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Abstract—Spectral unmixing is an important technique for
remotely sensed hyperspectral data exploitation. It amounts to
identifying a set of pure spectral signatures, which are called
endmembers, and their corresponding fractional, draftrulesabun-
dances in each pixel of the hyperspectral image. Over the last
years, different algorithms have been developed for each of the
three main steps of the spectral unmixing chain: 1) estimation
of the number of endmembers in a scene; 2) identification of
the spectral signatures of the endmembers; and 3) estimation of
the fractional abundance of each endmember in each pixel of the
scene. However, few algorithms can perform all the stages involved
in the hyperspectral unmixing process. Such algorithms are highly
desirable to avoid the propagation of errors within the chain. In
this paper, we develop a new algorithm, which is termed robust
collaborative nonnegative matrix factorization (R-CoNMF), that
can perform the three steps of the hyperspectral unmixing chain.
In comparison with other conventional methods, R-CoNMF starts
with an overestimated number of endmembers and removes the
redundant endmembers by means of collaborative regularization.
Our experimental results indicate that the proposed method pro-
vides better or competitive performance when compared with
other widely used methods.

Index Terms—Endmember extraction, hyperspectral imaging,
robust collaborative nonnegative matrix factorization (R-CoNMF),
spectral unmixing.

I. INTRODUCTION

PECTRAL unmixing is an important task for remotely
sensed hyperspectral data exploitation [1]. The linear mix-
ture model (LMM) is a widely used technique for spectral
unmixing, which is based on the principle that each captured
pixel in a hyperspectral image can be represented as the lin-
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ear combination of a finite set of spectrally pure constituent
spectra or endmembers, weighted by an abundance factor that
establishes the proportion of each endmember in the pixel under
inspection [2].

Within the LMM paradigm, three main types of unmixing
algorithms can be identified: geometrical, statistical, and sparse
regression based [3]. Geometrical unmixing algorithms work
under the assumption that the endmembers of a hyperspectral
image are the vertices of a simplex of minimum volume en-
closing the data set (i.e., the set of hyperspectral vectors, which
are also termed as the hyperspectral image) [4] or of a simplex
of maximum volume contained in the convex hull of the data
set [5], [6]. Among minimum-volume algorithms, we highlight
the seminal minimum-volume-constrained nonnegative matrix
factorization (MVC-NMF) method, which is also based on
NMF principles. As their name suggests, statistical methods
[3] are based on analyzing mixed pixels by means of statistical
principles, such as Bayesian approaches [7], [8]. Finally, sparse-
regression-based algorithms [9]-{12] are based on expressing
each mixed pixel in a scene as a linear combination of a
finite set of pure spectral signatures that are known a priori
and available in a library. Although each of these methods
exhibits their own advantages and disadvantages, the fact is
that geometrical approaches have been most frequently used
by the hyperspectral research community up to now [3], [6],
[13]{15]. This is mainly due to their reduced—although still
quite high—computational cost when compared with the other
types of unmixing algorithms, as well as to the fact that they
represent a straightforward interpretation of the LMM.

To fully unmix a given hyperspectral image by means of
a geometrical method, the majority of the state-of-the-art ap-
proaches is based on dividing the whole process into three
concatenated steps [3]: 1) estimation of the number of end-
members in a scene; 2) identification of the spectral signatures
of these endmembers; and 3) estimation of the endmember
abundances in each pixel of the scene. In the last few years,
several techniques have been developed for addressing each
part of the chain, with particular emphasis on the identification
of endmembers (with and without assuming the presence of
pure spectral signatures in the input hyperspectral data [2], [3],
[16]). However, there are very few spectral unmixing algo-
rithms that can address all the stages involved in the hyperspec-
tral unmixing process [17]. Although this general processing
chain has been proven effective for unmixing certain types of
hyperspectral images, it has some drawbacks.

1) The first drawback comes from the fact that the output of
each stage is the input of the following stage, which may
favor the propagation of errors within the chain.

0196-2892 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


mailto: lijun48@mail.sysu.edu.cn
mailto: bioucas@lx.it.pt

LI et al.: ROBUST COLLABORATIVE NONNEGATIVE MATRIX FACTORIZATION FOR HYPERSPECTRAL UNMIXING

2) The second more relevant problem is given by the huge
variability of the results obtained when estimating the
number of endmembers of a hyperspectral scene with dif-
ferent state-of-the-art algorithms or, in some cases, with
the same algorithm but with different initialization param-
eters. For instance, if the number of endmembers is ob-
tained by means of computing the virtual dimensionality
(VD) [18] of the image, very different results may be
obtained depending on the technique employed for esti-
mating the VD itself [19] or the parameters used by this
technique. The hyperspectral signal identification by min-
imum error (HySime) algorithm [20] is another popular
approach for estimating the number of endmembers,
which generally provides results that differ from those
achieved with VD. This adds more uncertainties to the pro-
cess of accurately estimating the number of endmembers
of a hyperspectral image. Other techniques have been
developed for estimating the number of endmembers,
such as eigenvalue likelihood maximization [21], outlier
detection methods [22], or a technique for geometry-
based estimation of the number of endmembers based on
the convex hull in [23], providing different results.

3) A third issue is the computational complexity of the
whole process, which makes highly desirable the devel-
opment of a unified and fast technique that is able to
address the different parts involved in the hyperspectral
unmixing chain.

The challenge related with the correct identification of the
number of endmembers is crucial for unmixing algorithms in
general and for geometric-based algorithms in particular [3]. The
estimation of the number of endmembers by means of subspace
identification algorithms can be considered generally effective
when the hyperspectral images are well approximated by the
LMM [18], [20]. However, this part of the chain is more chal-
lenging when the endmembers have a similar shape or the mixing
process has nonlinear components [24]. Let p denote the true
number of endmembers in a hyperspectral image, and let ¢ de-
note the number of endmembers estimated by a certain algorithm.
In general, g fluctuates around p, but three situations are possible.

* If g=p, we have an ideal situation, and most existing end-
member identification algorithms rely on this assumption.

e If ¢ < p, then the number of endmembers is underes-
timated. This situation is generally easy to identify as
the reconstruction of the original hyperspectral image
based, for instance, on the well-known LMM contains
errors, thus allowing a trained analyst to identify that more
endmembers are needed for the model to work properly.

e If ¢ > p, then the number of endmembers is overesti-
mated. This is a difficult problem as compared with the
underestimation situation, since the reconstruction error
using more endmembers than needed would provide sim-
ilar or better values than those obtained when g = p. This
is particularly critical for scenarios in which there are no
pure pixels existing in the observed image and, at the same
time, for endmember identification algorithms designed
without assuming that the true endmembers are present
in the input hyperspectral data [4], [7], [25]-{31]. In this
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paper, we particularly address this case and provide an
algorithm that can work in situations in which the number
of endmembers is overestimated a priori.

Our contribution in this work is a new algorithm, which is
termed robust collaborative nonnegative matrix factorization
(R-CoNMF), that can perform the three steps of the hyperspec-
tral unmixing chain. Although the proposed algorithm can be
easily adapted to a scenario in which the number of endmem-
bers is known in advance, the proposed method assumes that the
number of endmembers corresponds to an overestimated value.
Our method uses the {5 ; mixed-norm regularizer [32] applied
to the abundance matrix, which promotes sparsity among the
lines of that matrix. As seen below, this is equivalent to impos-
ing sparsity among the endmembers simultaneously (collabora-
tively) for all pixels such that it is guaranteed that only the true
endmembers have contributions to the estimated abundances.
The proposed R-CoNMF uses another regularization term to
promote minimum volume by pushing the endmembers toward
the mean value of the data set or bring the endmembers to the
real solution quadratically regularized by a given simplex, other
than the minimum volume. Endowed with these two regular-
izers, R-CoNMF does not require a prior step to estimate the
number of endmembers and can be effectively used in scenarios
in which the number of endmembers is not known a priori.

The remainder of this paper is organized as follows. Section II
describes the proposed approach. Section III describes the opti-
mization algorithm used to implement the proposed approach.
Sections IV and V describe the obtained experimental re-
sults and a detailed intercomparison with other state-of-the-art
approaches. Our experimental results, conducted using both
synthetic and real hyperspectral data, demonstrate that the
proposed method exhibits very good performance in noisy
scenarios, without the need to know the number of endmembers
in advance. Comparisons to other state-of-the-art algorithms
covering the full hyperspectral unmixing chain are also given.
Section VI concludes this paper with some remarks and hints at
plausible future research.

II. PROPOSED APPROACH

Let Y =[y1,...,¥n] € R¥*™ be the matrix representation
of a hyperspectral image with n spectral vectors and d spectral
bands. Under the LMM, we have [3]

Y =MS+N
st.: S$>0,1'S=17 (1)

where ML = [my, ..., m,] € R¥? is a so-called mixing matrix
containing p endmembers; m; denotes the ith endmember
signature; S = [s1,...,8,] € RP*" is the abundance matrix
containing the endmember fractions s;, for pixels: = 1,...,n;
S > 0 is the abundance nonnegativity constraint [2] to be un-
derstood in the component-wise sense; lgS = 15 is the sum-
to-one constraint that stems from a physical interpretation of the
abundance vector;and 1, = [1, 1, ..., 1] is a column vector of
size p (the notation []7 stands for vector or matrix transpose).
Finally, N collects the errors that may affect the measurement
process (e.g., noise).
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In this paper, we address the estimation of p, i.e., the number
of endmembers, of mixing matrix M, and of abundance matrix
S. Although p is not known beforehand, we assume that we
have access to an overestimate thereof. That is, we are given
a number ¢ such that ¢ > p. This way, we account for a
common situation in which an overestimate of the number of
endmembers is easy to compute, which is not usually the case
regarding the true number of endmembers.

We tackle the estimation of p, M, and S by seeking a solution
for the following NMF optimization:

. 1 B
wip (5 1Y - AXIE + ol Xz + 1A - PI3
st.: XeSi1 AecAi (2)
where || - ||2 and || - || ¢ stand for the Euclidean and Frobenius

norms, respectively; A = [a,...,a,] € R%*7 and X € R¥*"
are optimization variables linked with the mixing matrix and
the abundance matrix, respectively; || X |21 = Y7, ||x7]|2 de-
notes the /57 (see, e.g., [33]) mixed norm of matrix X
(x? denotes the ith row of X); P = [y;,, ... ,Yi,] is a set of ¢
spectrally observed vectors inferred with a pure-pixel algorithm
and, thus, that are close to the extremes of the simplex; «
and  are regularization parameters; S;—; is the collection
of ¢ x n matrices whose columns belong to the probability
simplex of dimension ¢ — 1; and A,_; is the collection of
matrices of size d x ¢ whose columns belong to the affine
set of dimension g — 1 that best represents the data Y in the
mean square error sense [29]. The introduction of this constraint
removes the shortcomings associated violations to the sum-to-
one constraints usually observed in real data sets.

The objective function shown on the right-hand side of (2)
has three terms: a data fidelity term ||'Y — AX||%, which pro-
motes solutions with low reconstruction error; the £ ; mixed-
norm ||X||2,1, which promotes row sparsity on X [34], that
is, it promotes solutions with complete rows x' set to zero;
and the term (3/2)||A — P||%, which pushes the columns
of A toward a given solution P. For example, P can be
a solution provided by a pure-pixel-based algorithm, which,
jointly with the constraint X € S,_1, pushes the endmembers
to the extremes of the simplex defined by the data Y. Another
choice is P = [y, ...,¥y], where ¥ is the sample mean vector.
This choice has a minimum-volume flavor. Fig. 1 graphically
shows the behavior of the third regularizer term: (a) P is a
solution given by VCA, and (b) P is defined by the mass center,
for a simulated problem with three endmembers, 4000 pixels,
and SNR = 30 dB, in which we set & = 1e — 5. The solution
represented using dots in brown to red in Fig. 1 corresponds to
the endmembers obtained by R-CoNMF with /3 from Inf to 0. It
is clear in Fig. 1 that the simplex regularizer strongly depends
on P. For the considered problem, when (3 is well set, the final
solutions are very similar and close to the real ones.

As shown in the optimization (2), we conclude that the
proposed optimization aims at finding a couple (A, X) yielding
low reconstruction error, low number of nonzero rows of X, and
a simplex defined by the columns of A constrained by a given
solution or minimum volume. The balance between these three
terms is set by the regularization parameters v and /3.
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Fig. 1. Graphical illustration of the behavior of the third regularizer term in our
proposed optimization. (a) P is a solution given by VCA. (b) P is defined by
the mass center.

Let A stand for a set of naturals, Ay = [a;,i € A] and
XA = [(xi)T,i € A]T, ie., A, is a matrix containing the
columns of A with indexes in set A, and X* is a matrix
containing the rows of X with indexes in set A. In addition,
let rowsupp(X) = {4,: x* # 0}, i.e., rowsupp(X) denotes the
row support of X. With these definitions in place, we introduce

— ~

M = A|rowsupp()A() (3)

§ = )/arowsupp(f(). 4)

Provided that the mixed-norm term «||X||2,1 in (2) drives the
rows of X not corresponding to endmembers to zero, then it
is expectable that, apart from a permutation, the data fidelity
and the volume terms drive (A, X) to solutions close to (M, S)
in the sense that M ~ M and S ~ S. This scenario is shown
in Fig. 2.
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Fig. 2. Illustration of the concept of row (collaborative) sparsity promoted £2 1
norm under the linear mixing model. The abundance matrix S is formed by the
nonzero rows of X, and the mixing matrix M is formed by the correspondent
columns of A.
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Fig. 3. Projection of the spectral vectors y,, for ¢ = 1,...,n (blue); of the
endmember signatures m;, for ¢ = 1,...,p (red); and of the columns of A,
which are not endmembers (green). The spectral mean value is shown in black.
See text for more details.

The quality of estimate (ﬁ, §) given by (3) and (4) relies pri-
marily on the number of endmembers detected, which is given
by p = |rowsupp(X)|. If p considerably departs from the true
number p, there is little hope in obtaining a reasonable estimate
of the couple (M, S). To shed light on this issue, we built a
simulated data set using a matrix M € R?24%3 (ie., d = 224,
and p = 3) sampled from the United States Geological Survey
(USGS) library' and an abundance matrix S € R3*2000 (ie,,
n = 2000) uniformly sampled on the simplex. The abundance
vectors s; such that max(s;) > 0.8 were discarded to model the
absence of pure pixels.

Fig. 3 shows a scatterplot of the vectors y;, for: =1,...,n,
projected onto the affine set defined by the columns of M
centered at y, which is plotted in black. The signal-to-noise
ratio (SNR) defined as

MS||3
2

was set to 30 dB. Fig. 3 also shows the projection of the matrix
A = [M,M’] € R%4, where M’ contains ¢ — p = 10 spectral
vectors lying on the facets of the simplex defined by M. The
projections of M and M’ are in red and green, respectively.

Thttp://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 4. Solution of the optimization problem (2) with respect to X for A
known and represented in Fig. 3. (Top) True X. (Middle) CLS solution (av=0).
(Bottom) ¢2 — £2 1 solution (v > 0).

In Fig. 4, the top image shows in false color the true X: The
horizontal axis denotes pixels, the vertical axis denotes columns
of A, and the colors denote abundances. The first three rows of
X display the abundances with respect to M, and the remaining
rows display the abundances with respect to M, which are zero.
With this setting, the constrained least squares (CLS) solution
for X, which amounts to minimizing (2) with respect to X with
o = 0 (absence of the {3 ; norm), yields the estimate shown in
the top right-hand side part of Fig. 4. This estimate is far from
the true X because the columns of M’ are linearly dependent
on the columns of M, thus yielding a severely ill-posed inverse
problem. The image shown in the bottom part of Fig. 3 is the
constrained {2 — {5 1 solution obtained by minimizing (2) with
respect to X with a > 0. This optimization is convex, and we
have used the collaborative sparse unmixing by variable split-
ting and augmented Lagrangian (CLSUnSAL) algorithm [11]
to solve it. The recovered solution is very close to the true solu-
tion, and, more importantly for our problem, the support of X
was correctly recovered, i.e., rowsupp(X) = rowsupp(X).

An in-depth study of the recovery guarantees in o — {23
problems is out of the scope of this paper (see, e.g., [33]), and
the toy experiment we have just presented does not provide, of
course, any theoretical contribution to this study. Our objective
is to clarify the role we expect the collaborative {3 ; norm will
play in the optimization criterion (2). In Sections IV and V, we
present a comprehensive array of results providing evidence for
the effectiveness of the proposed method.


http://speclab.cr.usgs.gov/spectral-lib.html
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III. OPTIMIZATION ALGORITHM

The nonconvex data fidelity term (1/2)||'Y — AX||% present
in (2) makes the respective optimization hard. Herein, we
adopt the proximal alternating optimization (PAO) [35], which,
under suitable conditions, converges to a critical point of the
underlying nonconvex objective function.

For notational convenience, we redefine the optimization (2)
as follows:

min

L(A,X)
AcRdxq XecRaxn

where

1 B
L(A,X) = 5||Y — AX||% + af|X]|2,1 + §HA -P|%

+ LS,y (X) tlayy (A) )

where ts,_, :RT*" - RU{+o0} and 14, , :R¥*7 - RU{+o0}
denote the indicator function of sets S,_; and A,_1, respectively;
thatis, ts, , (X) =400 if X ¢S, 1,and 15, ,(X)=0otherwise;
ta, (A) =+ooif A€ A;1,and 14, , (A) = 0 otherwise.

Given (A ), X(g)), PAO generates the sequence (A ), X)) —
(A(t-',-l) s X(t)) — (A(t-i-l)v X(t+1)) as follows:

. A
Aqiny = argminL (A X)) + 5 [A-Agln  ©
X(er1) = argmin L (A, X) + 5 [X =X [7. - D)

where ¢, ¢, for t = 0,1, ..., are sequences of positive num-
bers. We remark that the above procedure can be interpreted
as a regularized version of a two-block nonlinear Gauss—Seidel
method [36].

Let A, 1={z€R: 2=+ Va,a € R" !}, where y
is the sample mean observed vector, and V € R*(a-1) jg a
matrix holding the first (¢ — 1) principal components of the
data Y. We remark that the columns of V are orthonormal,
ie, VIV = I,_1, where I,_; denotes the identity matrix of
dimension ¢ — 1. In addition, we also define Y = [y,...,y] €
R%*? and write A =Y + VA. We remark that any A € A, 1
admits a unique representation in the form A =Y + VA,
where A = VI'(A - Y).

With the above definitions in place, the solution to the
quadratic optimization (6) is

Ay =V7" ((Y -Y)X{,) + B8P -Y) + )‘tA(t)) )

-1
(X Xh) + (B +2)1) (10)

where T denotes the identity matrix of suitable size, and ()7
denotes the transpose operator.

. T T
By d.eﬁpmg Y(’) = [YT\/,LTtXtT] and AEtH) = [AE;H)\/,LTJ] ,
the optimization (7) can be written as

1 2
m§n§HY/(t)_ /(t_H)XHF+Oé||X||271+L5471(X) (11)
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which is precisely the constrained ¢ — ¢ ; optimization solved
by CLSUnSAL [11], which is a generalization of the sparse
unmixing by variable splitting and augmented Lagrangian
(SUnSAL) algorithm [37].

The pseudocode for the proposed algorithm, which is termed
R-CoNME, is shown in Algorithm 1.

Algorithm 1: Robust Collaborative Nonnegative Matrix
Factorization (R-CoNMF)

Input: Y (dataset set), 7T € N (iterations)

a > 0,8 > 0 (regularization parameters)

At, ¢ (proximal sequences of parameters)

q > p (overestimate of the number of endmembers)

0 (stopping threshold), 6 > 0 ( a very small number)
Output: (1\7[,§) (mixing and abundances matrices)
Initialization:

/+ Overestimate the signal subspace  */

2 U € R™4 ¢+ HySime(Y,q) /* orthogonal basis
*/

3 Y« UTY;, Y« quT

a V=orth(Y*« YT /n-335",q—1) /« ¢—1

(S

principal components */
5 A + VCA(Y,q) /* estimate ¢ endmembers
*/

6 A(O) = VT(A(O) —?)
7 P+ A /* the VCA solution is used as

pure-pixel based solution %/
8 X(g) +~ SUnSAL(A(p,Y) /+ abundances */
9 gg =00, t<+ —1
10 begin
11 repeat
12 t—1t+1
/* Optimize with respect to A  «/
13 Apiy < V(Y =YX, +BP -Y) +
)\tA(t)) (&QX?;) +(B+ )\t)l) '
14 A(t+1) +~ Y+ VA(H—l)
/* Optimize with respect to X */
15 < Yy XT]7,
/(t+1) = [A?;H)\/EI]T
16 X(i41) < CLSUnSAL(A(tH),Y'(t), a) /*
[11] */
7 e [Y=AwXoll
18 until (¢t <7 and |, —&,1|/||Y||F > 6)
/* Detect the support of X, */
19 A=10
20 for : =1 to g do
21 if [|x{,)|| < ¢ then
2 | A+ AU{i}
23 end
24 end
/* Retrieve the estimates of M and S
*/
25 M «+ UA(t)|A; S+ X(t)\A
26 end

In line 2, HySime [20] is used to obtain an overestimate of
the signal subspace. HySime can be used in two ways: 1) to
estimate the signal subspace, thus including its dimension; or
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2) to estimate the subspace of a given order, supplied as input,
that minimizes the signal projection error. In this paper, HySime
is used in the latter fashion, that is, to estimate a given size of
signal subspace, which does not necessarily correspond to the
number of endmembers in the data. The reason for this choice
is that it often happens that the estimation of the true subspace
is a quite challenging problem due to, e.g., poor estimation of
the noise statistics or the presence of nonlinear components
in the data set. However, the estimation of an overestimate
of the signal subspace is an easier problem. Hence, we input
a value of ¢ larger than that determined by HySime and let
R-CoNMF compute, hopefully, a better estimate, as it has built-
in information linked with the LMM not exploited in most
signal subspace estimation methods, such as HySime, principal
component analysis (PCA), maximum noise fraction (MNF)
[38], or VD [18].

In line 2, the columns of U form an orthogonal basis whose
span contains the signal subspace estimated by HySime. As
aforementioned, it is very easy to obtain an overestimation of
the subspace. Nevertheless, it should be noted that U can be
obtained by any subspace estimation method, such as singular
value decomposition, PCA, MNF, or VD. In line 3, the matrix
operation UTY computes the projection of the data set Y onto
the subspace spanned by the columns of U. We remark that
this operation reduces the size of the spectral vectors from d
to g. Since usually d >> g, this projection brings considerable
storing and computational advantages.

Matrix V in line 4 holds the ¢ — 1 principal components used
to represent A by the affine set .4,_;. The initialization of A
and X is computed in lines 5 and 8 using, respectively, the VCA
[39] and SUnSAL [37] algorithms.

Lines 11-18 implement PAO optimizations (6) and (7) and
are the core of R-CoNMF. The stopping criterion is based on
the relative reconstruction error or maximum number 7' of
iterations. Lines 19-24 detect the support of X(;), and line 25

retrieves M and S according to (3) and (4).

The computational complexity measured in terms of the
number of floating-point operations of R-CoNMF is dominated
by computations of A ;1 in lines 13 and 14 and of X ;)
in line 16. The leading term of the computational complexity
in the computation of A ;1) is 2¢°n coming from the matrix
multiplications YX%;) and X(t)Xg;). The computational com-

plexity of CLSUnSAL is O(ng®N), where N is the number of
iterations thereof [11]. We conclude therefore that R-CoNMF
complexity per iteration is dominated by the computation of
X (¢+1) and is approximately given by O(ng*N).

A. Convergence of R-CoNMF

The convergence of alternating optimization (AQO) algo-
rithms involving nonconvex and/or nondifferentiable terms is a
long-standing research problem to which considerable research
efforts have been devoted (see, e.g., [40]). Recently, the ex-
ploitation of the Kurdyka-t.ojasiewicz inequality (see, e.g.,
[35], [40], and references therein) has opened the door to a
wealth of new AO algorithms and convergence results. Herein
and following very closely the work in [35], we prove that
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R-CoNMF converges to a critical point of L : R4*9 x RI*" —
R U {400}

As previously mentioned, the core of R-CoNMF consists
of lines 11-18 of Algorithm 1. This fragment of pseudocode
implements the PAO algorithm shown in (6) and (7). The next
theorem asserts that the sequence (A (;), X)), fort =0,1,.. .,
produced by this algorithm converges to a critical point of L.
This result is a direct application of [35, Th. 9].

Theorem 1: Assume that for some r_ < r+, the sequence
of stepsizes A, p, for t =1,..., belongs to (r_,ry), that
L(-,X(0)) is proper, and that & > 0 and 3 > 0, i.e., the regular-
ization parameters shown in (5) are positive. Then, the sequence
(A, X(4)) converges to a critical point of L.

Proof: Consider the rearrangement of the terms of L in
(5)as L(A,X) = f(A) + Q(A,X) + ¢g(X), where

1
QA,X) =5 |IY - AX|[7 (12)
FA)=DIA Pt A)  03)
9(X) =Xz, + 15, (X) (14)

The function L : R4¥? x R4*™ — R and its terms f: R*q4 TR,
g: R — RU {40}, and Q : R¥? x R9*" — R have the
following properties.

Pl) infpaxqygaxn L > —o0.

P2) f:R¥Y 5 RU{+oc}, ¢g:R> - RU{+oco0} are
proper lower semicontinuous.

P3) @ :R¥49 x RT*" — Ris C.

P4) V(@ is Lipschitz continuous on bounded subsets of
Rdxq x RIx™

P5) L has the Kurdyka—t.ojasiewicz inequality at each point
of the domain of f.

Property P1) is trivial. Property P2) stems from the fact that f
and g have a nonempty domain and are continuous. Property
P3) is a consequence of () being C'*°, which also implies P4)
since || V2Q)|| is bounded in the spectral norm (i.e., the matrix
norm induced by the Euclidean norm) in any bounded subset
of R4 x R?*™, Property P5) stems from the fact that L is a
finite sum of semialgebraic functions (indicator of polyhedral
sets, polynomial functions, and Euclidian norms) [35], [40].

From (6) and (7), we have L(A(y), X)) > L(A41),
X)) > L(A 41y, X(¢41)). That is, the sequence L(A ),
X(4)) is decreasing. Given that o > 0 and 3 > 0, then L is
coercive, i.e.,

lim
|A,X| p—o0
(A,F)edomL

L(A,X) = . (15)

Therefore, | A (1), X (1) || - is bounded. Otherwise, L(A (), X (1))
could not be decreasing.

Taking into account properties P1)-P5) and the fact that
1A ), Xpy HF is bounded, then invoking [35, Th. 9], we con-
clude that (A (), X(;)) converges to a critical point of L. O
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B. Applying R-CoNMF

R-CoNMF may be applied assuming that the number of end-
members is either 1) known or 2) unknown. As previously dis-
cussed, in the optimization problem (2), the regularizer on the
abundance matrix, i.e., &|| X||2,1, aims at predicting the number
of endmembers, whereas the volume regularizer on the mixing
matrix, i.e., (3/2)||A — P||%, targets for unmixing. Therefore,
in the former case, we set ¢ = p and § > «, thus removing
the /5 ; regularizer from the objective function, although keep-
ing the constraint set S;,_;1. In the latter case, we first apply
R-CoNMF to infer the number of endmembers by using a > f3.
After obtaining the correct number of endmembers, we then
apply again R-CoNMF as described in scenario 1).

Let us consider scenario 2). In this case, we run R-CoNMF
for a fixed ¢ > p, in which we set o > (5. We empirically
found out that 8 can be very small, 5 — 0, and « can be very
large, which would not influence the solution. Let us define
¢(i) = ||x%||2, for i =1,...,q, as a measure of the sparsity
of abundances associated with the corresponding endmembers
a;, fori =1,...,q. Ideally, we should have (i) = 0 if a; is
not active. Due to the impact of noise and model errors, we
relax that criterion as follows: We consider that an endmember
a; is active, if (i) > &, for a small £ > 0. Fig. 5 shows
the obtained ¢ and the reconstruction error for a problem
with p = 6, n = 4000, and zero-mean Gaussian independent
and identically distributed (i.i.d.) noise with SNR = 30 dB.
The application of the above criterion with any value of &
between 0.5 and 4 yields p = 6, which is the correct estimate
of the number of endmembers. Notice that this number could
also be obtained from the plot of the reconstruction error.
In more complex scenarios with a lower SNR and a larger
number of endmembers, we may devise a strategy to combine
both indicators.

IV. EXPERIMENTS WITH SIMULATED DATA

In this section, we evaluate the proposed R-CoNMF method
using synthetic hyperspectral data. The advantage of using
synthetic scenes is that they offer a fully controlled analysis
scenario in which the properties of our algorithm can be pre-
cisely investigated. The synthetic scenes have been generated
using the LMM in (1). The scenes comprise n = 4000 pixels,
and the spectral signatures used for their generation were
randomly selected from the USGS digital spectral library. To
ensure the difference among the endmembers used for sim-
ulation purposes, the spectral angle distance (SAD) between
any two spectral signatures is bigger than 10°. Furthermore,
let pmix be the number of endmembers in one pixel. In real
scenarios, it is possible to have a large number of endmembers
in a scene, for instance, p > 10. However, it is unlikely to
have a large number of endmembers in one pixel. That is, in
general, pyix is relatively small, e.g., pmix < 5. Based on this
observation, for the simulated data, if p > 5, we set ppix = 5.
Otherwise, if p <5, we set pumix = p. Finally, to ensure
that no pure pixels are present in the synthetic images, we
discard all pixels with abundance fractions larger than 0.8,
i.e., max(s;) < 0.8.
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Fig. 5. Simulated problem with p = 6, n = 4000, and zero-mean Gaussian
i.i.d. noise with SNR = 30 dB. For the volume regularizer, we use the VCA
solution as its boundary. (a) Reconstruction error as a function of the estimated
number of endmembers. (b) Degree of sparseness ¢ for ¢ = 15.

In the case of g = p, let M = A and S = X denote the
estimates of M and S, respectively. As performance indicators,
we use the relative reconstruction error RRE = ||'Y — M/S\H% /
'Y |l7, the SAD (in degrees), and two error metrics focused
on ¢ evaluating the quality of the estimated endmembers, i.e.,
IM — M]| r, and the quality of the estimated abundances, i.e.,

(1/ynxD)|S —S|F.

A. Parameter Setting

First of all, it should be noted that the observed data Y is
spherized based on the covariance matrix. In all our experi-
ments, we projected the data onto a g-dimensional subspace
with ¢ > p. This is based on the fact that hyperspectral data
live in a much lower space, and it is very easy to obtain
an overestimation of the lower subspace. This can be easily
done by PCA [41], retaining, for instance, 99% of the spectral
information. In our simulation, we define the affine projection
via singular value decomposition by a given p.
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In addition, there are four parameters: «, (5, A=
{Ao, A1y oy Ay}, and o= {po, p1y - .-y ity - - -}, and the
volume regularizer P involved in R-CoNMF. For these para-
meters, we use the following settings in our experiments.

* As discussed in Section III-A, R-CoNMF converges for
any A; > 0 and p; > 0. In the following experiments, we
use \; = land py = 1.

* As presented in Section III-B, in all our experiments, we
perform two steps for R-CoNMF: a first step to determine
the number of endmembers and a second step in which
the data are unmixed.

— In the first step, in which the number of endmembers is
assumed to be unknown, i.e., ¢ > p, we set o = 1071
and B = 1078, This aims at estimating the number of
endmembers by enforcing the ¢ ; regularizer, where
the estimation is insensitive to a.

— In the second step, where the number of endmembers
is assumed to be known, i.e., ¢ = p, we have a more
difficult situation to set 3. However, we empirically
found out that it is easy to obtain a suboptimal setting.
Fig. 6 shows the obtained spectral signatures by using
different settings of 3: 1) P is provided by VCA; and
2) P is defined by the data mass, for a simulated prob-
lem by using three endmembers, 4000 pixels, SNR =
30 dB, and a = le — 8, in which 3 changes from 10 to
le — 5 from black to red. From this example, we can see
that it is easy to define a good setting of 3. Therefore,
in our experiments, when g = p, we set 3 = 10~! and
a =108

e In Figs. 1 and 6, we can also observe that R-CoNMF

is more robust with the volume regularizer defined by a
given solution. Therefore, for the volume regularizer, we
use the pure-pixel-based solution provided by the VCA
algorithm [39] as its boundary.

Finally, we also emphasize that all the values reported in the
subsequent tables are obtained as the average of 30 independent
Monte Carlo runs, whereas the results displayed in figures
correspond to one of the 30 Monte Carlo runs conducted.

B. Experiment 1: Estimation of the Number of Endmembers

This experiment aims at evaluating the performance of
R-CoNMF for the estimation of the number of endmembers.
In the experiments, we set o > (3, which mainly focuses on
the collaborative constraint. Before describing the results ob-
tained in this experiment, we introduce three new performance
discriminators. Let £(¢) = ||Y — AX||3 be the reconstruction
error obtained for ¢ endmembers. We emphasize that, for ¢ =
1,...,p, £(q) should decrease. Therefore, we should be able
to easily find a good estimated number of endmembers if ¢
is equal to (or slightly larger than) p. Let ¢ = ||[N||r be the
noise level. Ideally, when ¢ > p, ¢(q) = . In this experiment,
we use the two aforementioned discriminators, i.e., £(q) and
(i), to evaluate the capacity of R-CoNMF in identifying the
real number of endmembers in a scene.
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Fig. 6. Obtained spectral signatures by using different settings of S. (a) P is
provided by VCA. (b) P is defined by the data mass. The z-axis represents
spectral band numbers, whereas the y-axis represents reflectance values.

Fig. 7 shows the results obtained by the three considered
discriminators for two cases: p = 6 and p = 10. For Fig. 7(a),
we can conclude that when ¢ < p, the reconstruction error
is relatively big, and when ¢ > p, the reconstruction error
significantly decreases, which is similar to the noise level ¢.
Therefore, it is easy to identify the correct number of end-
members by analyzing the turning point of the reconstruction
error. Furthermore, Fig. 7(b) and (c) shows the collaborative
regularizer and the estimated abundance matrix, respectively.
It can be observed that the number of endmembers can be
correctly estimated.

Finally, we perform a comparison with HySime for esti-
mating the number of endmembers. The proposed R-CoNMF
estimated the subspace by including the sum-to-one and non-
negativity constraints, whereas HySime performs estimation
just on the linear mixing model. Ideally, R-CoNMF exploits
more prior information. However, we observed that when the
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endmembers q. (b) Regularizer of the abundance matrix X. (¢) Estimated abundance matrix X.

number of endmembers is small, i.e., p < 8, both methods
lead to very good performance. The advantage of using more
prior information for the proposed R-CoNMF comes when p
increases. For p = 10, R-CoNMF missed seven times, whereas
HySime missed nine, out of 30 runs. When p = 15, R-CoNMF
only provided the correct estimation six times, whereas HySime
provided the correct estimation two times. The other estima-
tion varies in 12-16. This slight difference indicates that with
more prior information in hand, R-CoNMF can lead to better
estimates of the data subspace.

C. Experiment2: q =p

In a second experiment, we evaluate the performance of
R-CoNMF in the case that the number of estimated endmem-
bers coincides with the number of real endmembers, i.e., ¢ = p.
Here, we use the MVC-NMF algorithm in [25], MVSA [26],
and SISAL [27] for comparison with our method. Table I
displays the results obtained by MVC-NMF and our pro-
posed R-CoNMF algorithm for all considered performance
discriminators for different values of ¢ = p = {4, 6, 8,10, 15}.
In all cases, we considered an SNR of 30 dB and reported the
results obtained from averaging the results of 30 Monte Carlo
runs.

From the results reported in Table I, we can make the fol-
lowing observations. First and foremost, when there are only a

few endmembers in the image (e.g., ¢ = p = 4), all algorithms
obtained very good results. This is expected, since in this case,
it is relatively easy to solve the optimization problem. It is inter-
esting to observe that as the number of endmembers increases,
R-CoNMF obtained very good performance (note the good
performance obtained for the case ¢ = p = 10). Even in a very
difficult scenario such as ¢ = p = 15, the solution provided
by R-CoNMF is still useful. It should be noted that in cases
with a relatively high number of endmembers (i.e., ¢ = p > 8),
the other algorithms yield useless results. This is because
when the number of endmembers increases, most pixels are
likely to fluctuate around the facets, which is a situation in
which minimum-volume-based algorithms are likely to fail [3].
Even in this difficult scenario, in which MVC-NMF, MVSA,
and SISAL could not provide feasible results, the proposed
R-CoNMF was able to provide a reasonable solution. Based
on this experiment, we can conclude that R-CoNMF is quite
robust and has no strong constraints related with the quality of
the analyzed data set.

For illustrative purposes, Fig. 8 shows the signatures esti-
mated by R-CoNMF and MVC-NMF. The estimated spectral
signatures by R-CoNMF are similar to the real ones, whereas
those estimated by MVC-NMF are slightly different. Similar
observations can be made from the difference maps between
the real and estimated abundance maps, as shown in Fig. 9,
where the difference of R-CoNMF is much smaller than that of
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TABLE I
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EVALUATION OF THE PERFORMANCE OF R-CONMF AND MVC-NMF IN THE UNMIXING OF A SYNTHETIC HYPERSPECTRAL DATA SET,

SIMULATED WITH SNR = 30 dB, FOR DIFFERENT NUMBERS OF ENDMEMBERS AND ¢ = p, WHERE “-” MEANS NO RESULTS

R-CoNMF MVC-NMF
q=p
IM — M| ¢ nlx,,HS—SHF SAD RRE IM — M| g %MHS—SHF SAD RRE
0.1740.09 0.01+3e-3 0.64+0.46 0.03£0.0 0.84+0.47 0.03+0.02 2.54+1.73 0.2040.05
6 0.20+0.08 0.01-4e-3 0.56+£0.21  0.03%1e-4 1.44+1.17 0.04-£0.02 3.48+2.57 0.23+0.04
8 0.76+0.23 0.0240.01 1.8940.67  0.03%1e-3 | 36.504154.23 0.08+0.05 11.97419.48  0.2540.07
10 1.28-+0.50 0.03+0.01 2774173 0.03%1e-3 - - - -
15 3.13+1.81 0.05+0.01 5.25+3.87  0.04%1e-3 - - - -
g—p MVSA SISAL
IM — M| nlpoS—SHF SAD RRE IM — M| nlpoS—SHF SAD RRE
0.3340.20 le-4 1.1840.79 0.03 0.24+0.14 le-4 0.8240.48 0.03
1.48+0.42 2e-4 4.88+4.03 0.03 1.2140.32 2e-4 3.48+1.80 0.03
8 3.47+1.29 3e-4 10.4145.70 0.03 2.89+0.77 2e-4 8.84+4.66 0.03
R-CoNMF result: § — S
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Fig. 8. Spectral signatures of the endmembers extracted by R-CoNMF and
MVC-NMF as compared with the reference signatures used for the simulation
of a synthetic scene with ¢ = p = 6 and SNR = 30 dB.

MVC-NME. The results in this section indicate that R-CoNMF
can perform very accurately in the case that the number of
endmembers is known a priori, i.e., ¢ = p.

D. Experiment 3: Robustness to Noise

In this experiment, we illustrate the performance of the
proposed R-CoNMF under different noise conditions with a
simulated scenario given by p = ¢ = 5. The goal of this exper-
iment is mainly to illustrate the performance of the algorithm
with different noise levels. Table II reports the unmixing results
obtained by R-CoNMF under different noise levels, considering
SNR values of 20, 40, 60, and 80 dB. As shown in Table II,
when the noise level is moderately low (i.e., SNR of less
than 40 dB), the proposed R-CoNMF can obtain very good
unmixing results. In turn, when the level of noise significantly
increases (i.e., SNR of 20 dB), the quality of the unmixing
results decreases, particularly with regard to the SAD metric.
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Fig. 9. (a) Difference between real and estimated abundances for the
R-CoNMF algorithm. (b) Difference between the real and estimated abun-
dances for the MVC-NMF algorithm.

However, it should be noted that 20 dB is not a realistic noise
level given the SNR of current imaging spectrometers. As a
result, we can conclude that the results reported in Table II
indicate very high robustness to noise by the proposed CoONMF.
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TABLE 11
UNMIXING RESULTS OBTAINED BY CONMF IN A SIMULATED SCENARIO WITHp = 5, ¢ = 5,
AND DIFFERENT NOISE LEVELS, WITH SNR VALUES OF 20, 40, 60, AND 80 dB
SNR R-CoNMF MVC-NMF
IM — M| ¢ n1Xp||S—S||F SAD RRE IM — M| anpHS—SHF SAD RRE
20 0.91£0.39 0.03+£0.01 3.68+3.08 0.10+1e-4 1.154+0.38 0.0440.01 3.80+1.50 1.884+0.37
40 0.21£0.07 0.01+2e-3 0.58+0.30 0.01 1.3140.61 0.0440.01 3.14+1.22 0.031+0.01
60 0.22+0.07 0.01+2e-3 0.70+£0.50 le-3 1.1440.22 0.0440.01 2.884+0.64 0.01+4e-3
80 0.21£0.07 0.01£2e-3 0.66+0.30 4e-4+1e-4 0.9740.28 0.0340.01 2.5340.84 0.01£0.01
SNR MVSA SISAL
1 1
M — M| r anD||S—S||F SAD RRE |IM — M| ¢ npoS_S”F SAD RRE
20 2.26+1.08 3e-4+tle-4 9.11+5.63 0.10+1e-4 1.671+0.77 3e-4+tle-4 6.0943.66 0.10t1e-4
40 0.21+£0.14 0 0.57+0.33 0.01 0.1240.10 0 0.2940.12 0.01
60 0.02+0.01 0 0.06+£0.03 le-3 0.0440.02 0 0.1440.09 le-3
80 0.02+0.01 0 0.05+0.03 le-4 0.0440.01 0 0.1440.08 le-4

V. EXPERIMENTS WITH REAL DATA

The scene used in our real-data experiments is the well-
known Airborne Visible Infra-Red Imaging Spectrometer
(AVIRIS) Cuprite data set [42], available online in reflectance
units.> This scene has been widely used to validate the per-
formance of endmember extraction algorithms. The portion
used in experiments corresponds to a 250 x 191 pixel subset
of the sector labeled f970619t01p02r02 in the online data.’
The scene comprises 224 spectral bands between 0.4 and
2.5 pm, with a nominal spectral resolution of 10 nm. Prior to
the analysis, bands 1-2, 105-115, 150-170, and 223-224 were
removed due to water absorption and low SNR in those bands,
leaving a total of 188 spectral bands. The Cuprite site is well
understood mineralogically and has several exposed minerals
of interest, all included in the USGS library considered in
experiments, denoted splib06* and released in September 2007.
In our experiments, we use spectra obtained from this library
(convolved and downsampled to AVIRIS wavelengths) to sub-
stantiate the quality of the endmembers derived by R-CoNMF.
It should be noted that these data have been extensively used
as a benchmark for spectral unmixing applications in previous
work [3]. As a result and for space considerations, we only
conduct comparisons with MVC-NMF in this work. For a more
detailed comparison with other methods, we refer to the review
work in [3].

For illustrative purposes, Fig. 10(a) shows a mineral map
produced in 1995 by USGS, in which the Tricorder 3.3 software
product was used to map different minerals present in the
Cuprite mining district.> The 250 x 190 pixel subscene used
in our experiments is shown in Fig. 10. It should be noted that
all experiments with this subscene have been performed in a
desktop PC with an Intel Core IS CPU and 4 GB of RAM.
Concerning the parameters involved in R-CoNMF, we con-
sequentially follow the settings in the simulated experiments.
Regarding the affine projection, we have used the projective

Zhttp://aviris.jpl.nasa.gov/html/aviris.freedata.html
3http://www.Ix.it.pt/%7ebioucas/code/
“http://speclab.cr.usgs.gov/spectral.1lib06
Shttp://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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Fig. 10. 250 x 190 pixel subscene used in our experiments, showing the
location of different minerals in the Cuprite mining district in Nevada.

projection instead of the affine projection (see [3]), as the
former works slightly better in this example. Finally, it should
be noted that for the initialization, we run VCA ¢ = 30 times
and retain the simplex of maximum volume to produce a good
initialization, as CONMF is constrained by the VCA solution. In
the case of VCA, this makes sense given the random directions
that this algorithm uses to find the extremes of the simplex. For
t = 30, this procedure takes just 2 s in a standard PC.

A. Estimation of the Number of Endmembers: p

The estimation of the number of endmembers is a chal-
lenging issue for the AVIRIS Cuprite scene, due to the strong
spectral variability and the large number of mineral alterations
present in the scene. According to the official ground truth map
generated by the Tricorder 3.3 software and the USGS library,
we can identify up to five groups of minerals with 79 endmem-
bers (including different alterations for the same minerals). If
we use the VD to estimate the number of endmembers [43], we
obtain p = 14 endmembers (see [39]) and p = 9 for a subset of
this image (see [25]). According to the HySime algorithm [20],


http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://www.lx.it.pt/%7ebioucas/code/
http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 11. Regularizer of the abundance matrix X ¢@) = 1|2 with ¢(3) =
||X*||2 for the Cuprite data by using ¢ = 11 endmembers.

we can obtain an estimate of p = 14 endmembers. However,
with p = 14, by looking at the results reported in the literature,
such as [25], [26], and [29], it can be observed that some of the
abundance maps are mostly noise. This is related to the spectral
variability and the presence of mineral alterations, which results
in spurious endmembers for a given mineral. It should be
noted that there is no official agreement regarding the number
of endmembers for this data set in the literature, as different
algorithms provide different estimations. Therefore, to address
the spectral variability and the presence of mineral alterations,
we feel that human interpretation is needed for the estimation
of the number of endmembers. We adjust the HySime algorithm
by setting a threshold 7 controlling the noise and signal level.
After interpreting the results, we obtain p = 10 endmembers by
setting 7 = le — 4. Notice that we use p = 10 as a baseline to
evaluate the proposed R-CoNMF.

To evaluate the ability of R-CoNMF to estimate the number
of endmembers, we use a scenario in which ¢ is slightly
bigger than the p estimated by HySime, i.e., ¢ = 11, where
Fig. 11 shows the obtained degree of sparseness of the abun-
dances, and Fig. 12 shows the abundance maps corresponding
to the three endmembers with lower (. It can be observed that
(a) corresponds to mineral Buddingtonite, (b) is Muscovite, and
(c) is a noisy map. Due to the impact of spectral variability and
data complexity, the degree of sparseness of endmember 1 (see
Fig. 11) is not zero. However, as shown by its corresponding
abundance map [see Fig. 12(c)], the map is noisy in com-
parison with the other abundance maps. For further analysis,
Fig. 12(d) shows the abundance map of Montmorillonite. It is
clear that when ¢ > p, some of the endmembers are duplicates
(alterations) of the real ones, i.e., Fig. 12(c) is a duplicate
of Fig. 12(d). Therefore, we can infer that endmember 1 in
Fig. 11 can be considered as a redundant endmember, which
supports the estimation of ten endmembers provided by our
proposed R-CoNMF. This is consistent with the number of
endmembers estimated by HySime under the given threshold. It
should be noted that, here, we resorted to human interpretation
to analyze the result of R-CoNMF, which aims at better under-
standing the outputs of the endmembers and the abundances.
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Fig. 12. Abundance maps associated with the endmembers in Fig. 11.
(a) Endmember 3. (b) Endmember 5. (¢) Endmember 1. (d) Endmember 8.

This is due to the fact that the true number of endmembers
for the considered data set is an open issue in the literature.
Nevertheless, the index in Fig. 11 provides us with an empirical
procedure to determine the number of endmembers.

B. Unmixing

After obtaining the number of endmembers, that is, p = 10,
we analyze the impact of the mixing matrix to estimate the
spectral signatures and abundance fractions. Fig. 13 shows, for
each of the endmembers extracted by the R-CoNMF algorithm,
a plot of the extracted endmember and its corresponding USGS
library signature (along with the SAD between each pair of
signatures) and the estimated fractional abundance map. The
associations between each endmember and the corresponding
USGS library signature were established by using both visual
interpretation of the estimated abundances (with regard to the
reference map in Fig. 10) and the SAD between the obtained
spectral signature and its corresponding library signature. At
this point, we emphasize that the analysis scenario is a complex
one, in which the same mineral has different alterations present
in the library, and there is strong variability for the same kind
of mineral. We also emphasize that we are comparing image-
derived endmembers with USGS library signatures acquired in
perfect conditions and without atmospheric interferers. With
the aforementioned considerations in mind, the results reported
in Fig. 13 indicate that the estimated endmembers generally
provide a good match with regard to the corresponding library
signatures.

VI. CONCLUSION AND FUTURE LINES

In this paper, we have proposed a new algorithm for hy-
perspectral unmixing termed R-CoNMF. The proposed algo-
rithm is able to perform the three main steps of the spectral
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Fig. 13. Endmembers extracted by the R-CoNMF algorithm and their corresponding USGS library signature (along with the SAD between each pair of signatures)

and the estimated fractional abundance map for each endmember.

unmixing chain: 1) estimation of the number of endmembers;
2) identification of the spectral signature of each endmember;
and 3) estimation of the corresponding abundances in each
pixel of the scene. Our experimental results, conducted using
both simulated and real data sets, indicate that the algorithm is
able to provide a good estimate of the number of endmembers
when this information is not available a priori (when the
information is available, it can also be effectively used by
the algorithm) and generate high-quality endmember signatures
and abundance estimations even in scenarios dominated by
high-noise conditions. The algorithm is also tested in a popular
real scenario, using the well-known AVIRIS Cuprite data set,
and compared with other state-of-the-art algorithms that have
been routinely used in the hyperspectral community, exhibiting
similar or better performance than these algorithms.

As with any new method, there are a few issues that may
present challenges over time and deserve future investigation.
First and foremost, the setting of parameter 3 involved in the
volume regularizer in R-CoNMF (as a well-known difficulty
in inverse problems) is still an open issue that deserves further
investigation. Furthermore, the complexity of the algorithm can
be high for scenarios with a large number of endmembers.
However, this complexity is similar to those exhibited by other
instances of NMF, which have been shown to be appealing
for efficient parallel implementations [43], [44]. Another aspect
deserving future attention is a more detailed investigation of the
performance of the algorithm in highly mixed scenarios, given
the current trend of Earth observation missions to provide a
larger coverage of the surface of the Earth, which often leads
to coarser spatial resolutions.
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