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Abstract— This paper aims to provide a compact superresolu-
tion formulation specific for multispectral (MS) multiresolution
optical data, i.e., images characterized by different scales across
different spectral bands. The proposed method, named multires-
olution sharpening approach (MuSA), relies on the solution of an
optimization problem tailored to the properties of those images.
The superresolution problem is formulated as the minimization
of an objective function containing a data-fitting term that
models the blurs and downsamplings of the different bands and
a patch-based regularizer that promotes image self-similarity
guided by the geometric details provided by the high-resolution
bands. By exploiting the approximately low-rank property of
the MS data, the ill-posedness of the inverse problem in
hand is strongly reduced, thus sharply improving its condition-
ing. The state-of-the-art color block-matching and 3D filtering
(C-BM3D) image denoiser is used as a patch-based regularizer
by leveraging the “plug-and-play” framework: the denoiser is
plugged into the iterations of the alternating direction method
of multipliers. The main novelties of the proposed method
are: 1) the introduction of an observation model tailored to
the specific properties of (MS) multiresolution images and
2) the exploitation of the high-spatial-resolution bands to guide
the grouping step in the color block-matching and 3D filtering
(C-BM3D) denoiser, which constitutes a form of regularization
learned from the high-resolution channels. The results obtained
on the real and synthetic Sentinel 2 data sets give an evidence
of the effectiveness of the proposed approach.

Index Terms— Alternating direction method of multipliers
(ADMM), color block-matching and 3D filtering (C-BM3D),
dimensionality reduction, multispectral (MS) multiresolu-
tion images, plug-and-play, remote sensing, self-similarity,
superresolution.

I. INTRODUCTION

SATELLITE remote sensing images have been extensively
employed in many large-scale applications, such as land-

use/cover classification, environmental monitoring, and change
detection. Although the multispectral (MS) sensors provide
worldwide coverage with a fast revisit time, the physical
limits of the radiometric resolution of the detectors impose
tradeoffs to the achievable spatial–spectral resolutions. To have
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a reasonable signal-to-noise ratio (SNR), the spatial resolution
must be lower when the higher spectral resolution is required.
In contrast, high spatial resolution can be obtained at the cost
of losing spectral resolution. For these reasons, in the last
years, many sensors have been designed to acquire low-spatial-
resolution MS bands together with a single high-spatial-
resolution band (panchromatic image), taken in a large spectral
interval. The panchromatic image provides the high-resolution
geometric details while guaranteeing a spectral range that
spans most of the spectra of the MS bands.

By fusing the MS bands and the panchromatic image,
it is possible to generate spatially enhanced MS data, which
provides a better understanding of the observed scene. To this
end, a number of fusion methods have been introduced in
the literature, namely, those collectively called pansharpening
algorithms [1], [2] formulated under different frameworks,
such as component substitution (CS), multiresolution analysis
(MRA), model-based variational regularization, and Bayesian
inference.

CS methods aim to detect a transformation that separates
the spatial and the spectral information of the original data
into different components. In the projected space, the spatial
component can be substituted with the panchromatic image,
thus leading to an enhanced MS product. To reduce the
distortion introduced by the fusion step, it is necessary to
identify a projected space where the panchromatic image and
the replaced component are strongly correlated. Among the
different projection methods employed, the principal com-
ponent analysis (PCA) [3], [4], the intensity–hue–saturation
transform technique [5]–[7], and the Gram–Schmidt trans-
formation [8], [9] have been widely used. In spite of the
large amount CS-based pansharpening works developed and
published in the last decade, this research direction is sill
attracting the attention of the research community [10]–[12].

MRA is another class of pansharpening methods. Here,
the spatial details are extracted through a multiresolution
decomposition of the panchromatic image and injected into
the interpolated MS bands. MRA methods do a better job
in preserving the spectral characteristics of the MS data than
CS ones, since no transformation is involved. Several modal-
ities have been introduced to extract the spatial details, such
as the discrete wavelet transform [13]–[16] or other kinds
of pyramidal representations [1], [17], [18]. High-pass filter-
ing (HPF) fusion methods [19], [20] inject the high-frequency
details into the resampled MS data. The geometric details
are typically obtained by taking the difference between the
panchromatic image and its blurred version.
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Bayesian and variational regularization methods are model-
based [21]; they rely on an observation model that accounts
for blur, dowsampling, and noise, and on regularization
(prior information in Bayesian terms) that mitigates the usual
ill-posedness of the pansharpening inverse problems. The
high-resolution image is usually obtained by solving an opti-
mization problem that superresolves all the spectral bands
simultaneously. Studies in [22] and [23] are two paradigmatic
examples of this line of attack: the former is based on spectral
and spatial sparsity inducing priors and the latter on total
variation regularization.

Although pansharpening algorithms successfully deal with
the fusion of MS images acquired together with a panchro-
matic band, a growing number of sensors are started to acquire
MS multiresolution images having more than one high-
spatial-resolution channel [e.g., Moderate Resolution Imaging
Spectroradiometer (MODIS), Sentinel-2 (S2), and Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER)]. Typically, the high-spatial-resolution bands cover
the visible range, while the narrow-spectral-resolution bands
are provided at lower spatial resolution. In the literature,
only a few papers have addressed the superresolution of MS
multiresolution images. Most of them focus on the super-
resolution of specific spectral channels of the MS multires-
olution data by using pansharpening approaches [24]–[26].
Aiazzi et al. [24] sharpen the ASTER thermal infrared (TIR)
bands by injecting the geometric information present in the
visible or near-infrared (VNIR) channels using the gener-
alized Laplacian pyramid algorithm. To achieve the same
goal, Fasbender et al. [25] propose a general Bayesian data
fusion approach that exploits the 15-m VNIR bands to
sharpen the 90-m TIR bands of the ASTER data. Simi-
larly, Sirguey et al. [26] employ a wavelet-based MRA to
fuse the spatial resolution of 250-m MODIS bands into the
500-m MODIS bands for snow mapping in mountainous
environments. The work in [27] presents a superresolution
method that enhances the 500-m MODIS bands by taking
advantage from the correlation between the spectral channels.
The method defines a nonlinear regression model that uses the
250-m MODIS channels and the NDVI as predictors. More-
over, a normalization step is applied to increase the spatial
resolution of the 500 m bands while preserving the radiometric
consistency of the superresolved channels. The regression
modeling is also exploited in [28] and [29], where the
250-m MODIS high-spatial-resolution bands are fused into the
500-m bands by considering geostatistical approaches based
on kriging.

Several methods adapt pansharpening algorithms to the mul-
tiresolution case [30]–[32]. Tonooka [30] proposes a method
to increase the spatial resolution of the short-wave infrared
(SWIR) and TIR of ASTER images at the 15-m resolution
of the VNIR bands. The main idea is to exploit the spectral
similarity to superresolve the spectral bands. The use of
the spectral similarity for superresolving MS multiresolution
images was conceptualized by Selva et al. [33], where they
defined a new paradigm for hypersharpening. Two schemes
were proposed to extend the pansharpening algorithms to the
case of MS images having multiple high-resolution bands,

namely, the “synthesized band scheme” and the “selected band
scheme.” The “selected band scheme” selects for each coarse
resolution band the high resolution one having the largest
correlation, while the “synthesized band scheme” synthesizes a
panchromatic image from the high-resolution band set. In [31],
the “synthesized band scheme” is employed to enhance the
20-m S2 bands by using the 10-m S2 bands considering
the area-to-point regression Kriging (ATPRK) pansharpening
method. For each coarse band, the panchromatic image is
determined adaptively as a linear combination of the four
high-spatial-resolution bands. In [32], 21 different pansharp-
ening algorithms have been compared to increase the spatial
resolution of the 20-m bands of S2 by selecting a suitable
10-m band as a panchromatic image. Lanaras et al. [34]
formulate a convex inverse problem tailored to the super-
resolution of S2 data. The discontinuities, learned from the
high-resolution bands, are encoded into a regularizer used to
sharpen the 20- and 60-m bands. Brodu [35] presents a method
to superresolve MS multiresolution data and tests it on the real
S2 images. Assuming that the proportion of objects within a
pixel area is the same for all the bands, the high-resolution
channels are used to separate band-independent information.
The obtained geometric information is then employed to
unmix the low-resolution pixels while preserving their overall
reflectance. Although this is one of the few superresolution
works which enhance all the lower spatial channels of S2,
the results obtained are not competitive with the state of the art.

Recent studies started to use denoisers to superresolve nat-
ural images [36] or for image restoration [37]. In this context,
one of the most employed denoisers is BM3D, namely, block
matching and 3-D filtering, which is particularly effective due
to its capability of promoting nonlocal patch self-similarity
properties of the images based on sparse representations [36].
This denoiser stacks together similar 2-D image patches
in 3-D arrays (groups), the so-called grouping step, to per-
form nonlocal image modeling, thus leading to effective
noise attenuation. The recently presented color version of the
BM3D [38] extends the denoising algorithm to the case of
color images corrupted by additive white Gaussian noise. First,
the RGB image is converted into the luminance-chrominance
color space (YCbCr). Then, the grouping step is applied
only to the luminance band, which typically shows a higher
SNR with respect to the chrominances. Finally, the color
image is denoised by imposing a grouping constraint on
both chrominances, i.e., reusing the same grouping obtained
on the luminance. Egiazarian and Katkovnik [39] use the
C-BM3D to superresolve natural images. The study demon-
strates the importance of having high-resolution data to accu-
rately estimate groups of similar patches to obtain accurate
superresolution results. In the framework of superresolving
MS multiresolution images, the use of these denoisers as
regularizers can be extremely useful to promote nonlocal
image self-similarity while exploiting the geometric details
provided by the high-resolution channels to detect the groups
of similar patches.
A. Contribution

This paper is built around the superresolution of a sin-
gle MS multiresolution image, with the aim of employing
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the geometric details present in the high-resolution bands
to sharpen the low-resolution ones. The proposed approach:
1) defines a quadratic fitting term that accounts for the blur and
downsampling degradation mechanisms; 2) takes advantage
from the low-rank nature of the MS image to formulate the
problem in the latent space defined by the representation
coefficients; 3) adopts the “plug-and-play” framework to plug
the C-BM3D denoiser [38] into the iterations of an alter-
nating direction method of multipliers (ADMM) algorithm,
in order to exploit the self-similarity property of the MS
images; and 4) learns a patch-based spatial prior from the
high-spatial-resolution channels to sharpen the lower spatial
resolution bands. The optimization is performed by using
the split augmented Lagrangian shrinkage algorithm (SALSA)
solver [40], [41], which is an efficient and flexible instance of
ADMM tailored to multiple convex terms.

In the literature, the sharpening of MS multiresolution
images has been addressed by adapting pansharperning tech-
niques to infer a spatially enhanced MS product. In practice,
however, the pansharpening paradigm requires: 1) only one
high-spatial-resolution channel and 2) the spectral overlap
between the high-spatial-resolution bands and the low resolu-
tion ones. In this paper, we relax those constrains by providing
a compact formulation tailored to the specific properties of
the MS multiresolution images. Different from recent works
that use denoisers to superresolve natural images (i.e., images
characterized by three bands, RGB, having the same spatial
resolution), the proposed method exploits the geometric detail
provided by the high-resolution channels to guide the grouping
step of the C-BM3D to detect similar patches within the image.
This strongly improves the robustness of the method and the
quality of the results with respect to the standard use of a
denoiser, which operates on the noisy low-resolution data.

To assess the effectiveness of the proposed method, exper-
iments have been carried out on real and simulated MS mul-
tiresolution S2 images containing bands at 10, 20, and 60 m.
Results have been evaluated qualitative and quantitatively by
investigating the spectral distortions on the synthetic data set.

B. Outline

The remained of this paper is organized as follows.
Section II describes the notation and the problem formula-
tion used in this paper. Section III presents the proposed
superresolution method in terms of the observation model,
dimensionality reduction, and regularization and the algorithm
to solve it. Section IV describes the considered data set, while
Section V illustrates and discusses the experimental results.
Finally, Section VI draws the conclusions.

II. NOTATION AND PROBLEM FORMULATION

MS images are usually represented as 3-D arrays. However,
when the bands have different sizes, this representation is
no more adequate. In this paper, the spectral bands are
represented as column vectors where the pixels are arranged
in the lexicographic order. The bands are then concatenated
to represent the observed data. Let us define the columnwise
concatenation of I column vectors ai ∈ R

mi , for i = 1, . . . , I,

as (a1; a2; . . . ; aI ) := [aT
1 ; aT

2 ; . . . ; aT
I ]T ∈ R

m1+m2+···+m I .
When all vectors have the same size, (a1; . . . ; aI ) is the
so-called vec operator acting on the columns of the matrix
A = [a1, a2, . . . , aI ].

Let us assume to have an image characterized by Lb spectral
bands having dk , for k = 1, . . . , K , ground sampling distances
(GSDs), such that Lb = L1 + L2 + · · · + L K , and Lk denotes
the number of bands with the same GSD dk . Of course,
the resolution of the spectral bands decreases as the GSD
increases. Without loss of generality, we assume that d1 = 1.

Let y j be the column vector representing the j th observed
spectral band, with j = 1, . . . , Lb . The observed image is
represented as y = (y1; y2; . . . ; yLb

) ∈ R
no , where no = n ·

(L1 + L2/d2
2 + · · · + L K /d2

K ) and n is the number of pixels
of the bands with the highest resolution.

The enhanced MS image x = (x1, x2, . . . , xLb) ∈ R
nu is the

vertical concatenation of the Lb spectral bands having size n
(i.e., all bands at the highest spatial resolution) with a number
of unknowns nu = n·Lb. Since the target image x has the same
spatial resolution for all the bands, it can also be represented as
a 2-D matrix, where each line corresponds to a spectral band,
containing the lexicographically ordered pixels of that band,
i.e., X = [x1; x2; . . . ; xLb ]T ∈ R

Lb×n , with x = vec(XT).

III. SUPERRESOLUTION METHOD

Fig. 1 shows the flowchart of the proposed method, which
embodies four main steps: 1) the formulation of an observation
model tailored to the specific properties of the MS multireso-
lution image; 2) a dimensionality reduction step performed
to reduce the number of unknowns; 3) the use of the C-
BM3D denoiser as a regularizer based on the geometric details
provided by the high-resolution bands; and 4) the optimization
performed using the SALSA solver to deal with nonsmooth
convex regularization terms with low computational burden.

A. Observation Model

Assuming linear operation of the imaging sensor,
the observed model may be written as

y = MBx + n (1)

where B = bkdiag(B1, . . . , BLb) ∈ R
Lbn×Lbn is a block-

circulant–circulant-block matrix whose block diagonal ele-
ments bkdiag(·1, . . . , ·Lb) represent the 2-D spatial blurring
matrices modeling the point spread functions (PSFs) of the
different spectral channels with respect to the highest spatial
resolution. Note that because each subblock acts separately
on each spectral channel, we can accurately model the PSFs
that affect the different bands according to the specific prop-
erties of the considered sensor. The blur is assumed to be
a cyclic convolution. Although the assumption of having
periodic boundary is not realistic, it does not lead to significant
artifacts in the superresolved image while strongly reducing
the computational effort [42].

The block diagonal matrix M = bkdiag(M1, . . . , MLb) ∈
R

Lbn×Lbn represents subsampling, where the blocks are
applied to x in order to obtain y. While for the high-resolution
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Fig. 1. Flowchart of the proposed approach for superresolving MS multiresolution images (MuSA).

bands, the blocks are identity matrices I, for the other chan-
nels, they are subsets of the rows of the identity matrix,
accounting for the uniform subsampling of each individual
band. Finally, n denotes the zero-mean Gaussian additive
noise. For the sake of simplicity, the noise is assumed to be
identically and independently distributed (i.i.d.) across bands
and pixels.

B. Dimensionality Reduction

The considered superresolution problem is extremely ill-
posed, since the number of unknowns is much greater than
the number of observations (i.e., nu � no). To cope with this
issue, we took advantage from the fact that MS images live in
a subspace of low dimensionality: due to the strong correlation
between the spectral bands, the original data X have low-rank,
namely, the spectral vectors associated with the image pixels
live, with a very good approximation, in a low-dimensional
subspace. Thus, the matrix X can be accurately approximated
by the linear combinations of a small number of basis vectors,
i.e.,

X = EZ (2)

where the columns of matrix E ∈ R
Lb×p , with p < Lb,

holds the subspace basis vectors and Z ∈ R
p×n holds

the representation coefficients. Noting that x = vec(XT),
and by using the properties of the vec operator, we may
write

x = vec((EZ)T) = vec(IZTET)

= (E ⊗ I)vec(ZT) = (E ⊗ I)z (3)

where z = vec(ZT) ∈ R
pn are the representation coefficients

of x with respect to E.
However, X is the image that we aim to estimate, while the

observed data y are the blurred and subsampled version of it.
Although we do not have X, we can estimate the subspace
by considering its smoothed version XK, where K is a matrix
acting on all bands and representing the strongest convolution
of the considered MS multiresolution data. Even though XK
provides less information with respect to the original image,
due to a large number of pixels and spectral variability of

the corresponding spectra, it is very likely that span(X)=
span(XK), i.e., the subspaces spanned by the columns X and
of XK are equal.

To generate an approximation of XK, first, we upsample
all the low-resolution observed MS spectral channels (i.e.,
the observed channels yi , such that di > 1 for i = 1, . . . , Lb)
to the highest resolution of the considered MS data by means
of cubic interpolation. Then, for each spectral channel, we tai-
lor the amount of blur to apply in order to have the same blur
(the strongest of the considered MS data) for all the bands.

To learn span(XK), we compute the eigendecomposition
span((XK)(KX)T), of size Lb × Lb, which is very light, since
the matrix is very small. Let

(XK)(KX)T = U�UT (4)

be the eigendecomposition of (XK)(KX)T, where the columns
of U hold the eigenvectors and the diagonal of � holds the
corresponding eigenvalues, which are nonnegative and ordered
by nonincreasing values. We set E = [u1, . . . , up], where ui ,
for i = 1, . . . , Lb , is the i th column of U. The value of p is
set such that more than 99% of the image energy is preserved.

C. Regularization

The low-rank representation (2) allows us to formulate the
superresolution imaging inverse problem in hand with respect
to the coefficients Z instead of X, thus reducing the number of
unknowns from Lbn to pn (keep in mind that p < Lb). From a
conditioning point of view, computing Z should then be easier
than computing X. In particular, if the number of unknowns
is now lower than the number of observed variables, i.e., if
pn < n · (L1 + L2/d2

2 + · · ·+ L K /d2
K ), the inverse problem is

no longer ill-posed. However, owing to the low-pass PSFs and
noise, the estimation of Z is still ill-conditioned, thus calling
for regularization.

In order to select a suitable regularizer for Z, we point
out that: 1) the bands of X, as images from the real world,
are self-similar and 2) the structure of self-similarity is the
same across all bands of X, as the bands are reflectances (or
radiances) from the same surface. Since the bands of Z, herein
termed eigenimages, are linear combinations of the bands of X,
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they are also self-similar having the structure of self-similarity
of X.

In our approach, we selected the C-BM3D denoiser [38],
as it is one of the fastest state-of-the-art patch-based denoisers
for color images, promotes self-similar solutions, and allows
to build the self-similarity structure from an external image,
and in spite of being conceived for color images, it may be
easily adapted to our p eigenimages.

D. Optimization Problem

Let us suppose for a while that we have a regularizer
ϕ that promotes the self-similar eigenimages. Based on the
observation model (1) and ϕ, the estimation of Z is formulated
as the optimization

min
z

1

2
‖MB(E ⊗ I)z − y‖2

2 + λϕ(z) (5)

where the quadratic term is the data misfit, which promotes
solutions compatible with the observed data, and λ ≥ 0 is the
regularization parameter that tunes the relative weight between
the two terms.

To solve the optimization (5), we use the SALSA [41],
which is an instance of ADMM. Following the SALSA steps,
we rewrote the original optimization (5) in the equivalent
form:

min
z,v1,v2

1

2
‖MBv1 − y‖2

2 + λϕ(v2)

s.t: v1 = (E ⊗ I)z

v2 = z. (6)

The augmented Lagrangian for (6) is

L(z, v1, v2, d1, d2)

= 1

2
‖MBv1 − y‖2

2 + μ

2
‖(E ⊗ I)z − v1 − d1‖2

2

+ λϕ(v2) + μ

2
‖z − v2 − d2‖2

2 (7)

where d1 and d2 are the scaled Lagrange multipliers for v1 and
v2 and μ > 0 is a penalty parameter. SALSA is an iterative
procedure that, in each iteration, implements sequentially the
following steps:

z := arg min
z

L(z, v1, v2, d1, d2) (8)

v1 := arg min
v1

L(z, v1, v2, d1, d2) (9)

v2 := arg min
v2

L(z, v1, v2, d1, d2) (10)

d1 := d1 − ((E ⊗ I)z − v1) (11)

d2 := d2 − (z − v2). (12)

Minimization (8), with respect to z, is quadratic and, having
into consideration that ETE = I, its solution is

z = (E ⊗ I)(v1 + d1 + v2 + d2)/2. (13)

Minimization (9), with respect to v1, is also quadratic and
has the solution

v1 =(BTMTMB + μI)−1(BTMTy+μ(E ⊗ I)z − μd1). (14)

Given that B represents the cyclic convolutions and M repre-
sents the uniform subsampling, v1 may be computed efficiently
in the frequency domain [43].

Minimization (10), with respect to v2, is

v2 := argmin
v2

λϕ(v2) + μ

2
‖z − v2 − d2|22 (15)

whose solution is the so-called proximity operator [44] of
ϕλ/μ, denoted as proxϕλ/μ, computed at (z − d2). We may
then write

v2 := proxϕλ/μ(z − d2).

At this point, we adopt the “plug-and-play” scheme [45],
which consists in replacing proxϕλ/μ with a state-of-the-art
denoiser, the C-BM3D in our approach. C-BM3D version [38]
accepts the variance of the additive noise and a reference
image to compute the patch similarity and therefore computing
the groups of similar patches. By noting that (15) may be
interpretable as a pure denoising problem where the noise is
i.i.d. with standard deviation σ = √

λ/μ, we set

v2 := CBM3D(z − d2, yh, σ )

where yh denotes a linear combination of the four fine bands.
A regression model built between the pth coarse band and the
four high-resolution bands is applied to estimate the weights
to generate y.

SALSA, as an ADMM instance, is guaranteed to converge,
provided that the terms of the objective function are convex
and the null space of linear operator between z and (v1, v2)
contains only the zero vector [41]. The second condition is
satisfied in our setup due to the constraint v2 = z. However,
the first condition cannot be directly assessed, since we do not
have ϕ. In the plug-and-play framework, a sufficient condition
for convergence is that the denoiser plugged into the ADMM
iterations is the proximity operator of some convex function.
This is true if and only if the denoiser is nonexpansive
and a subgradient of some convex function (see [46]). This
is not the case for most state-of-the-art denoisers (see [47]
for an exception), which has fostered active research in this
topic.

Fortunately, the convergence of our plug-and-play instance
is guaranteed, since the denoiser is a proximity operator. This
is the case of C-BM3D when the grouping step is fixed,
as it is our case. Details about the properties of BM3D
using fixed grouping are provided in [36]. The pseudocode
for the proposed algorithm, called multiresolution sharpening
approach (MuSA), is shown in Algorithm 1.

IV. DATA SETS AND DESIGN OF THE EXPERIMENTS

In this section, we present the real and simulated data sets
used for the experimental tests. The procedure to generate the
simulated data set is described in detail. Then, we present
the experimental setup in terms of implementation parameters
and quality indexes used to evaluate the effectiveness of the
proposed method.



1550 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 3, MARCH 2019

TABLE I

SPECTRAL PROPERTIES OF THE S2 DATA

Algorithm 1: MuSA
Input: y - observed image

B - blur matrix
M - decimation matrix
E - estimated subspace matrix
μ - penalty parameter
λ - regularization parameter
N - number of iterations

Init: v(0)
1 = 0, v(0)

2 = 0, d(0)
1 = 0, d(0)

2 = 0
for k = 0 : N do

zk+1 := (E ⊗ I)(vk
1 + dk

1 + vk
2 + dk

2)/2
vk+1

1 := (BTMTMB + μI)−1

(BTMTy + μ(E ⊗ I)zk+1 − μdk
1)

vk+1
2 := CBM3D(z − d2, yh,

√
λ/μ)

dk+1
1 = dk

1 − ((E ⊗ I)zk+1 − vk+1
1 )

dk+1
2 := dk

2 − (zk − vk
2)

end
Output: x = (E ⊗ I)z

A. Data Set Description

The proposed method is tested on the real and simulated
S2 images that have 13 spectral bands acquired at three
different spatial resolutions (see Table I), i.e., L1 = 10 m,
L2 = 20 m, and L3 = 60 m. In the presented experiments,
we do not consider the 60-m band containing the cirrus
information (B10) that is used to perform the atmospheric
correction [48].

To simulate the S2 images, we employed the hyperspectral
images acquired by the NASA Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) sensor, which provides 224 nar-
row contiguous spectral bands from 0.4 to 2.5 μm [49].
Four different AVIRIS images were considered to test the
proposed approach in different environmental scenarios, thus
generating: 1) the coastal data set; 2) the mountainous data
set; 3) the urban data set; and 4) the crop data set. The
first two data sets were acquired at a spatial resolution
of 5 m, while the urban data set and the crop data set
were acquired at a spatial resolution of 3.5 and 3.2 m,
respectively.

First, we created the ground-truth images (i.e., the super-
resolved S2 data having all bands at 10 m) which are used
for quantitative evaluation according to Wald’s protocol [20].
To this end, we low-pass filtered all the bands of the AVIRIS
images and then subsampled the blurred images by a factor of
2 for the coastal and urban data sets and a factor of 3 for the
other data sets, obtaining a spatial resolution of approximately

10 m. Gaussian low-pass filters with the support of size 15×15
and σ = 1.2 for the mountainous and coastal data sets,
σ = 1.5 for the urban data set, and σ = 1.6 for the crop data
set were used. The spectral properties of S2 were simulated by
applying its spectral response to the AVIRIS images. Finally,
we added the i.i.d. Gaussian noise with an SNR of 40 dB,
where SNR = ‖x‖2

2/(σ
2 n Lb).

To generate the simulated multiresolution S2 data, the bands
of the ground-truth images were further smoothed and subsam-
pled. To have a realistic simulation of the S2 sensor, the PSFs
of the Gaussian smoothing were set equal to the ones estimated
in the data quality report provided by the European Space
Agency on S2 products [50]. Subsampling factors of 2 and
6 were applied to generate the 20- and 60-m spectral bands,
respectively.

Complementary to the simulated data, we tested the pro-
posed method on the real S2 data acquired on the same
geographical area of the AVIRIS data. Fig. 2 shows a true
color representation of the simulated S2 images and the
corresponding real S2 data for each data sets. Note that there
are some changes on the ground between the simulated and
the real images due to the different temporal acquisition. The
AVIRIS data were acquired on August 3, 2013 for the crop
data set, November 9, 2011 for the coastal and mountainous
data sets, and May 10, 2006 for the urban data set. The real
S2 data were acquired on March 11, 2017 (Tile T10SEH) for
the crop data set and September 11, 2017 for all the other data
sets (Tile T11SMS).

B. Experimental Setup

For all the experiments, both on the real and sim-
ulated data sets, we used the same experimental setup:
augmented Lagrange parameter μ = 0.6, regularization para-
meter λ = 0.005, and SALSA iterations N = 130. This
value of N has yielded systematical negligible values of
the primal and dual residuals, which is the valid stopping
criteria [51].

The subspace E was estimated by considering the five
singular vectors corresponding to the largest singular values,
which ensure the preservation of more than 99% of the energy
of the original images. Since the energy per band varies
considerably across the spectrum, we normalize the spectral
bands before applying MuSA, such that their mean squared
intensities are equal to 1.

To quantitatively assess the performances of MuSA and
of the competitors, we calculate the following performance
indexes.
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Fig. 2. Simulated S2 images and real S2 images. True color composition of the simulated S2 images for (a) urban data set, (b) coastal data set, (c) crop data
set, and (d) mountainous data set. True color composition of the real S2 data for (e) urban data set, (f) coastal data set, (g) crop data set, and (h) mountainous
data set.

1) Signal-to-Reconstruction Error (SRE), in dB, per Band:
SREi = 10 log10

‖xi‖2

‖xi − x̂i‖2
2

(16)

where xi and x̂i are the ground-truth spectral band i
and the corresponding superresolved spectral band,
respectively.
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2) Spectral Angle Mapper (SAM) [52] in Degrees:

SAM(X, X̂) = 1

n

∑
i

arccos

(
XT:,i X̂:,i

‖X:,i‖2‖X̂:,i‖2

)
(17)

where X:,i and X̂:,i are the spectra of the i th pixel for the
ground-truth and the estimated S2 image, respectively.

3) Root-Mean-Square Error (RMSE):

RMSE(X, X̂) = ‖X − X̂‖
n

. (18)

4) Universal Image Quality Index (UIQI): It is proposed
in [53]

Q(xi , x̂i )= 1

W

W∑
j=1

σxi, j x̂i, j

σxi, j σx̂i, j

× 2μxi, j μx̂i, j

μ2
xi, j

+ μ2
x̂i, j

× 2σxi, j σx̂i, j

σ 2
xi, j

+ σ 2
x̂i, j

where xi and x̂i denote the ground-truth and the super-
resolved band i ,respectively, xi, j and x̂i, j denote the
values of xi and x̂i in a sliding window of size 32 ×
32 pixels centered at pixel j , respectively, σxi, j x̂i, j is the
covariance between xi, j and x̂i, j , and σxi, j and μxi, j are
the standard deviation and the mean value of xi, j , while
σx̂i, j and μx̂i, j are the standard deviation and the mean
value of x̂i, j .

To extend the UIQI index to the multiband case, we simply
average the band indexes obtained as follows:

Q(X, X̂) = 1

n

∑
i

Q(xi , x̂i ). (19)

V. EXPERIMENTAL RESULTS

In this section, first, we present the quantitative results
obtained on the simulated data sets by comparing the proposed
approach with five state-of-the-art pansharpening algorithms
adapted to the multiresolution case. Then, qualitative results
are presented on real S2 data for each data set.

A. Experiments on Simulated Data Sets

To assess the effectiveness of the proposed approach,
the method was compared with five different baselines. The
first and the second baselines are the simple bicubic upsam-
pling (Bicubic) and the ATPRK presented in [31], which
achieved the best numerical results on the real S2 images com-
pared with several pansharpening methods. The third baseline
is the MRA pansharpening algorithm, such as HPF [1], while
the last two baselines are the CS pansharpening algorithms,
such as partial replacement adaptive component substitution
(PRACS) [54] and PCA [19]. To apply those methods to the
considered MS multiresolution data, we extracted a single
panchromatic band from the four high-resolution bands avail-
able in the S2 images by considering the “selected” and
the “synthesized” strategies conceptualized in [33]. While the
“selected” scheme identifies the panchromatic band with the
high-resolution band having the largest correlation with the
considered coarse one, the “synthesized” band is determined
adaptively as a linear combination of the four high-resolution
bands as presented in [31].

Table II shows the quantitative results obtained by compar-
ing the superresolved S2 images with the ground-truth images
on the different simulated data sets by using: 1) Bicubic;
2) ATPRK; 3) MuSA; 4) HPF; 5) PRACS; and 6) PCA. The
best results are marked in bold font. For each pansharpening
algorithm, we tested both the “selected” and the “synthesized”
strategies, reporting the best result per band. From the results
obtained, it turned out that MuSA and ATPRK have achieved
the best SRE per band, while among the standard pansharp-
ening methods, the MRA HPF has achieved better results
compared with the CS algorithms.

MuSA has outperformed all the other methods in bands
B6 B7 B8a and B9 for all the data sets and achieved the best
results for almost all the data sets in bands B1 and B5. The
most challenging bands are B11 and B12, belonging to the
SWIR range that is far away from the spectral view point
from the high-resolution bands. However, the minimum SRE
achieved by MuSA is 20.69 dB (for B12 in the urban data set)
with an average SRE over the data sets of 25.30 and 25.56 dB
for B11 and B12, respectively. Similar results are achieved by
ATPRK and HPF, while PRACS and PCA are resulted in an
average SRE lower than 19 dB for both the bands.

Moreover, MuSA has achieved an accurate SRE for both the
60- and 20-m bands regardless of the initial spatial resolution.
Thus, for all the data sets, the method obtained an SRE on
the 60-m bands that ranges from a minimum of 27.81 dB
(B9 coastal data set) to a maximum of 35.36 dB (B9 crop data
set). In contrast, the HPF, the PRACS, and the PCA methods
have resulted in poor SRE for B9 in some data sets, i.e., HPF
obtained 20.05 dB, PRACS 18.03 dB, and PCA 18.62 dB in
the urban data set.

The capability of MuSA of delivering more balanced results
across the bands with respect to the baselines is confirmed by
the results obtained in terms of average SRE, SAM, RMSE,
and UIQI. Here, the proposed method has achieved the best
results for almost all the data sets with an average SAM,
RMSE, and UIQI across the data sets of 1.07, 32.99, and
0.95, respectively. Note that achieving balanced results across
the bands can be extremely important for applications where
the spectral contribution of all the bands is employed, such as
image classification or spectral unmixing.

B. Experiments on Real Data Sets

Complementary to simulated data, we tested the proposed
approach on the real S2 data acquired in the same geographical
areas to provide qualitative results. Fig. 3–6 visually compare
the results of all baselines to the one obtained with MuSA for
crops, coastal, mountainous, and urban data sets, respectively.
To evaluate the results obtained for both the 60- and 20-m
spectral bands, a false color composite of bands B1-B9-B1,
B5-B6-B7, and B8a-B11-B12 is provided together with a
true color composite of the 10-m resolution bands, which
shows the geometric detail present in the scene. The results
obtained on the real S2 data confirm what we observed on
the simulated data from the quantitative view point. The
60-m bands are accurately superresolved only by MuSA and
ATRPK, whereas all the other methods provide the blurred
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TABLE II

RELATIVE SRE (dB), SAM (IN DEGREE), RMSE, AND UIQI BETWEEN THE SUPERRESOLUTION IMAGE AND THE GROUND-TRUTH
(SIMULATED IMAGES) PER BAND FOR: 1) BICUBIC; 2) ATPRK; 3) MuSA; 4) HPF; 5) PRACS; AND 6) PCA
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Fig. 3. Qualitative results on the real S2 images for the crop data set. (a) True color composite that represents the geometric detail of the scene.
(b)–(g) False color composite of bands 1 and 9 (60 m). (h)–(m) False color composite of bands 5–7 (20 m). (n)–(s) False color composite of
bands 8a, 11, and 12 (20 m).

results for all data sets (see Figs. 3–6). This is clearly visible
in the urban data sets (see Fig. 6) characterized by many
high-frequency details, which are properly recovered by MuSA

while smoothing the other pansharpening algorithms. From the
false color composites of bands B8a-B11-B12, the low SRE
results achieved by PRACS and PCA on the simulated data
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Fig. 4. Qualitative results on the real S2 images for the coastal data set. (a) True color composite that represents the geometric detail of the scene.
(b)–(g) False color composite of bands 1 and 9 (60 m). (h)–(m) False color composite of bands 5–7 (20 m). (n)–(s) False color composite of bands 8a, 11,
and 12 (20 m).

sets are confirmed in the real data sets, since the superresolved
images present many artifacts. The presence of artifacts is also
visible in the images obtained with ATPRK and HPF for the

coastal and the urban data sets (see Figs. 4 and 6). In contrast,
MuSA reproduces accurate spatial textures while preserving
the spectral properties of the low-resolution S2 bands.
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Fig. 5. Qualitative results on the real S2 images for the mountainous data set. (a) True color composite that represents the geometric detail of the scene.
(b)–(g) False color composite of bands 1 and 9 (60 m). (h)–(m) False color composite of bands 5–7 (20 m). (n)–(s) False color composite of bands 8a, 11,
and 12 (20 m).

Table III reports the computation times obtained using
MATLAB on an Intel Core i7-7700 CPU running at 3.60 GHz,
with 32 GB of RAM per image (456 × 108 pixels,

representing an area of 4.92 km2). The optimization problem
is solved using a salsa solver, which guarantees a low com-
putational burden. CBM3D requires on the considered image
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Fig. 6. Qualitative results on the real S2 images for the urban data set. (a) True color composite that represents the geometric detail of the scene.
(b)–(g) False color composite of bands 1 and 9 (60 m). (h)–(m) False color composite of bands 5–7 (20 m). (n)–(s) False color composite of bands 8a, 11,
and 12 (20 m).

3.5 s per iteration. In the considered implementation, we used
the regularizer in the last 100 iterations, thus leading to a total
time of 353.22 s per image. As expected, MuSA takes a higher

computational time than noniterative methods. However, this
increased time results in a significant improvement of all
the other quality metrics. It is worth noting that the MuSA
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TABLE III

RUNTIMES FOR SUPERRESOLVING THE EIGHT BANDS

OF S2 IMAGE (456 × 108 PIXELS ≈4.92 Km2)

implementation can be made faster by first detecting homo-
geneous portions of the image for calculating the subspace
and then using different parallel tasks for superresolving each
portion.

VI. CONCLUSION

In this paper, a novel method for the superresolution of
MS multiresolution images has been presented. Instead of
adapting a pansharpening algorithm present in the literature
to the solution of the superresolution problem, the proposed
approach is tailored to the specific properties of the mul-
tiresolution data both in terms of problem formulation and
regularized employed. From the analysis of the experimental
results, we can draw the following conclusions. Although the
proposed MuSA approach requires a higher computational
burden compared to noniterative methods, it outperformed
the state-of-the-art methods for almost all the data sets in
terms of average SRE, SAM, and UIQI. The quantitative
results obtained on the simulated S2 data are confirmed by the
qualitative analysis performed on the real S2 data. The MuSA
was able to accurately reproduce the geometric structures
present in the scene on completely different environmental sce-
narios: the proposed method sharpened all the low-resolution
spectral channels without introducing significant distortions
and artifacts.

As final remark, we would like to point out that the MuSA
was able to obtain accurate results on both 60- and 20-m
resolution images regardless of the initial spatial resolution,
thus delivering very balanced results across the bands. This
result is extremely important from the operational view point
in order to fully take advantage from the spectral information
provided by the MS data.

As future developments of this paper, we aim to explore
the possibility of estimating the subspace in homogeneous
portion of the images. This analysis can be interesting to
extend the application of MuSA at large scale in order to deal
with extremely heterogeneous scenes. Although the proposed
method has been tested on the S 2 data, we plan to apply the
proposed method to different MS multiresolution data.
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