPECTRAL RESPONSE FROM THE DATA

As aforementioned, matrices B and R are estimated from
the observed images. The advantages of doing so are threefold.
First, as previously mentioned, the available information about
the sensors can be rather scarce. Second, it may be hard to
precisely adapt that information to the model that is being used
for data fusion. Third, there may be discrepancies between the

real spatial and spectral responses and the data supplied by the
manufacturers. These can be due to several causes, such as
atmospheric conditions, postprocessing artifacts, and even the
variability within the observed scene [49].

As aforementioned, in [15] and [16], Zhang et al. assumed
the spatial response to be known. However, they also sug-
gested using Gaussian blurs with different variances as spatial
responses when this was not the case, arguing that their fu-
sion method did not require a strict knowledge of the spatial
response of the sensor. In [50], Yokoya et al. have directly
addressed the estimation of responses for the fusion of HSI
and MSI from the Hyperion and ASTER sensors, respectively,
which are aboard two different satellites. Their method esti-
mates both the relative spatial and relative spectral responses
of the sensors. The spatial response is assumed to correspond
to a Gaussian blur, and its variance is estimated by using a
template-matching technique. In order to determine the spectral
response, the authors use the so-called prelaunch response, with
information obtained from measurements performed on the
sensors before they were launched into space. The method tries
to find a spectral response that is able to describe the observed
data and that is close to the prelaunch response. In a different
approach, Huang et al. estimated the spectral response directly
form the data, without requiring a priori information [11].

Recall that, without noise

Yh = ZBM, Ym = RZ

which implies that

RYh = YmBM. (10)

Taking (10) into account, we infer R and B by solving the
following optimization problem:

minimize
B,R

‖RYh −YmBM‖2 + λbφB(B) + λRφR(R)

(11)

where φB(·) and φR(·) are quadratic regularizers that will be
discussed in detail in the following, and λb, λR ≥ 0 are the
respective regularization parameters. Matrix B and possibly
also matrix R are subject to some constraints that are discussed
in the following.

A special consideration needs to be made regarding the
estimation of the spectral response. This is due to the fact
that, when using the observed data, it is not possible to fully
estimate matrix R. The reason for this is that, as discussed
in Section II-B, the hyperspectral data normally span only a
low-dimensional subspace of the full spectral space. Only the
component of R parallel to that subspace can be estimated.
This is not a drawback, however, since the component of R
orthogonal to that subspace has essentially no influence on the
result of the image fusion. In fact, if we write R = R‖ +R⊥,
where R‖ = RP‖ and R⊥ = RP⊥, and P‖ and P⊥ denote the
projection matrices onto the subspaces spanned by the original
hyperspectral vectors and onto the subspace orthogonal to it,
respectively, we have RYh = R‖Yh +R⊥Yh = R‖Yh since
R⊥Yh is zero. For the product RZ, which is involved in the
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fusion problem, we have RZ ≈ R‖Z since Z will span approx-
imately the same subspace as Yh, because it corresponds to an
image containing the same endmembers.

According to the observation model presented in
Section II-A, matrix B accounts for a 2-D cyclic convolution.
In addition, we assume that the convolution kernel has finite
support contained in a square window of size

√
nb, thus

containing nb pixels, centered at the origin.
Let [YmB]:j denote the jth column of YmB, b ∈ R

nb

denote the columnwise ordering of the convolution kernel, and
Pj ∈ R

nm×nb denote a matrix that selects from Ym a patch
such that

[YmB]:j = (YmPj)b.

With these definitions in place, a slight modification of the
optimization (11) is

minimize
b,R

nh∑
j=1

‖RYh,:j −Ym,jb‖2+λbφb(b) + λRφR(R)

subject to bT1 = 1 (12)

where Yh,:j denotes the jth column of Yh, Ym,j
def
=

[(YmPcj )] ∈ R
Lm×nb , with cj denoting the column of Ym

corresponding to the jth column of Yh, φb(b)
def
=φB(B), and

the normalization condition bT1 = 1 imposes unit DC gain of
the blur.

We note that (12) is a quadratic program with only equality
constraints; therefore, using Lagrange multipliers, its solution
can be obtained by solving a linear system of equations. How-
ever, although we have a closed-form solution, because the size
of the optimization variables (i.e., nb + Lm × Lh) is usually of
the order of thousands, it may be useful to solve problem (12)
via alternated minimization with respect to b and R.

The optimization with respect to b leads to the following
regularized least squares problem:

minimize
b

nh∑
j=1

‖RYh,:j −Ym,jb‖2

+ λb

(
‖Dhb‖2 + ‖Dvb‖2

)
subject to bT1 = 1. (13)

The two last terms of the function being minimized in (13)
correspond to φb(·), which is a noise-removing regularizer that
smooths the estimated convolution kernel by promoting that the
values of the differences between neighboring pixels be small.
As before, Dh and Dv compute the horizontal and vertical
discrete differences of the convolution kernel, with dimensions
adjusted for this particular case.

An approximate solution for (13) is computed by first re-
laxing the constraint, estimating the filter without the nor-
malization condition, and then normalizing the result to unit

DC gain. The solution of the unconstrained problem is
given by

b∗ =

⎡⎣ nh∑
j=1

YT
m,jYm,j + λb

(
DT

hDh +DT
v Dv

)⎤⎦−1

×

⎡⎣ nh∑
j=1

YT
m,jRYh,:j

⎤⎦ . (14)

The support covered by b is user specified. We have found,
experimentally, that the choice of this support does not have
much influence on the blur estimate, as long as it encompasses
the support of the actual blur.

Concerning the estimation of R, we use the regularizer φR(·)
in order to deal with the indetermination of the orthogonal
component and to reduce estimation noise. In the cases in which
there is information about the overlap between bands of the HSI
and the MSI, we constrain the elements of R that correspond to
nonoverlapping bands to zero.

The estimation of R can be made independently for each of
the MSI bands. Let rTi denote a row vector containing the ith
row of R without the elements that are known to correspond to
hyperspectral bands that do not overlap the ith multispectral
band, and by Yh,i denote the matrix Yh without the rows
corresponding to those same bands. The optimization of (12) is
decoupled with respect to the rows of R and may be written as

minimize
ri

∥∥rTi Yh,i −Ym,i:BM
∥∥2
F
+ λR‖Dri‖2 (15)

in which Ym,i: is the ith row of Ym, and the product by
D computes the differences between the elements in ri
corresponding to contiguous hyperspectral bands. The solution
of (15) is given by

r∗i =
[
Yh,iY

T
h,i + λRD

TD
]−1

Yh,i[Ym,i:BM]T . (16)

The estimation of each of the matrices B and R, as presented
so far, requires the knowledge of the other matrix. In order to
estimate both, and instead of using alternating optimization as
proposed before, we adopt an even simpler technique. We start
by estimating R. To do this without knowing B, we first blur
both spectral images with a spatial blur that is much stronger
than the one produced by B, so that the effect of B becomes
negligible. This, conveniently, also minimizes the effect of
possible misregistration between the HSIs and MSIs. Following
this, we estimate the spectral response R using (16), setting the
kernel of the spatial blur between the strongly blurred MSIs and
HSIs to a delta impulse. Finally, we estimate the spatial blur B
using (13) on the original (unblurred) images, with the value of
R just found. Fig. 2 summarizes the estimation method. In the
tests presented in Section V, we have used, for the strong spatial
blur, an averaging in a square of 9 × 9 pixels for the MSI, and
a correspondingly smaller averaging for the HSI.

We now discuss the set of solutions of (12), which is an
important issue in our approach to the estimation of b and R,
closely related to that of identifiability. Given that the objective
function is quadratic, a sufficient condition for it to have a
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Fig. 2. Summary of the method to estimate the spectral response R and
the spatial blur. Note that B and b are just two different ways of expressing
this spatial blur. Ym and Yh refer to the multispectral and hyperspectral
observations, respectively.

unique solution is that its Hessian matrix be positive definite.
Assuming that λb, λR > 0, the null space associated with the
regularization terms is the set

A
def
=

{
(R, b) : R = c1T

Lh
, b = d1nb

, c ∈ R
Lm , d ∈ R

}
where we have assumed that the spectral response of the MS
channels spans over the entire Lh HS spectral bands, and the
HS bands are contiguous in frequency. The case in which the
spectral response of the MS channels spans over subsets of
the Lh HS spectral bands corresponds to a minor modification
of the reasoning provided in the following. The case in which
the HS bands are not contiguous is somewhat more elaborate
but would follow the same line of reasoning.

For any (R,b) ∈ A, we may write

nh∑
j=1

‖RYh,:j −Ym,jb‖2 =

nh∑
j=1

‖yh,jc− ym,jd‖2 (17)

for some c ∈ R
Lm , d ∈ R and where yh,j

def
=1T

Lh
Yh,:j and

ym,j
def
=Ym,j1nb

. Let us suppose that there exits a nonzero
couple (c, d) nulling all the nh quadratic terms in the right-hand
side of (17). In this case, all vectors ym,j , for j = 1, . . . , nh

would be collinear with c. Having into consideration that the
components of ym,j represent the average intensities in the Lm

MS bands in the patch Pcj , such a scenario is highly unlikely,
implying that the intersection of the subspace A with the null
space associated with the data term shown in the left-hand side
of (17) is empty, except for the origin. We conclude, therefore,
that the Hessian of the quadratic objective function present in
(12) is positive definite; thus, the solution of the corresponding
optimization exists and is unique. An important consequence
of this uniqueness is that the subproblems (13) and (15) have
unique solutions; moreover, the system matrices present in (14)
and (16) are nonsingular.

V. EXPERIMENTAL STUDY

In this section, we first describe the data sets that were used
in the experimental tests, and the indexes that were used to
evaluate the quality of the results. We then give some details on
the implementation of our algorithm, and finally, we present the
experimental results, which include comparisons with several
other fusion methods.

A. Data Sets

Three data sets were used to test the different algorithms.
Data set A was purely synthetic. The ground-truth image was
a collection of simple geometric shapes composed of differ-
ent hypothetical materials. In order to simulate the different
materials, the U.S. Geological Survey Digital Spectral Library
splib06 was used.3 This library assembles the reflectance values
of different materials (e.g., minerals, plants, microorganisms,
man-made materials) as measured by different instruments,
covering the wavelength range from ultraviolet to far infrared.
One of the instruments used to spectroscopically analyze the
data was NASA AVIRIS, which is capable of delivering cali-
brated images in 224 contiguous spectral channels within the
0.4–2.5-μm range [3].4 Five signatures from this library were
randomly selected as endmembers, and the image was built
under the linear mixing model.

We created an image with high resolution both in the spa-
tial and in the spectral domains, to serve as ground-truth. To
create a HSI, we spatially blurred the ground-truth one and
then downsampled the result by a factor of 4 in each direc-
tion. Three different spatial blurs (block filter with dimensions
5 × 5, Gaussian filter with σ = 2 and support 5 × 5, and
the Starck–Murtagh filter [51]) were used to synthesize three
different HSIs. A false color representation of a HSI can be seen
in Fig. 6(b), in which different colors correspond to different
materials. To create PANs and MSIs, the spectral response of
the IKONOS satellite was used. This satellite captures both
a panchromatic (0.45–0.90 μm) and four multispectral bands
(0.45–0.52, 0.52–0.60, 0.63–0.69 and 0.76–0.90 μm) [3]. Un-
less otherwise noted, Gaussian noise was added to the HSI
(SNR = 30 dB) and to the MSI (SNR = 40 dB).

Data set B was semi-synthetic. It was based on a standard
HSI (Pavia University, see Fig. 7). This image was obtained
with the ROSIS, which has 115 spectral bands, spanning
the 0.43–0.86-μm spectral range, and a spatial resolution of
1.3 m [3].5 This image was used as ground-truth. HSIs, MSIs,
and PANs were generated from it as described for data set A.

Data set C consisted of images taken above Paris [see
Fig. 8(a)] and was obtained by two instruments on board
the Earth Observing-1 Mission (EO-1) satellite, the Hyperion
instrument, and the Advanced Land Imager (ALI). Hyperion
is a HSI imager with a spatial resolution of 30 m; the ALI
instrument provides both MSIs and PANs at resolutions of
30 and 10 m, respectively [2].6 The HSIs and PANs were
directly used for experiments on hyperspectral+panchromatic
fusion; therefore, we had no access to the ground-truth. For
experiments on the fusion of HSIs and MSIs, we needed the
HSI to have lower resolution than the MSI; therefore, we first
reduced the spatial resolution of the HSI by blurring with the
Starck–Murtagh filter and downsampling, as described above

3Available at http://speclab.cr.usgs.gov/spectral-lib.html.
4More information is available at http://aviris.jpl.nasa.gov/.
5More information is available at http://messtec.dlr.de/en/technology/

dlr-remote-sensing-technology-institute/hyperspectral-systems-airborne-rosis-
hyspex/index.php.

6More information is available at http://eo1.gsfc.nasa.gov/, http://eo1.usgs.
gov/sensors/ali, and http://eo1.usgs.gov/sensors/hyperioncoverage.
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for data set A (using a downsampling factor of 3, in this case).
The original HSI, before blurring and downsampling, was used
as ground-truth.

B. Quality Indexes

To evaluate the quality of fusion results, three indexes taken
from the literature were used, when a ground-truth image was
available, as was the case for data sets A and B, and for the
HS+MS fusion on data set C. The first index was the Erreur
Relative Globale Adimensionnelle de Synthèse (ERGAS), pro-
posed in [52] and defined, for an estimated image Z and a
ground-truth image Ẑ, as

ERGAS(Z, Ẑ)
def
= 100

1

S

√√√√ 1

Lh

Lh∑
l=1

MSE(Zl:, Ẑl:)

μ2

Ẑl:

(18)

where S is the ratio between the resolutions of the HSI and
of the multispectral or panchromatic one, i.e., S =

√
nm/nh;

Zl: and Ẑl: are the lth bands of the estimated image and of the
ground-truth image, respectively; MSE(Zl:, Ẑl:) is the mean
square error between Zl: and Ẑl:; and μ

Ẑl:
is the mean of Ẑl:.

The second index was the Spectral Angle Mapper (SAM),
which is the mean, among all pixels, of the angle between the
vectors formed by the spectral representation of the pixel in
the estimated image and the spectral representation of the same
pixel in the ground-truth image, i.e.,

SAM(Z, Ẑ)
def
=

1

nm

nm∑
j=1

arccos

(
ZT

:j Ẑ:j

‖Z:j‖2 ‖Ẑ:j‖2

)
(19)

where Z:j denotes the spectral representation of the jth pixel of
the estimated image, and Ẑ:j denotes the same for the ground-
truth image. This index is an indicator of the spectral quality of
the estimated image. In this paper, we report the value of the
SAM index in degrees.

The third index was based on the Universal Image Quality
Index (UIQI), proposed by Wang et al. [53]. It was computed
on a sliding window of size 32 × 32 pixels and averaged over
all window positions. Denoting by zi the ith windowed segment
of a single-band image and by ẑi the corresponding segment of
a single-band ground-truth image, the UIQI is given by

Q(z, ẑ)
def
=

1

M

M∑
i=1

σzi ẑi

σzi
σ ẑi

×
2μzi

μ ẑi

μ2
zi
+ μ2

ẑi

×
2σzi

σ ẑi

σ2
zi
+ σ2

ẑi

(20)

where M is the number of window positions, σzi ẑi
is the

covariance between zi and ẑi, σzi
is the standard deviation of

zi, and σ ẑi
is the standard deviation of ẑi. This index has a

range of [−1, 1], being equal to 1 when z = ẑ.
The definition of the UIQI index was extended to multiband

HSIs by simple averaging, i.e.,

UIQI(Z, Ẑ)
def
=

1

Lh

Lh∑
l=1

Q(Zl:, Ẑl:). (21)

Fig. 3. Summary of the preprocessing steps.

Q was computed using the MATLAB code provided by
Wang et al.7

When working with the fusion of HSIs and PANs from data
set C, we had no access to the ground-truth. We hence only
show false color representations of the estimated images, for
visual inspection.

C. Implementation Details

In the experimental tests, we performed two preprocessing
steps on the hyperspectral data. First, uncalibrated or very noisy
bands were removed, i.e., when information on which bands
were uncalibrated was available (as in the case of Hyperion), it
was used; very noisy bands were identified manually. Second,
the data were denoised by projecting Yh onto a subspace of
dimension Ls = 10 found through truncated SVD; the ground-
truth images, when available, were also projected onto this
subspace. Making Ls = 10 allowed us to preserve at least
99.95% of the energy of the original images from all data
sets. Data set C consisted of raw data, in which the energy
per band strongly varied across the spectrum. For this reason,
before denoising, we normalized all bands of this data set so
that the 0.999 intensity quantile corresponded to a value of 1. A
summary of these two steps is shown in Fig. 3.

After the preprocessing, we estimated the spectral and spatial
responses as described in Section IV. We then estimated matrix
E using VCA8; since the subspace estimated by VCA shares
the dimension of the subspace estimated by SVD [31], we
also made Ls = 10 in this step. Since VCA has a random
component, we performed ten runs of our algorithm in each
case, and we report the average of the corresponding results.
Their standard deviation was negligible.

The tuning of the values of the algorithm’s parameters is an
interesting and complex topic, with a number of techniques
that can be adapted to problems such as this. Two examples
of these techniques are SURE [54] and GCV [55]. We verified
experimentally, however, that as long as our remote sensing
images were preprocessed as described earlier, constant values
for these parameters tended to lead to near-optimal results. To
choose these values, we first found the optimal values for each
situation and computed the corresponding quality indexes. We
then chose a set of parameter values that were the same for
all situations, but that yielded quality indexes that were very
close to the previously found optimal ones. These values were
λm = 1 and μ = 5× 10−2. We used λϕ = 10−2 when fusing

7Available from https://ece.uwaterloo.ca/~z70wang/research/quality_index/
demo.html.

8Available from http://www.lx.it.pt/~bioucas/code/demo_vca.zip.
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Fig. 4. Quality indexes for different values of λϕ, for data set B (HSI+PAN) fusion. (a) ERGAS. (b) SAM. (c) UIQI.

Fig. 5. Spectral and spatial blur estimates for data set C. (a) Spatial blur between the HSI and the panchromatic band. (b) Spectral relationship between the HSI
and the panchromatic band. (c) Spectral relationship between the HSI and the MSI. Different multispectral bands are shown in different colors.

a HSI with a PAN and λϕ = 5× 10−4 when fusing a HSI
with a MSI. We used λB = λR = 10 (see Section V-D1 for
how these values were chosen). To illustrate the influence of
different values of λϕ on the ERGAS, SAM, and UIQI quality
indexes (including the situation when there is no regularization,
i.e., λϕ = 0), we performed a series of experiments on the
HSI+PAN fusion of data set B (see Section V-D2 for more
details). The results of these experiments are shown in Fig. 4;
for λϕ = 0, the values of ERGAS, SAM and UIQI were 5.046,
6.587, and 0.882, respectively.

In [47], a stopping criterion was proposed for problems
solved via ADMM. We verified that this criterion worked well,
always yielding less than 200 iterations. Given this, we ran the
algorithm for 200 iterations in every case.

D. Experimental Results

1) Estimation of the Spatial and Spectral Responses of the
Sensors: Our first experiments were aimed at testing the esti-
mation of the spectral and spatial responses of the sensors on
real-life data. After checking that the results on data sets A and
B were rather accurate, we chose the values of λB and λR that
yielded the highest quality results on those data sets. We then
tested the estimation method, with those parameter values, on
data set C. In the estimation of the spectral response, we took
into account the available information on the overlap between
the hyperspectral bands and the multispectral and panchromatic

ones. Since the original HSIs and MSIs of this data set have the
same resolution, for that pair of images, we have set B = I,
corresponding to no spatial blur, and we have just estimated
R, without applying any additional spatial blur. For the
HSIs + PANs, which have different resolutions, we performed
the estimation as described in Fig. 2. The estimated blurs, which
look quite reasonable, are shown in Fig. 5.

2) Fusion of HSIs and PANs: A number of methods for
the fusion of multiband images with panchromatic ones, drawn
from the pansharpening literature, were used for comparison
with HySure. Those methods were originally built having in
mind the fusion of PANs with multispectral ones, i.e., they
were built for a small number of bands, and not for the large
number of bands of a typical HSI. The methods can, however,
be extended in a straightforward manner to HSIs since they
have no restrictions on the number of bands. In what follows,
a quick rundown of those methods is given. A criterion used
to choose the methods for comparison was that they should not
impose restrictions on the ratio between the resolutions of the
high spatial resolution image and the low spatial resolution one.
Since our method does not impose such restrictions, we only
compared it against similarly built methods.

In [6], Amro et al. divided the pansharpening methods into
several categories. One of them is the component substitution
family; different methods from this family were tested in this
paper. They are characterized by the transformation of the
multispectral bands into a set of components, usually through a
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Fig. 6. Hyperspectral + panchromatic fusion on data set A. (a) PAN. (b) HSI (false color). (c) HySure’s result (false color).

linear transformation. After this, a component of the trans-
formed multiband image is replaced with an image derived
from the panchromatic one and then the transformation is
undone. These methods work well only when the spectra of
the two data sources almost overlap, a condition which may
not be fulfilled when fusing panchromatic and HSIs. The
Gram–Schmidt adaptive (GSA) method from Aiazzi et al. [56]
is an adaptation of the Gram–Schmidt spectral sharpening
method (GS). The latter is based on the Gram–Schmidt trans-
formation of the different low spatial resolution bands, followed
by the substitution of the first band of the transformed image
with a modified version of the panchromatic band. This mod-
ified version is given by a weighted sum of the multispectral
bands, expanded to the spatial resolution of the PAN. The
weights are obtained in different ways, and that is the main
difference between GS and GSA. In GS, they are assumed
the same for all bands, whereas in GSA, they are estimated
from the observed data, usually guaranteeing better results.
In the case of fusion with HSIs, GSA involves the inversion
of a matrix that is close to singular, possibly affecting the
quality of the results. Nevertheless, as will be seen later, the
experiments showed an improvement of GSA relative to GS.
The fast intensity–hue–saturation fusion technique (FIHS) is
another method included in this family. It is similar to GSA
and GS, with the difference that the processing is made in
the IHS color space, with the PAN replacing the intensity
component of the multiband image [57]. Another method relies
on the principal component analysis (PCA) of the multiband
image, and replaces the first principal component with the
PAN [57].

Another family of methods is the relative spectral contribu-
tion family. An example is the Brovey transform method (BT),
based on the chromaticity transform [57]. In this method, each
pixel of the estimated image is given by the corresponding
pixel of the PAN, weighted by a linear combination of the
values of the different spatially expanded multispectral bands
for this same pixel. Finally, another family is the high fre-
quency injection one, from which we used the box high-pass
filtering method (HPF). It is characterized by the extraction
of high-frequency information from the high spatial resolution
image, followed by the injection of this information into the
multiband image [6]. To perform the high-frequency extraction,

TABLE I
RESULTS FOR DATA SET A (HSI+PAN FUSION)

the method starts by producing a low-pass version of the PAN
through a box filtering operation. This blurred image is then
subtracted from the original one, yielding a high-frequency
version of it.

Fig. 6 and Table I show the results of the various methods for
data set A. We only show the results for the Starck–Murtagh
blur since the results for the other two blurs were very
similar to these. The results for data set B (again, just for the
Starck–Murtagh blur) are shown in Fig. 7 and Table II. The
evolution of the cost function (6) during the optimization is
shown in Fig. 7(e). Fig. 7(f) shows the RMSE between the
estimated image and the ground-truth as a function of band
wavelength for the three best methods. Data set C allowed
us to evaluate the methods on real-life data. Fig. 8 shows the
results.

The proposed method outperformed the other ones in all
cases, except for the SAM index in data set B, in which it was
surpassed by BT. We found that most published pansharpening
methods seem to not deal well with the fact that the PAN’s
spectral range does not overlap a large number of hyperspectral
channels.

3) Fusion of HSIs and MSIs: The literature on the fusion
of HSIs and MSIs is much sparser than the one on pan-
sharpening. As a consequence, we were only able to perform
comparisons with one published method: we had access to an
implementation of a method by Zhang et al. [15] (henceforth,
designated by ZBS) and used it for comparisons on data sets
B and C. This implementation needed the input HSI and MSI
to be represented with the same spatial resolution. Therefore,
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Fig. 7. Results for data set B (HSI + PAN fusion). (a) Observed HSI (false color). (b) Observed PAN. (c) HySure’s result (false color). (d) BT’s result (false
color). (e) Evolution of the cost function during the optimization. (f) RMSE between the estimated image and the ground-truth, for the different bands (for the
three best methods).

TABLE II
RESULTS FOR DATA SET B (HSI+PAN FUSION)

we upsampled the HSIs to the resolution of the MSIs, using
bicubic interpolation, for input to ZBS. This method does not
estimate the spatial blur, needing it to be specified; we estimated
it as in our method, with the difference that we worked with
the upsampled version of the HSI. Following the lead of that
method’s authors, we chose the decomposition level of the
Nondecimated Wavelet Transform to be three.

The results of these tests are shown in Figs. 9 and 10 and
in Tables III and IV. The proposed method surpassed the other
one in all tests. For data set B, and due to input restrictions
of the implementation of ZBS that was available to us, we
only worked on a section of the image with 200 × 200 pixels,
corresponding to the bottom left corner. For this data set, as an
illustration of the processing speed, the proposed method took
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Fig. 8. Results for data set C (HSI + PAN fusion). All images, except (a), are in false color. (a) Observed PAN. (b) Observed HSI. (c) HySure’s result. (d) GSA’s
result. (e) GS’s result. (f) HPF’s result. (g) BT’s result. (h) FIHS’s result. (i) PCA’s result.

TABLE III
RESULTS FOR DATA SET B (HSI + MSI FUSION)

TABLE IV
RESULTS FOR DATA SET C (HSI + MSI FUSION)

about 35 s to perform the fusion in a MATLAB implementation
running on an Intel Xeon CPU at 3.20 GHz with 16 GB of
RAM. For data set C, we worked on a section with 72 ×
72 pixels. Fig. 11(b) shows the RMSE between the ground-truth
and the results of both methods, for each pixel, with the pixels
sorted in order of ascending error; we are only showing results
corresponding to the first 99% of the errors since the other
pixels are very noisy. Fig. 11(c)–(e) compare the reflectance
values of the results of the two methods with the ground-truth
ones, for three pixels, corresponding to the 10th, 50th and 90th
percentiles of the error of our method, respectively.

VI. CONCLUSION

We have proposed a method, termed HySure, to perform the
fusion of HSIs with either panchromatic or multispectral ones,
with the goal of obtaining images which have high resolution
in both the spatial and the spectral domains. This problem is
closely related to the pansharpening one but presents new chal-

lenges due to the much larger size of HSIs when compared with
the MSIs normally used in pansharpening and to the fact that
the different images do not normally have a complete spectral
overlap. In addition to performing the fusion, the proposed
method is also able to estimate the relative spectral and spatial
responses of the sensors from the data.

We formulated the fusion problem as a convex program,
solved via SALSA—an instance of ADMM. The estimation
of the relative responses of the sensors was formulated as a
convex quadratic program. Taking advantage of the low intrin-
sic dimensionality of HSIs by working on a subspace of the
space where those images are defined, and using an adequate
variable splitting, we obtained an effective algorithm which
compares quite favorably with several published methods on
both simulated and real-life data.

APPENDIX

Here, we show in detail how to solve the optimization
problem described in Section III. We start by expanding (9) in
its different components, i.e.,

L(X,V1,V2,V3,V4,A1,A2,A3,A4)

=
1

2
‖Yh −EV1M‖2F +

μ

2
‖XB−V1 −A1‖2F

+
λm

2
‖Ym −REV2‖2F +

μ

2
‖X−V2 −A2‖2F

+ λϕϕ(V3,V4) +
μ

2
‖XDh −V3 −A3‖2F

+
μ

2
‖XDv −V4 −A4‖2F . (22)
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Fig. 9. Results for data set B (HSI + MSI fusion). All images are in false color. (c) and (d) are very similar to (a) due to the false color rendering, but they have
93 bands, whereas (a) has only four. (a) Observed MSI. (b) Observed HSI. (c) HySure’s result. (d) ZBS’s result.

Fig. 10. Results for data set C (HSI + MSI fusion). All images are in false color. (c) and (d) are very similar to (a) due to the false color rendering, but they have
128 bands, whereas (a) has only nine. (a) Observed MSI. (b) Observed HSI. (c) HySure’s result. (d) ZBS’s result.

Fig. 11. Results for data sets B and C (HSI + MSI fusion). The results in (a) and (b) are in ascending order. (c)–(e) show the reflectance values of the pixels
corresponding to the 10th, 50th, and 90th percentiles, respectively, for data set B. (a) RMSE between the results of both methods and the ground-truth, per pixel,
for data set B. (b) RMSE between the results of both methods and the ground-truth, per pixel, for data set C. (c) Reflectance of the pixel corresponding to the
10th percentile of the RMSE (data set B). (d) Reflectance of the pixel corresponding to the 50th percentile of the RMSE (data set B). (e) Reflectance of the pixel
corresponding to the 90th percentile of the RMSE (data set B).
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Fig. 12. Optimization algorithm.

The optimization algorithm, which was given in condensed
form in Fig. 1, is given in more detail in Fig. 12.

The first minimization problem is

X(k+1) ∈ arg
X

min
μ

2
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(k)
1 −A
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F

+
μ

2

∥∥∥X−V
(k)
2 −A

(k)
2

∥∥∥2
F
+

μ

2

∥∥∥XDh −V
(k)
3 −A

(k)
3

∥∥∥2
F

+
μ

2

∥∥∥XDv −V
(k)
4 −A

(k)
4

∥∥∥2
F

which has the solution
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(23)

The computation can be efficiently performed through the use
of the FFT, having complexity O(Ls × nm log nm). The first
term on the right-hand side, including the inverse, can be
computed in advance, before the iteration.

To solve the minimization problem involving V1

V
(k+1)
1 ∈ argmin

V1

1

2
‖Yh −EV1M‖2F

+
μ

2

∥∥∥X(k+1)B−V1 −A
(k)
1

∥∥∥2
F

we can take advantage of the masking matrix M to separate V1

into V1M and V1M, where M is the matrix that selects the
pixels not selected by M. We then have

V
(k+1)
1 M = [ETE+ μI]−1

×
[
ETYh + μ

(
X(k+1)B−A

(k)
1

)]
M (24)

V
(k+1)
1 M =

(
X(k+1)B−A

(k)
1

)
M. (25)

[ETE+ μI]−1 and ETYh can be precomputed. The computa-
tions can be efficiently done via the FFT, and have complexity
O(Ls × nm log nm).

The minimization

V
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2 ∈ argmin

V2
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2
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+
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has the solution
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×
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(
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(k)
2

)]
(26)

where only (X(k+1) −A
(k)
2 ) cannot be precomputed. The

complexity of this part is O(Ls × nm).
V3 and V4 are computed by solving the following minimiza-

tion problem:{
V
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3 ,V
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}
∈ arg
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whose solution is given by a columnwise vector-soft threshold
function [54], i.e.,

{(
V
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3

)
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,
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}
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where

C =

{(
X(k+1)Dh −A

(k)
3

)
:j
,
(
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(k)
4

)
:j

}
and (·):j denotes the jth column of a matrix. We follow the
convention that 0/‖0‖F = 0. The complexity of computing V3

and V4 is O(Ls × nm log nm), being dominated by FFTs.
After performing these optimizations, the following are used

to update the Lagrange multipliers:

A
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4

)
.

The complexity of the algorithm is dominated by the FFTs
and is O(Ls × nm log nm) per iteration.
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