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Abstract—This paper presents a multi-band image fusion algo-
rithm based on unsupervised spectral unmixing for combining a
high-spatial low-spectral resolution image and a low-spatial high-
spectral resolution image. The widely used linear observation
model (with additive Gaussian noise) is combined with the linear
spectral mixture model to form the likelihoods of the observa-
tions. The non-negativity and sum-to-one constraints resulting
from the intrinsic physical properties of the abundances are intro-
duced as prior information to regularize this ill-posed problem.
The joint fusion and unmixing problem is then formulated as
maximizing the joint posterior distribution with respect to the
endmember signatures and abundance maps. This optimization
problem is attacked with an alternating optimization strategy.
The two resulting sub-problems are convex and are solved
efficiently using the alternating direction method of multipliers.
Experiments are conducted for both synthetic and semi-real data.
Simulation results show that the proposed unmixing based fusion
scheme improves both the abundance and endmember estimation
comparing with the state-of-the-art joint fusion and unmixing
algorithms.

Index Terms—Multi-band image fusion, Bayesian estimation,
block circulant matrix, Sylvester equation, alternating direction
method of multipliers, block coordinate descent.

I. INTRODUCTION

Fusing multiple multi-band images enables a synergetic ex-
ploitation of complementary information obtained by sensors
of different spectral ranges and different spatial resolutions.
In general, a multi-band image can be represented as a three-
dimensional data cube indexed by three exploratory variables
(x, y, λ), where x and y are the two spatial dimensions of the
scene, and λ is the spectral dimension (covering a range of
wavelengths). Typical examples of multi-band images include
hyperspectral (HS) images [2], multi-spectral (MS) images
[3], integral field spectrographs [4], magnetic resonance spec-
troscopy images [5]. However, multi-band images with high
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spectral resolution generally suffers from the limited spatial
resolution of the data acquisition devices, mainly due to
physical and technological reasons. These limitations make
it infeasible to acquire a high spectral resolution multi-band
image with a spatial resolution comparable to those of MS
and panchromatic (PAN) images (which are acquired in much
fewer bands) [6]. For example, HS images benefit from excel-
lent spectroscopic properties with several hundreds or thou-
sands of contiguous bands but are limited by their relatively
low spatial resolution [7]. As a consequence, reconstructing a
high-spatial and high-spectral multi-band image from multiple
and complementary observed images, although challenging, is
a crucial inverse problem that has been addressed in various
scenarios. In particular, fusing a high-spatial low-spectral
resolution image and a low-spatial high-spectral image is
an archetypal instance of multi-band image reconstruction,
such as pansharpening (MS+PAN) [8] or HS pansharpening
(HS+PAN) [9]. The interested reader is invited to consult the
references [8] and [9] for an overview of the HS pansharpening
problems and corresponding fusion algorithms. Note that in
this paper, we focus on image fusion at pixel-level instead
of feature-level or decision-level. The estimated image, with
high-spatial and high-spectral resolutions, may then be used in
many applications, such as material unmixing, visualization,
image interpretation and analysis, regression, classification,
change detection, etc.

In general, the degradation mechanisms in HS, MS, and
PAN imaging, with respect to (w.r.t.) the target high-spatial
and high-spectral image can be summarized as spatial and
spectral transformations. Thus, the multi-band image fusion
problem can be interpreted as restoring a three dimensional
data-cube from two degraded data-cubes, which is an inverse
problem. As this inverse problem is generally ill-posed, intro-
ducing prior distributions (regularizers in the the regularization
framework) to regularize the target image has been widely
explored [10]–[12]. Regarding regularization, the usual high
spectral and spatial correlations of the target images imply
that they admit sparse or low rank representations, which has
in fact been exploited in, for example, [10]–[18].

In [14], a maximum a posterior (MAP) estimator incorpo-
rating a stochastic mixing model has been designed for the
fusion of HS and MS images. In [19], a non-negative sparse
promoting algorithm for fusing HS and RGB images has
been developed by using an alternating optimization algorithm.
However, both approaches developed in [14] and [19] require
a very basic assumption that a low spatial resolution pixel is
obtained by averaging the high resolution pixels belonging
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to the same area, whose size depends the downsampling
ratio. This nontrivial assumption, also referred to as pixel
aggregation, implies that the fusion of two multi-band im-
ages can be divided into fusing small blocks, which greatly
decreases the complexity of the overall problem. Note that this
assumption has also been used in [17], [20], [21]. However,
this averaging assumption can be violated easily as the area in
a high resolution image corresponding to a low resolution pixel
can be arbitrarily large (depending on the spatial blurring) and
the downsampling ratio is generally fixed (depending on the
sensor physical characteristics).

To overcome this limitation, a more general forward model,
which formulates the blurring and downsampling as two
separate operations, has been recently developed and widely
used [9], [10], [12], [15], [22], [23]. Based on this model, a
non-negative matrix factorization pansharpening of HS image
has been proposed in [22]. Similar works have been developed
independently in [16], [24], [25]. Later, Yokoya et al. have
proposed to use a coupled nonnegative matrix factorization
(CNMF) unmixing for the fusion of low-spatial-resolution HS
and high-spatial-resolution MS data, where both HS and MS
data are alternately unmixed into endmember and abundance
matrices by the CNMF algorithm [15]. A similar fusion and
unmixing framework was recently introduced in [26], in which
the alternating NMF steps in CNMF were replaced by alter-
nating proximal forward-backward steps. The common point
of these works is to learn endmembers from the HS image
and abundances from the MS image alternatively instead of
using both HS and MS jointly, leading to simple update rules.
More specifically, this approximation helps to circumvent the
need for a deconvolution, upsampling and linear regression
all embedded in the proposed joint fusion method. While that
approximation simplifies the fusion process, it does not use the
abundances estimated from the HS image and the endmember
signatures estimated from the MS image, thus not fully ex-
ploiting the spectral and spatial information in both images. To
fully exploit the spatial and spectral information contained in
HS and MS data pairs, we retain the above degradation model,
but propose to minimize the cost function associated with
the two data terms directly instead of decoupling the HS and
MS term (fusing approximately). The associated minimization
problem will be solved in a solid mathematical framework
using recently developed optimization tools.

More specifically, we formulate the unmixing based multi-
band image fusion problem as an inverse problem in which
the regularization is implicitly imposed by a low rank rep-
resentation inherent to the linear spectral mixture model and
by non-negativity and sum-to-one constraints resulting from
the intrinsic physical properties of the abundances. In the
proposed approach, the endmember signatures and abundances
are jointly estimated from the observed multi-band images.
Note again that the use of both data sources for estimating
endmembers or abundances is the main difference from current
state-of-the-art methods. The optimization w.r.t. the endmem-
ber signatures and the abundances are both constrained linear
regression problems, which can be solved efficiently by the
alternating direction method of multipliers (ADMM).

The remaining of this paper is organized as follows. Section

II gives a short introduction of the widely used linear mixture
model and forward model for multi-band images. Section III
formulates the unmixing based fusion problem as an optimiza-
tion problem, which is solved using the Bayesian framework
by introducing the popular constraints associated with the
endmembers and abundances. The proposed fast alternating
optimization algorithm is presented in Section IV. Section V
presents experimental results assessing the accuracy and the
numerical efficiency of the proposed method. Conclusions are
finally reported in Section VI.

II. PROBLEM STATEMENT

To better distinguish spectral and spatial properties, the
pixels of the target multi-band image, which is of high-spatial
and high-spectral resolution, can be rearranged to build an
mλ×n matrix X, where mλ is the number of spectral bands
and n = nr×nc is the number of pixels in each band (nr and
nc represent the numbers of rows and columns respectively).
In other words, each column of the matrix X consists of a
mλ-valued pixel and each row gathers all the pixel values in
a given spectral band.

A. Linear Mixture Model

This work exploits an intrinsic property of multi-band
images, according to which each spectral vector of an image
can be represented by a linear mixture of several spectral
signatures, referred to as endmembers. Mathematically, we
have

X = MA (1)

where M ∈ Rmλ×p is the endmember matrix whose columns
are spectral signatures and A ∈ Rp×n is the corresponding
abundance matrix whose columns are abundance fractions.
This linear mixture model has been widely used in HS
unmixing (see [27] for a detailed review).

B. Forward Model

Based on the pixel ordering introduced at the beginning
of Section II, any linear operation applied to the left (resp.
right) side of X describes a spectral (resp. spatial) degradation
action. In this work, we assume that two complementary im-
ages of high-spectral or high-spatial resolutions, respectively,
are available to reconstruct the target high-spectral and high-
spatial resolution target image. These images result from linear
spectral and spatial degradations of the full resolution image
X, according to the popular models

YM = RX + NM

YH = XBS + NH
(2)

where
• X ∈ Rmλ×n is the full resolution target image as

described in Section II-A.
• YM ∈ Rnλ×n and YH ∈ Rmλ×m are the observed

spectrally degraded and spatially degraded images.
• R ∈ Rnλ×mλ is the spectral response of the MS sensor,

which can be a priori known or estimated by cross-
calibration [28].
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• B ∈ Rn×n is a cyclic convolution operator acting on the
bands.

• S ∈ Rn×m is a d uniform downsampling operator (it
has m = n/d ones and zeros elsewhere), which satisfies
STS = Im.

• NM and NH are additive terms that include both model-
ing errors and sensor noises.

The noise matrices are assumed to be distributed according to
the following matrix normal distributions1

NM ∼MNmλ,m(0mλ,m,ΛM, Im)
NH ∼MNnλ,n(0nλ,n,ΛH, In)

where 0a,b is an a × b matrix of zeros and Ia is the a × a
identity matrix. The column covariance matrices are assumed
to be the identity matrix to reflect the fact that the noise is
pixel-independent. The row covariance matrices ΛM and ΛH

are assumed to be diagonal matrices, whose diagonal elements
can vary depending on the noise powers in the different
bands. More specifically, ΛH = diag

[
s2H,1, · · · , s2H,mλ

]
and

ΛM = diag
[
s2M,1, · · · , s2M,nλ

]
, where diag is an operator

transforming a vector into a diagonal matrix, whose diagonal
terms are the elements of this vector.

The matrix equation (2) has been widely advocated for the
pansharpening and HS pansharpening problems, which consist
of fusing a PAN image with an MS or an HS image [9],
[29], [30]. Similarly, most of the techniques developed to fuse
MS and HS images also rely on a similar linear model [11],
[15], [31]–[35]. From an application point of view, this model
is also important as motivated by recent national programs,
e.g., the Japanese next-generation space-borne HS image suite
(HISUI), which acquires and fuses the co-registered HS and
MS images for the same scene under the same conditions,
following this linear model [36].

C. Composite Fusion Model

Combining the linear mixture model (1) and the forward
model (2) leads to

YM = RMA + NM

YH = MABS + NH
(3)

where all matrix dimensions and their respective relations are
summarized in Table I.

TABLE I: Matrix dimension summary

Notation Definition Relation
m no. of pixels in each row of YH m = n/d
n no. of pixels in each row of YM n = m× d
d decimation factor d = n/m
mλ no. of bands in YH mλ � nλ
nλ no. of bands in YM nλ � mλ

1The probability density function p(X|M,Σr,Σc) of a matrix normal
distribution MN r,c(M,Σr,Σc) is defined by

p(X|M,Σr,Σc) =
exp

(
− 1

2
tr

[
Σ−1
c (X−M)TΣ−1

r (X−M)
])

(2π)rc/2|Σc|r/2|Σr|c/2

where M ∈ Rr×c is the mean matrix, Σr ∈ Rr×r is the row covariance
matrix and Σc ∈ Rc×c is the column covariance matrix.

Note that the matrix M can be selected from a known
spectral library [37] or estimated a priori from the HS data
[38]. Also, it can be estimated jointly with the abundance
matrix A [39]–[41], which will be the case in this work.

D. Statistical Methods

To summarize, the problem of fusing and unmixing high-
spectral and high-spatial resolution images can be formulated
as estimating the unknown matrices M and A from (3), which
can be regarded as a joint non-negative matrix factorization
(NMF) problem. As is well known, the NMF problem is non-
convex and has no unique solution, leading to an ill-posed
problem. Thus, it is necessary to incorporate some intrinsic
constraints or prior information to regularize this problem,
improving the conditioning of the problem.

Various priors have been already advocated to regularize
the multi-band image fusion problem, such as Gaussian pri-
ors [10], [42], sparse representations [11] or total variation
(TV) priors [12]. The choice of the prior usually depends
on the information resulting from previous experiments or
from a subjective view of constraints affecting the unknown
model parameters [43], [44]. The inference of M and A
(whatever the form chosen for the prior) is a challenging
task, mainly due to the large size of X and to the pres-
ence of the downsampling operator S, which prevents any
direct use of the Fourier transform to diagonalize the spatial
degradation operator BS. To overcome this difficulty, several
computational strategies, including Markov chain Monte Carlo
(MCMC) [10], block coordinate descent method (BCD) [45],
and tailored variable splitting under the ADMM framework
[12], have been proposed, both applied to different kinds
of priors, e.g., the empirical Gaussian prior [10], [42], the
sparse representation based prior [11], or the TV prior [12].
More recently, contrary to the algorithms described above, a
much more efficient method, named Robust Fast fUsion based
on Sylvester Equation (R-FUSE) has been proposed to solve
explicitly an underlying Sylvester equation associated with
the fusion problem derived from (3) [46]. This solution can
be implemented per se to compute the maximum likelihood
estimator in a computationally efficient manner, which has
also the great advantage of being easily generalizable within
a Bayesian framework when considering various priors.

In our work, we propose to form priors by exploiting the
intrinsic physical properties of abundances and endmembers,
which is widely used in conventional unmixing, to infer A
and M from the observed data YM and YH. More details are
given in the following section.

III. PROBLEM FORMULATION

Following the Bayes rule, the posterior distribution of the
unknown parameters M and A can be obtained by the product
of their likelihoods and prior distributions, which are detailed
in what follows.
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A. Likelihoods (Data Fidelity Term)

Using the statistical properties of the noise matrices NM and
NH, YM and YH have matrix Gaussian distributions, i.e.,

p (YM|M,A) =MNnλ,n(RMA,ΛM, In)
p (YH|M,A) =MNmλ,m(MABS,ΛH, Im).

(4)

As the collected measurements YM and YH have been ac-
quired by different (possibly heterogeneous) sensors, the noise
matrices NM and NH are sensor-dependent and can be gen-
erally assumed to be statistically independent. Therefore, YM

and YH are independent conditionally upon the unobserved
scene X = MA. As a consequence, the joint likelihood
function of the observed data is

p (YM,YH|M,A) = p (YM|M,A) p (YH|M,A) . (5)

The negative logarithm of the likelihood is

− log p (YM,YH|M,A)
= − log p (YM|M,A)− log p (YH|M,A) + C

= 1
2

∥∥Λ− 1
2

H (YH −MABS)
∥∥2
F

+ 1
2

∥∥Λ− 1
2

M (YM −RMA)
∥∥2
F

+C

where ‖X‖F =
√

trace (XTX) is the Frobenius norm of X
and C is a constant.

B. Priors (Regularization Term)

1) Abundances: As the mixing coefficient ai,j (the element
located in the ith row and jth column of A) represents
the proportion (or probability of occurrence) of the the ith
endmember in the jth measurement [27], [47], the abundance
vectors satisfy the following abundance non-negativity con-
straint (ANC) and abundance sum-to-one constraint (ASC)

aj ≥ 0 and 1Tp aj = 1,∀j ∈ {1, · · · , n} (6)

where aj is the jth column of A, ≥ means “element-wise
greater than” and 1Tp is a p×1 vector with all ones. Accounting
for all the image pixels, the constraints (6) can be rewritten in
matrix form

A ≥ 0 and 1Tp A = 1Tn . (7)

Moreover, the ANC and ASC constraints can be converted into
a uniform distribution for A on the feasible region A, i.e.,

p(A) =

{
cA if A ∈ A
0 elsewhere (8)

where A =
{
A|A ≥ 0,1Tp A = 1Tn

}
, cA = 1/vol(A) and

vol(A) =
∫
A∈A dA is the volume of the set A.

2) Endmembers: As the endmember signatures represent
the reflectances of different materials, each element of the
matrix M should be between 0 and 1. Thus, the constraints
for M can be written as

0 ≤M ≤ 1. (9)

Similarly, these constraints for the matrix M can be converted
into a uniform distribution on the feasible region M

p(M) =

{
cM if M ∈M
0 elsewhere

where M = {M|0 ≤M ≤ 1} and cM = 1/vol(M).

C. Posteriors (Constrained Optimization)

Combining the likelihoods (5) and the priors p (M) and
p (A), the Bayes theorem provides the posterior distribution
of M and A

p (M,A|YH,YM)
∝ p (YH|M,A) p (YM|M,A) p (M) p (A)

where ∝ means “proportional to”. Thus, the unmixing based
fusion problem can be interpreted as maximizing the joint
posterior distribution of A and M. Moreover, by taking the
negative logarithm of p (M,A|YH,YM), the MAP estimator
of (A,M) can be obtained by solving the minimization

min
M,A

L(M,A) s.t. A ≥ 0 and 1Tp A = 1Tn

0 ≤M ≤ 1
(10)

where

L(M,A) =
1

2

∥∥Λ− 1
2

H (YH −MABS)
∥∥2
F

+
1

2

∥∥Λ− 1
2

M (YM −RMA)
∥∥2
F
.

In this formulation, the fusion problem can be regarded
as a generalized unmixing problem, which includes two data
fidelity terms. Thus, both images contribute to the estimation
of the endmember signatures (endmember extraction step) and
the high-resolution abundance maps (inversion step). For the
endmember estimation, a popular strategy is to use a subspace
transformation as a preprocessing step, such as in [40], [48]. In
general, the subspace transformation is learned a priori from
the high-spectral resolution image empirically, e.g., from the
HS data. This empirical subspace transformation alleviates the
computational burden greatly and can be incorporated in our
framework easily.

IV. ALTERNATING OPTIMIZATION SCHEME

Even though problem (10) is convex w.r.t. A and M
separately, it is non-convex w.r.t. these two matrices jointly
and has more than one solution. We propose an optimization
technique that alternates optimizations w.r.t. A and M, which
is also referred to as a BCD algorithm. The optimization w.r.t.
A (resp. M) conditional on M (resp. A) can be achieved
efficiently with the ADMM algorithm [49], which converges
to a solution of the respective convex optimization under some
mild conditions. The resulting alternating optimization algo-
rithm, referred to as Fusion based on Unmixing for Multi-band
Images (FUMI), is detailed in Algorithm 1, where EEA(YH)
in line 1 represents an endmember extraction algorithm to
estimate endmembers from HS data. The optimization steps
w.r.t. A and M are detailed below.

A. Convergence Analysis

To analyze the convergence of Algorithm 1, we recall a
convergence criterion for the BCD algorithm stated in [45,
p. 273].

Theorem 1 (Bertsekas, [45]; Proposition 2.7.1). Suppose that
L is continuously differentiable w.r.t. A and M over the convex
set A ×M. Suppose also that for each {A,M}, L(A,M)
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Algorithm 1: Multi-band Image Fusion based on
Spectral Unmixing (FUMI)

Input: YM, YH, ΛM, ΛH, R, B, S
/* Initialize M */

1 M(0) ← EEA(YH);
2 for t = 1, 2, . . . to stopping rule do

/* Optimize w.r.t. A using ADMM
(see Algorithm 2) */

3 A(t) ∈ arg min
A∈A

L(M(t−1),A);

/* Optimize w.r.t. M using ADMM
(see Algorithm 5) */

4 M(t) ∈ arg min
M∈M

L(M,A(t));

5 end
6 Set Â = A(t) and M̂ = M(t);

Output: Â and M̂

viewed as a function of A, attains a unique minimum Ā. The
similar uniqueness also holds for M. Let

{
A(t),M(t)

}
be the

sequence generated by the BCD method as in Algorithm 1.
Then, every limit point of

{
A(t),M(t)

}
is a stationary point.

The target function defined in (10) is continuously differ-
entiable. Note that it is not guaranteed that the minima w.r.t.
A or M are unique. We may however argue that a simple
modification of the objective function, consisting in adding
the quadratic term α1‖A‖2F +α2‖M‖2F , where α1 and α2 are
very small thus obtaining a strictly convex objective function,
ensures that the minima of (11) and (15) are uniquely attained
and thus we may invoke the Theorem (1). In practice, even
without including the quadratic terms, we have systematically
observed convergence of Algorithm 1.

B. Optimization w.r.t. the Abundance Matrix A (M fixed)

The minimization of L(M,A) w.r.t. the abundance matrix
A conditional on M can be formulated as

min
A

1

2

∥∥Λ− 1
2

H (YH −MABS)
∥∥2
F

+
1

2

∥∥Λ− 1
2

M (YM −RMA)
∥∥2
F

s.t. A ≥ 0 and 1Tp A = 1Tn .
(11)

This constrained minimization problem can be solved by
introducing an auxiliary variable to split the objective and
the constraints, which is the spirit of the ADMM algorithm.
More specifically, by introducing the splitting V = A, the
optimization problem (11) w.r.t. A can be written as

min
A,V

L1(A) + ιA(V) s.t. V = A

where L1(A) =

1

2

∥∥Λ− 1
2

H (YH −MABS)
∥∥2
F

+
1

2

∥∥Λ− 1
2

M (YM −RMA)
∥∥2
F

and
ιA(V) =

{
0 if V ∈ A
+∞ otherwise.

Recall that A =
{
A|A ≥ 0,1Tp A = 1n

}
.

The augmented Lagrangian associated with the optimization
of A can be written as

L(A,V,G) =
1

2

∥∥Λ− 1
2

H (YH −MABS)
∥∥2
F

+ ιA(V)

+
1

2

∥∥Λ− 1
2

M (YM −RMA)
∥∥2
F

+
µ

2

∥∥A−V −G
∥∥2
F

(12)

where G is the so-called scaled dual variable and µ > 0 is
the augmented Lagrange multiplier, weighting the augmented
Lagrangian term [49]. The ADMM summarized in Algorithm
2, consists of an A-minimization step, a V-minimization step
and a dual variable G update step (see [49] for further details
about ADMM). Note that the operator ΠX (X) in Algorithm
2 represents projecting the variable X onto a set X , which is
defined as

ΠX (X) = arg min
Z∈X

∥∥Z−X
∥∥2
F
.

Algorithm 2: ADMM sub-iterations to estimate A

Input: YM, YH, ΛM, ΛH, R, B, S, µ > 0
1 Initialization: V(0),G(0);
2 for k = 0 to stopping rule do

/* Optimize w.r.t A (Algorithm 3)

*/
3 A(t,k+1) ∈ arg min

A
L(A,V(k),G(k));

/* Optimize w.r.t V (Algorithm 4)

*/
4 V(k+1) ← ΠA(A(t,k+1) −G(k));

/* Update Dual Variable G */
5 G(k+1) ← G(k) −

(
A(t,k+1) −V(k+1)

)
;

6 end
7 Set A(t+1) = A(t,k+1);

Output: A(t+1)

Given that the functions L1(A) and ιA(V) are both closed,
proper, and convex, thus, invoking the Eckstein and Bertsekas
theorem [50, Theorem 8], the convergence of Algorithm 2 to
a solution of (11) is guaranteed.

1) Updating A: In order to minimize (12) w.r.t. A, we
solve the equation ∂L(A,V(k),G(k))/∂A = 0, which is
equivalent to the generalized Sylvester equation

C1A + AC2 = C3 (13)

where

C1 =
(
MTΛ−1H M

)−1 (
(RM)

T
Λ−1M RM + µIp

)
C2 = BS (BS)

T

C3 =
(
MTΛ−1H M

)−1
(MTΛ−1H YH (BS)

T

+ (RM)
T
Λ−1M YM + µ(V(k) + G(k))).

Eq. (13) can be solved analytically by exploiting the properties
of the circulant and downsampling matrices B and S, as sum-
marized in Algorithm 3 and demonstrated in [46]. Note that
the matrix F represents the FFT operation and its conjugate
transpose (or Hermitian transpose) FH represents the iFFT
operation. The matrix D ∈ Cn×n is a diagonal matrix, which
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has eigenvalues of the matrix B in its diagonal line and can
be rewritten as

D =


D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dd


where Di ∈ Cm×m. Thus, we have D̄HD̄ =

d∑
t=1

DH
t Dt =

d∑
t=1

D2
t , where D̄ = D (1d ⊗ Im). Similarly, the diagonal

matrix ΛC has eigenvalues of the matrix C1 in its diagonal
line (denoted as λ1, · · · , λm̃λ and λi ≥ 0, ∀i). The matrix
Q contains eigenvectors of the matrix C1 in its columns.
The auxiliary matrix Ā ∈ Cmλ×n is decomposed as Ā =[
āT1 , ā

T
2 , · · · , āTp

]T
.

Algorithm 3: A closed-form solution of (13) w.r.t. A

Input: YM, YH, ΛM, ΛH, R, B, S, V(k), G(k),
µ > 0

/* Circulant matrix decomposition:
B = FDFH */

1 D← EigDec (B);
2 D̄← D (1d ⊗ Im);
/* Calculate C1 */

3 C1 ←
(
MTΛ−1H M

)−1 (
(RM)

T
Λ−1M RM + µIp

)
;

/* Eigen-decomposition of C1:
C1 = QΛCQ−1 */

4 (Q,ΛC)← EigDec (C1);
/* Calculate C3 */

5 C3 ←
(
MTΛ−1H M

)−1
(MTΛ−1H YH (BS)

T

+(RM)
T
Λ−1M YM + µ(V(k) + G(k)));

/* Calculate C̄3 */
6 C̄3 ← Q−1C3F;
/* Calculate Ā band by band */

7 for l = 1 to p do
/* Calculate the lth band */

8 āl ←

λ−1l (C̄3)l − λ−1l (C̄3)lD̄

(
λldIm +

d∑
t=1

D2
t

)
D̄H ;

9 end
10 Set A = QĀFH ;

Output: A

2) Updating V: The update of V can be made by simply
computing the Euclidean projection of A(t,k+1)−G(k+1) onto
the canonical simplex A, which can be expressed as follows

V̂ = arg min
V

µ

2

∥∥V − (A(t,k+1) −G(k+1)
)∥∥2

F
+ ιA(V)

= ΠA

(
A(t,k+1) −G(k+1)

)
where ΠA denotes the projection (in the sense of the Euclidean
norm) onto the simplex A. This classical projection problem
has been widely studied and can be achieved by numerous
methods [51]–[54]. In this work, we adopt the popular strategy

first proposed in [51] and summarized in Algorithm 4. Note
that the above optimization is decoupled w.r.t. the columns
of V, denoted by (V)1, · · · , (V)n, which accelerates the
projection dramatically.

Algorithm 4: Projection onto the Simplex A
Input: A(t,k+1) −G(k)

1 for i = 1 to n do
2 (A−G)i , ith column of A(t,k+1) −G(k);

/* Sorting the elements of (A−G)i
*/

3 Sort (A−G)i into y: y1 ≥ · · · ≥ yp ;

4 Set K := max
1≤k≤p

{k|
(∑k

r=1 yr − 1
)
/k < yk};

5 Set τ :=
(∑K

r=1 yr − 1
)
/K;

/* The max operation is
component-wise */

6 Set (V̂)i := max{(A−G)i − τ, 0};
7 end

Output: V(k+1) = V̂

In practice, the ASC constraint is sometimes criticized for
not being able to account for every material in a pixel or due
to endmember variability [27]. In this case, the sum-to-one
constraint can be simply removed. Thus, the Algorithm 4 will
degenerate to projecting (A−G)i onto the non-negative half-
space, which simply consists of setting the negative values of
(A−G)i to zeros.

C. Optimization w.r.t. the Endmember Matrix M (A fixed)

The minimization of (10) w.r.t. the abundance matrix M
conditional on A can be formulated as

min
M

L1(M) + ιM(M) (14)

where L1(M) =

1

2

∥∥Λ− 1
2

H (YH −MAH)
∥∥2
F

+
1

2

∥∥Λ− 1
2

M (YM −RMA)
∥∥2
F

and AH = ABS. By splitting the quadratic data fidelity term
and the inequality constraints, the augmented Lagrangian for
(15) can be expressed as

L(M,T,G) = L1(M)+ιM(Λ
1
2

HT)+
µ

2

∥∥Λ− 1
2

H M−T−G
∥∥2
F
.

(15)
The optimization of L(M,T,G) consists of updating M, T
and G iteratively as summarized in Algorithm 5 and detailed
below. As L1(M) and ιM(Λ

1
2

HT) are closed, proper and
convex functions and Λ

1
2

H has full column rank, the ADMM
is guaranteed to converge to a solution of problem (14).

1) Updating M: Forcing the derivative of (15) w.r.t. M to
be zero leads to the following Sylvester equation

H1M + MH2 = H3 (16)
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Algorithm 5: ADMM sub-iterations to estimate M

Input: YM, YH, ΛM, ΛH, R, B, S, A, µ > 0
1 Initialization: T(0),G(0);
2 for k = 0 to stopping rule do

/* Optimize w.r.t M */
3 M(t,k+1) ∈ arg min

M
L(M,T(k),G(k));

/* Optimize w.r.t T */

4 T(k+1) ← ΠT (Λ
− 1

2

H M(t,k+1) −G(k));
/* Update Dual Variable G */

5 G(k+1) ← G(k) −
(
Λ
− 1

2

H M(k+1) −T(k+1)
)

;
6 end
7 Set M(t+1) = M(t,k+1);

Output: M(t+1)

where

H1 = ΛHRTΛ−1M R

H2 =
(
AHAH

T + µIp
) (

AAT
)−1

H3 =[
YHAT

H + ΛHRTΛ−1M YMAT + µΛ
1
2

H (T + G)
] (

AAT
)−1

.

Note that vec(AXB) =
(
BT ⊗A

)
vec(X), where vec (X)

denotes the vectorization of the matrix X formed by stacking
the columns of X into a single column vector and ⊗ denotes
the Kronecker product [55]. Thus, vectorizing both sides of
(16) leads to2

Wvec(M) = vec(H3) (17)

where W =
(
Ip ⊗H1 + HT

2 ⊗ Imλ
)
. Thus, vec

(
M̂
)

=

W−1vec(H3). Note that W−1 can be computed and stored
in advance instead of being computed in each iteration.

Alternatively, there exists a more efficient way to calculate
the solution M analytically (avoiding to compute the inverse
of the matrix W). Note that the matrices H1 ∈ Rmλ×mλ and
H2 ∈ Rp×p are both the products of two symmetric positive
definite matrices. According to the Lemma 1 in [56], H1 and
H2 can be diagonalized by eigen-decomposition, i.e., H1 =
V1O1V

−1
1 and H2 = V2O2V

−1
2 , where O1 and O2 are

diagonal matrices denoted as

O1 = diag{s1, · · · , smλ}
O2 = diag{t1, · · · , tp}.

(18)

Thus, (16) can be transformed to

O1M̃ + M̃O2 = V−11 H3V2. (19)

where M̃ = V−11 MV2. Straightforward computations lead to

H̃ ◦ M̃ = V−11 H3V2 (20)

2The vectorization of the matrics M,H1 and H2 is easy to do as the size
of these matrices are small, which is not true for the matrices A, C1 and C2

in (13).

where

H̃ =


s1 + t1 s1 + t2 · · · s1 + tp
s2 + t1 s2 + t2 · · · s2 + tp

...
...

. . .
...

smλ + t1 smλ + t2 · · · smλ+tp

 (21)

and ◦ represents the Hadamard product, defined as the
component-wise product of two matrices (having the same
size). Then, M̃ can be calculated by component-wise divi-
sion of V−11 H3V2 and H̃. Finally, M can be estimated as
M̂ = V1M̃V−12 . Note that the computational complexity of
the latter strategy is of order O(max(m3

λ, p
3)), which is lower

than the complexity order O((mλp)
3)) of solving (17).

2) Updating T: The optimization w.r.t. T can be trans-
formed as

arg min
T

1

2

∥∥T−Λ
− 1

2

H M + G
∥∥+ ιT (T) (22)

where ιT (T) = ιM(Λ
1
2

HT). As Λ
− 1

2

H is a diagonal matrix, the
solution of (22) can be obtained easily by setting

T̂ = Λ
− 1

2

H min
(

max
(
M−Λ

1
2

HG, 0
)
, 1
)

(23)

where min and max are to be understood component-wise.

Remark. If the endmember signatures are fixed a priori,
i.e., M is known, the unsupervised unmixing and fusion will
degenerate to a supervised unmixing and fusion by simply
not updating M. In this case, the alternating scheme is not
necessary, since Algorithm 1 reduces to Algorithm 2. Note
that fixing M a priori transforms the non-convex problem
(10) into a convex one, which can be solved much more
efficiently. The solution produced by the resulting algorithm
is also guaranteed to be the global optimal point instead of a
stationary point.

D. Parallelization

We remark that some of the most computationally intensive
steps of the proposed algorithm can be easily parallelized on
a parallel computation platform. More specifically, the esti-
mation of A in Algorithm 3 can be parallelized in frequency
domain due to the structure of blurring and downsampling
matrices in spectral domain. Projection onto the simplex A
can also be parallelized.

E. Relation with some similar algorithms

At this point, we remark that there exist a number of joint
fusion and unmixing algorithms which exhibit some similarity
with ours, namely the methods in [15], [19], [26]3. Next,
we state differences between those methods and ours. First
of all, the degradation model used in [19] follows the pixel
aggregation assumption. This assumption makes a block-by-
block inversion possible (see equation (18) in [19]), which
significantly reduces the computational complexity. However,
due to the convolution (matrix B in (2)) plus downsampling

3Note that some other fusion techniques (e.g., [12], [56], [57]), which only
deal with the fusion problem and do not consider the unmixing constraints,
are not considered in this work.
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(matrix S in (2)) model used in our work, this simplification
no longer applies. Works [15], [26] use a degradation model
and an optimization formulation similar to ours. The main
difference is that both works [15], [26] minimize an approx-
imate objective function to bypass the difficulty arising from
the entanglement of spectral and spatial information contained
in HS and MS images. More specifically, both works minimize
only the HS data term and ignore the MS one when updating
the endmembers and minimize only MS data term and ignore
the HS one when updating the abundances. On the contrary, in
the proposed method, the exact objective function is minimized
directly thanks to the available Sylvester equation solvers.
Thus, both HS and MS images contribute to the estimation
of endmembers and abundances.

V. EXPERIMENTAL RESULTS

This section applies the proposed unmixing based fusion
method to multi-band images associated with both synthetic
and semi-real data. All the algorithms have been imple-
mented using MATLAB R2014A on a computer with Intel(R)
Core(TM) i7-2600 CPU@3.40GHz and 8GB RAM. The MAT-
LAB codes and all the simulation results are available in the
first author’s homepage4.

A. Quality metrics

1) Fusion quality: To evaluate the quality of the fused
image, we use the reconstruction signal-to-noise ratio (RSNR),
the averaged spectral angle mapper (SAM), the universal
image quality index (UIQI), the relative dimensionless global
error in synthesis (ERGAS) and the degree of distortion (DD)
as quantitative measures.

a) RSNR: The reconstruction signal-to-noise ratio
(RSNR) is defined as

RSNR(X, X̂) = 10 log10

(
‖X|2F

‖X− X̂‖2F

)
where X and X̂ denote, respectively, the actual image and
fused image. The larger RSNR, the better the fusion quality.

b) SAM: The spectral angle mapper (SAM) measures
the spectral distortion between the actual and fused images.
The SAM of two spectral vectors xn and x̂n is defined as

SAM(xn, x̂n) = arccos
(
〈xn, x̂n〉
‖xn‖2‖x̂n‖2

)
.

The overall SAM is obtained by averaging the SAMs com-
puted from all image pixels. Note that the value of SAM is
expressed in degrees and thus belongs to [0, 180[. The smaller
the value of SAM, the less the spectral distortion.

c) UIQI: The universal image quality index (UIQI) is re-
lated to the correlation, luminance distortion, and contrast dis-
tortion of the estimated image w.r.t. the reference image. The
UIQI between two single-band images x = [x1, x2, . . . , xN ]
and x̂ = [x̂1, x̂2, . . . , x̂N ] is defined as

UIQI(x, x̂) =
4σ2

xx̂µxµx̂
(σ2
x + σ2

x̂)(µ2
x + µ2

x̂)

4http://sigproc.eng.cam.ac.uk/Main/QW245/

where
(
µx, µx̂, σ

2
x, σ

2
x̂

)
are the sample means and variances

of x and x̂, and σ2
xx̂ is the sample covariance of (x, x̂). The

range of UIQI is [−1, 1] and UIQI(x, x̂) = 1 when x = x̂.
For multi-band images, the overall UIQI can be computed by
averaging the UIQI computed band-by-band.

d) ERGAS: The relative dimensionless global error in
synthesis (ERGAS) calculates the amount of spectral distortion
in the image. This measure of fusion quality is defined as

ERGAS = 100× m

n

√√√√ 1

mλ

mλ∑
i=1

(
RMSE(i)

µi

)2

where m/n is the ratio between the pixel sizes of the MS and
HS images, µi is the mean of the ith band of the HS image,
and mλ is the number of HS bands. The smaller ERGAS, the
smaller the spectral distortion.

e) DD: The degree of distortion (DD) between two
images X and X̂ is defined as

DD(X, X̂) =
1

nmλ
‖vec(X)− vec(X̂)‖1

where vec represents the vectorization and ‖·‖1 represents the
`1 norm. The smaller DD, the better the fusion.

2) Unmixing quality: In order to analyze the quality of the
unmixing results, we consider the normalized mean square
error (NMSE) for both endmember and abundance matrices

NMSEM =
‖M̂−M‖2F
‖M‖2F

NMSEA =
‖Â−A‖2F
‖A‖2F

.

The smaller NMSE, the better the quality of the unmixing. The
SAM between the actual and estimated endmembers (different
from SAM defined previously for pixel vectors) is a measure
of spectral distortion defined as

SAMM(mn, m̂n) = arccos
(
〈mn, m̂n〉
‖mn‖2‖m̂n‖2

)
.

The overall SAM is finally obtained by averaging the SAMs
computed from all endmembers.

B. Synthetic data

This section applies the proposed FUMI method to synthetic
data and compares it with the joint unmixing and fusion
methods investigated in [22], [15] and [26].

To simulate high-resolution HS images, natural spatial pat-
terns have been used for abundance distributions as in [58].
There is one vector of abundance per pixel, i.e., A ∈ Rp×1002 ,
for the considered image of size 100×100 pixels in [58]. The
reference endmembers, shown in Fig. 1, are m reflectance
spectra selected randomly from the United States Geological
Survey (USGS) digital spectral library5. Each reflectance spec-
trum consists of L = 221 spectral bands from 400 nm to 2508
nm. In this simulation, the number of endmembers is fixed to
p = 9. The synthetic image is then generated by the product of
endmembers and abundances, i.e., X = MA. Considering the

5http://speclab.cr.usgs.gov/spectral.lib06/
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different distributions of abundances, five patterns in [58] have
been used as the ground-truth abundances and all the results in
the following sections have been obtained by averaging these
five patterns results.
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Fig. 1: Endmember signatures for synthetic data.

1) HS and MS image fusion: In this section, we consider
the fusion of HS and MS images. The HS image YH has
been generated by applying a 11 × 11 Gaussian filter (with
zero mean and standard deviation σB = 1.7) and then by
down-sampling every 4 pixels in both vertical and horizontal
directions for each band of the reference image. A 4-band
MS image YM has been obtained by filtering X with the
LANDSAT-like reflectance spectral responses. The HS and MS
images are both contaminated by zero-mean additive Gaussian
noises. Considering that the methods in [22], [15] and [26]
did not consider weighting the cost function with the noise
covariance knowledge, we have added noise with identical
power to all HS and MS bands to guarantee a fair comparison.
The power of the noise s2 is set to SNR = 40dB, where
SNR = 10 log

(
‖XBS‖2F
mλms2

)
.

Before comparing different methods, several implementa-
tion issues are explained in the following.
• Initialization: As shown in Algorithm 1, the proposed

algorithm only requires the initialization of the endmem-
ber matrix M. Theoretically, any endmember extraction
algorithm (EEA) can be used to initialize M. In this
work, we have used the vertex component analysis (VCA)
method [39], which is a state-of-the-art method that does
not require the presence of pure pixels in the image.

• Subspace Identification: For the endmember estimation,
a popular strategy is to use a subspace transformation as
a preprocessing step, such as in [40], [48]. In general,
the subspace transformation is estimated a priori from
the high-spectral resolution image, e.g., from the HS
data. In this work, the projection matrix denoted as
E has been learned by computing the singular value
decomposition (SVD) of YH and retaining the left-
singular vectors associated with the largest eigenvalues.
Then the input HS data YH, the HS noise covariance
matrix ΛH and the spectral response R in Algorithm 1 are
replaced with their projections onto the learned subspace

as YH ← ETYH, ΛH ← ETΛHE and R← RE, where
E ∈ Rmλ×m̃λ is the estimated orthogonal basis using
SVD and m̃λ � mλ. Given that the formulation using the
transformed entities is equivalent to the original one but
the matrix dimension is now much smaller, the subspace
transformation brings huge numerical advantage.

• Parameters in ADMM: The value of µ adopted in all
the experiments is fixed to the average of the noise power
of HS and MS images, which is motivated by balancing
the data term and regularization term. As ADMM is
used to solve sub-problems, it is not necessary to use
complicated stopping rule to run ADMM exhaustively.
Thus, the number of ADMM iterations has been fixed
to 30. Experiments have demonstrated that varying these
parameters do not affect much the convergence of the
whole algorithm.

• Stopping rule: The stopping rule for Algorithm 1 is that
the relative difference for the successive updates of the
objective L(M,A) is less than 10−4, i.e.,

|L(M(t+1),A(t+1))− L(M(t),A(t))|
|L(M(t),A(t))|

≤ 10−4.

• Parameter setting for compared algorithms: The orig-
inal implementation of three state-of-the-art methods in
[22], [15] and [26] was used as baseline. The respective
parameters were tuned for best performance. For all the
algorithms, we use the same initial endmembers and
abundances. For [22] and [15], the threshold for the
convergence condition of NMF was set at 10−4 as the
authors suggested.

The fusion and unmixing results using different methods are
reported in Tables II and III, respectively. Both matrices A and
M have been estimated. For fusion performance, the proposed
FUMI method outperforms the other three methods, with a
price of high time complexity. Berne’s method uses the least
CPU time. Regarding unmixing, Lanaras’s method and FUMI
perform similarly and are both much better than the other two
methods.

TABLE III: Unmixing Performance for Synthetic HS+MS
dataset: SAMM (in degree), NMSEM (in dB) and NMSEA

(in dB).

Methods SAMM NMSEM NMSEA

Berne [22] 3.27±1.44 -20.44±2.33 -6.07±1.96
Yokoya [15] 4.31±1.65 -19.32±2.67 -5.61±1.34
Lanaras [26] 2.65±0.98 -23.01±3.08 -7.03±2.27

FUMI 2.72±1.12 -22.50±2.34 -6.81±2.23

Robustness to endmember initialization: As the joint
fusion and unmixing problem is non-convex, owing to the
matrix factorization term, the initialization is crucial. An in-
appropriate initialization may induce a convergence to a point
which is far from the desired endmembers and abundances.
In order to illustrate this point, we have tested the proposed
algorithm by initializing the endmembers M0 using different
endmember extraction algorithms, e.g., N-FINDR [59], VCA
[39] and SVMAX [60]. The fusion and unmixing results with
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TABLE II: Fusion Performance for Synthetic HS+MS dataset: RSNR (in dB), UIQI, SAM (in degree), ERGAS, DD (in 10−2)
and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne [22] 24.60±1.77 0.9160±0.0467 2.03±0.50 1.71±0.32 2.32±0.55 8.04±0.72
Yokoya [15] 27.26±0.88 0.9517±0.0220 1.63±0.20 1.24±0.10 1.79±0.25 13.04±0.86
Lanaras [26] 28.46±0.59 0.9625±0.0145 1.407±0.154 1.08±0.08 1.50±0.16 12.71±0.94

FUMI 29.43±1.09 0.9710±0.0142 1.28±0.19 0.97±0.11 1.37±0.23 21.90±3.32

TABLE IV: Fusion Performance of FUMI for one HS+MS
dataset with different initializations: RSNR (in dB), UIQI,
SAM (in degree), ERGAS and DD (in 10−2) .

Initial RSNR UIQI SAM ERGAS DD

VCA 30.68 0.9861 1.12 0.83 1.12
N-FINDR 30.94 0.9869 1.09 0.80 1.09
SVMAX 30.87 0.9866 1.09 0.81 1.09

these different initializations have been given in Tables IV
and V. With these popular initialization methods, the fusion
and unmixing performances are quite similar and show the
robustness of the proposed method.

TABLE V: Unmixing Performance of FUMI for one HS+MS
dataset with different initializations: SAMM (in degree),
NMSEM (in dB) and NMSEA (in dB).

Initial SAMM NMSEM NMSEA

VCA 1.98 -23.96 -9.06
N-FINDR 1.72 -24.25 -9.31
SVMAX 1.72 -24.24 -9.28

2) HS and PAN image fusion: When the number of MS
bands degrade to one, the fusion of HS and MS degenerates
to HS pansharpening, which is a more challenging problem.
In this experiment, the PAN image is obtained by averaging
the first 50 bands of the reference image. The quantitative
results for fusion and unmixing are summarized in Tables
VI and VII, respectively. In terms of fusion performance, the
proposed FUMI method outperforms the competitors for all
the quality measures, using, however, the most CPU time,
whereas Lanaras’s uses the least. Regarding the unmixing
performance, Lanaras’s method and FUMI yield the best
estimation result, outperforming the other two methods.

TABLE VII: Unmixing Performance for Synthetic HS+PAN
dataset: SAMM (in degree), NMSEM (in dB) and NMSEA

(in dB).

Methods SAMM NMSEM NMSEA

Berne [22] 3.27±1.44 -20.44±2.33 -5.24±1.87
Yokoya [15] 4.12±1.46 -19.69±2.80 -4.90±1.35
Lanaras [26] 2.54±1.08 -22.69±2.58 -6.09±2.00

FUMI 2.75±1.13 -21.94±2.17 -6.10±2.08

C. Semi-real data

In this section, we test the proposed FUMI algorithm on
semi-real datasets, for which we have the real HS image as

the reference image and have simulated the degraded images
from the reference image.

In this experiment, the reference image is an HS image of
size 200×100×176 acquired over Moffett field, CA, in 1994
by the JPL/NASA airborne visible/infrared imaging spectrom-
eter (AVIRIS) [61]. This image was initially composed of 224
bands that have been reduced to 176 bands after removing
the water vapor absorption bands. A composite color image
of the scene of interest is shown in the top right of Fig. 2. As
there is no ground truth for endmembers and abundances for
the reference image, we have first unmixed this image (with
any unsupervised unmixing method) and then reconstructed
the reference image X with the estimated endmembers and
abundances (after appropriate normalization). The number of
endmembers has been fixed to p = 5.

1) HS and MS image fusion: The observed HS image has
been generated by applying a 7× 7 Gaussian filter with zero
mean and standard deviation σB = 1.7 and by down-sampling
every 4 pixels in both vertical and horizontal directions for
each band of X, as done in Section V-B1. Then, the PAN
image has been obtained by averaging the first 50 HS bands.
The HS and PAN images are both contaminated by additive
Gaussian noises, whose SNRs are 40dB for all the bands. The
reference image X is to be reconstructed from the coregistered
HS and MS images.

The proposed FUMI algorithm and other state-of-the-art
methods have been implemented to fuse the two observed
images and to unmix the HS image. The fusion results and
RMSE maps (averaged over all the bands) are shown in Figs.
2. Visually, FUMI give better fused images than the other
methods. This result is confirmed by the RMSE maps, where
the FUMI method offer much smaller errors than the other
three methods. Furthermore, the quantitative fusion results
reported in Table VIII are consistent with this conclusion as
FUMI outperform the other methods for all the fusion metrics.
Regarding the computation time, FUMI cost more than the
other two methods, mainly due to the alternating update of
the endmembers and abundances and also the ADMM updates
within the alternating updates.

The unmixed endmembers and abundance maps are dis-
played in Figs. 3 and 4 whereas quantitative unmixing results
are reported in Table IX. For endmember estimation, compared
with the estimation used for initialization, all the methods
have improved the accuracy of endmembers. FUMI offers
the best endmember and abundance estimation results. This
gives evidence that the estimation of endmembers benefits
from being updated jointly with abundances, thanks to the
complementary spectral and spatial information contained in
the HS and high resolution MS images.
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TABLE VI: Fusion Performance for Synthetic HS+PAN dataset: RSNR (in dB), UIQI, SAM (in degree), ERGAS, DD (in
10−2) and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne [22] 22.54±1.69 0.8836±0.0507 2.63±0.62 2.12±0.44 3.32±0.79 7.62±2.24
Yokoya [15] 26.23±0.57 0.9421±0.0204 1.90±0.23 1.39±0.08 2.10±0.19 10.78±0.52
Lanaras [26] 26.79±0.56 0.9476±0.0194 1.81±0.23 1.31±0.08 1.96±0.20 4.38±0.92

FUMI 27.64±0.81 0.9587±0.0180 1.60±0.27 1.19±0.11 1.75±0.27 15.79±3.41

Fig. 2: Hyperspectral and multispectral fusion results (Moffett dataset): (Top 1) HS image. (Top 2) MS image. (Top 3) Reference
image. (Bottom 1) Berne’s method. (Bottom 2) Yokoya’s method. (Bottom 3) Lanaras’ method (Bottom 4) Proposed FUMI.

TABLE VIII: Fusion Performance for Moffett HS+MS dataset:
RSNR (in dB), UIQI, SAM (in degree), ERGAS, DD (in 10−2)
and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne [22] 22.55 0.9832 2.54 2.30 5.06 13.2
Yokoya [15] 23.74 0.9873 2.52 2.00 4.66 20.2
Lanaras [26] 25.53 0.9913 2.46 1.60 4.06 23.5

FUMI 26.02 0.9919 1.96 1.53 3.51 52.8

TABLE IX: Unmixing Performance for Moffett HS+MS
dataset: SAMM (in degree), NMSEM (in dB) and NMSEA

(in dB).

Methods SAMM NMSEM NMSEA

Initialization 16.90 -7.10 \
Berne [22] 11.66 -6.94 -4.41

Yokoya [15] 12.03 -9.00 -5.17
Lanaras [26] 12.42 -8.26 -4.55

FUMI 10.09 -9.00 -6.45

2) HS and PAN image fusion: In this section, we test the
proposed algorithm on HS and PAN image fusion. The PAN

image is obtained by averaging the first 50 bands of the
reference image plus Gaussian noise (SNR is 40dB). Due to
the space limitation, the corresponding quantitative fusion and
unmixing results are reported in Tables X and XI and the
visual results have been omitted. These results are consistent
with the analysis associated with the Moffet HS+MS dataset.
For fusion, FUMI outperforms the other methods with respect
to all quality measures. In terms of unmixing, FUMI also
outperforms the others for both endmember and abundance
estimations, due to the alternating update of endmembers and
abundances.

TABLE X: Fusion Performance for Moffett HS+PAN dataset:
RSNR (in dB), UIQI, SAM (in degree), ERGAS, DD (in 10−2)
and time (in second).

Methods RSNR UIQI SAM ERGAS DD Time

Berne [22] 15.55 0.8933 6.20 4.82 1.28 14.6
Yokoya [15] 17.02 0.9330 4.67 3.96 1.00 18.0
Lanaras [26] 17.92 0.9454 4.45 3.56 0.91 4.2

FUMI 18.50 0.9508 3.66 3.31 0.79 46.6
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Fig. 3: Unmixed endmembers for Moffett HS+MS dataset: (Top, middle and bottom left) Estimated five endmembers and their
ground truth. (Bottom right) Sum of absolute values of all endmember errors as a function of wavelength.

TABLE XI: Unmixing Performance for Moffett HS+PAN
dataset: SAMM (in degree), NMSEM (in dB) and NMSEA

(in dB).

Methods SAMM NMSEM NMSEA

Initialization 16.90 -7.10 \
Berne [22] 11.66 -6.94 -5.18

Yokoya [15] 13.43 -7.92 -5.14
Lanaras [26] 13.59 -7.65 -3.25

FUMI 9.65 -8.88 -6.01

VI. CONCLUSION

This paper proposed a new algorithm based on spectral
unmixing for fusing multi-band images. Instead of solving

the associated problem approximately by decoupling two
data terms, an algorithm to directly minimize the associ-
ated objective function has been designed. In this algorithm,
the endmembers and abundances were updated alternatively,
both using an alternating direction method of multipliers.
The updates for abundances consisted of solving a Sylvester
matrix equation and projecting onto a simplex. Thanks to the
recently developed R-FUSE algorithm, this Sylvester equation
was solved analytically thus efficiently, requiring no iterative
update. The endmember updating was divided into two steps:
a least square regression and a thresholding, that are both
not computationally intensive. Numerical experiments showed
that the proposed joint fusion and unmixing algorithm com-
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pared competitively with three state-of-the-art methods, with
the advantage of improving the performance for both fusion
and unmixing. Future work will consist of incorporating the
spatial and spectral degradation into the estimation framework.
Extending the proposed method to other feature or decision
level fusion will also be relevant.
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Fig. 4: Unmixed abundance maps for Moffett HS+MS dataset: Estimated abundance maps using (Row 1) Berne’s method,
(Row 2) Yokoya’s method, (Row 3) Lanaras’ method and (Row 4) proposed FUMI. (Row 5) Reference abundance maps. Note
that abundances are linearly stretched between 0 (black) and 1 (white)


