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Abstract—Remotely sensed hyperspectral image classification is
a very challenging task. This is due to many different aspects, such
as the presence of mixed pixels in the data or the limited infor-
mation available a priori. This has fostered the need to develop
techniques able to exploit the rich spatial and spectral information
present in the scenes while, at the same time, dealing with mixed
pixels and limited training samples. In this paper, we present a new
spectral–spatial classifier for hyperspectral data that specifically
addresses the issue of mixed pixel characterization. In our pre-
sented approach, the spectral information is characterized both
locally and globally, which represents an innovation with regard
to previous approaches for probabilistic classification of hyper-
spectral data. Specifically, we use a subspace-based multinomial
logistic regression method for learning the posterior probabilities
and a pixel-based probabilistic support vector machine classifier
as an indicator to locally determine the number of mixed com-
ponents that participate in each pixel. The information provided
by local and global probabilities is then fused and interpreted in
order to characterize mixed pixels. Finally, spatial information is
characterized by including a Markov random field (MRF) regu-
larizer. Our experimental results, conducted using both synthetic
and real hyperspectral images, indicate that the proposed classifier
leads to state-of-the-art performance when compared with other
approaches, particularly in scenarios in which very limited train-
ing samples are available.

Index Terms—Hyperspectral imaging, Markov random field
(MRF), multiple classifiers, spectral–spatial classification, sub-
space multinomial logistic regression (MLRsub), support vector
machine (SVM).

I. INTRODUCTION

HYPERSPECTRAL imaging instruments are now able to
collect hundreds of images, corresponding to different

wavelength channels, for the same area on the surface of the
Earth [1]. Hyperspectral image classification has been a very
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active area of research in recent years [2]. Given a set of
observations (i.e., pixel vectors in a hyperspectral image), the
goal of classification is to assign a unique label to each pixel
vector so that it is well defined by a given class [3]. The
availability of hyperspectral data with high spectral resolution
has been quite important for many applications, such as crop
mapping, environmental monitoring, and object identification
for defense purposes [4].

Several techniques have been used to perform supervised
classification of hyperspectral data. Classic techniques include
maximum likelihood (ML) [2], [3], [5], nearest neighbor clas-
sifiers [6], or neural networks [7]–[9], among many others [4].
The quality of these pixelwise classification methods is strongly
related to the quality and number of training samples. In order
to effectively learn the parameters of the classifier, a sufficient
number of training samples are required. However, training
samples are difficult and expensive to collect in practice [10].
This issue is quite problematic in hyperspectral analysis, in
which there is often an unbalance between the high dimension-
ality of the data and the limited number of training samples
available in practice, known as the Hughes effect [2].

In this context, kernel methods such as the support vector ma-
chine (SVM) have been widely used in hyperspectral imaging
to deal effectively with the Hughes phenomenon by addressing
large input spaces and producing sparse solutions [11]–[14].
Recently, the multinomial logistic regression (MLR) [15] has
been shown to provide an alternative approach to deal with
ill-posed problems. This approach has been explored in hy-
perspectral imaging as a technique able to model the posterior
class distributions in a Bayesian framework, thus supplying (in
addition to the boundaries between the classes) a degree of
plausibility for such classes [15]. A main difference between
the MLR and other classifiers such as the probabilistic SVM is
the fact that the former learns the posterior probabilities for the
whole image. As a result, these classifiers exploit the probabilis-
tic information in a different (possibly complementary) fashion,
although this issue has never been explored in the literature
in the past. Recently, the advantages of probabilistic SVM
as a soft classification technique in discriminating between
pure and mixed pixels, and automatically selecting endmember
subsets were, respectively, investigated in [16] and [17]. These
techniques pay particular attention to characterizing the number
of mixtures participating in each pixel.

A subspace-based version of the MLR classifier, called
MLRsub [18], has also been recently developed. This method
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relies on the basic assumption that the samples within each
class can approximately lie in a lower dimensional subspace
and uses subspace projection methods to find this subspace.
Since hyperspectral data are likely to be noisy and dominated
by mixed pixels, the MLRsub has been shown to provide
good performance (particularly, in the case of limited training
samples) as normally classes live in a much lower space in
comparison with the original data dimensionality.

Another strategy to deal with the limited number of training
samples available in practice has been to efficiently exploit
labeled information by using multiple classifier systems or
classifier ensembles [19]–[22]. This approach has been proved
successful in different hyperspectral image classification appli-
cations [23]–[26].

Finally, a well-known trend in order to alleviate the problem
of insufficient number of training samples is to integrate the
spatial–contextual information in the analysis. Many examples
of spectral–spatial classifiers can be found in the hyperspec-
tral imaging literature [4], [27]–[33]. In particular, approaches
based on Markov random fields (MRFs) have been quite suc-
cessful in hyperspectral imaging [15], [18], [34]–[37]. In par-
ticular, [36] successfully combined a probabilistic SVM with an
MRF regularizer for the classification of hyperspectral images.
All of these methods exploit, in a way or another, the continuity
(in probability sense) of neighboring labels. In other words,
these methods exploit the likely fact that, in a hyperspectral
image, two neighboring pixels may have the same label.

In this paper, we propose a new spectral–spatial classifier
in which the spectral information is characterized both locally
and globally. Specifically, we use the MLRsub method to
globally and locally learn the posterior probabilities for each
pixel, where addressing the local probability is one of the main
innovative contributions of this work. For local probability
learning, we determine the number of mixed components that
participate in each pixel. For this purpose, we use a probabilistic
SVM as an indicator to determine the number of mixed compo-
nents. Finally, the spatial information is then characterized by
exploiting an MRF regularizer.

When compared to the probabilistic SVM, the presented
classifier considers mixtures in the model. This is very im-
portant since hyperspectral images are often dominated by
mixed pixels. When compared to the MLRsub, which already
addresses the presence of mixed pixels, the proposed classifier
constrains the number of mixed components, thus improving
its characterization since mixed pixels in hyperspectral images
normally comprise only a few mixing components [38]. As a
result, the presented approach provides two important contribu-
tions with regard to existing spectral–spatial approaches. The
first one is the consideration of probabilistic information at both
local and global levels. The second one is the characterization
of the number of mixtures participating in each pixel, which is
quite important since mixed pixels often dominate hyperspec-
tral data.

The presented approach also observes two of the most press-
ing needs of current hyperspectral classifiers: the possibility
to use very limited training sets (compensated by the multiple
classifier flavor of our approach) and the need to integrate spa-
tial information in the assessment (addressed by the inclusion of

an MRF regularizer in the formulation). The resulting method,
called SVM-MLRsub-MRF, achieves very good classification
results which are competitive or superior to those provided by
many other state-of-the-art supervised classifiers for hyperspec-
tral image analysis.

The remainder of this paper is organized as follows.
Section II describes the different strategies used to implement
the proposed spectral–spatial classifier. Section III describes
the proposed approach. An important observation is that the
presented approach should not be simply understood as a
combination of existing approaches. Specifically, each of the
processing algorithms described in Section III corresponds to
one out of many possible choices, selected based on their avail-
ability and also on the possibility to draw comparisons with
other established techniques for spectral–spatial classification.
However, it should be noted that other strategies for addressing
local versus global information for mixed pixel characterization
and spatial regularization could be used. In this regard, our
selection should be strictly understood as a vehicle to demon-
strate a new framework for classification of hyperspectral data
and not merely as a combination of processing blocks. To the
best of our knowledge, the presented framework addresses for
the first time in the literature the aforementioned aspects in
synergistic fashion. Section IV presents extensive experiments
using both simulated and real hyperspectral data designed in
order to validate the method and provide comparisons with
other state-of-the-art classifiers. Section V concludes with some
remarks and hints at plausible future research lines.

II. MAIN COMPONENTS OF THE PROPOSED METHOD

In this section, we describe the different components that
have been used in the development of the proposed method.
First, we use probabilistic pixelwise classification methods to
learn the posterior probability distributions from the spectral
information. Here, we use two strategies to characterize spectral
information: probabilistic SVM and MLRsub. Then, we use
contextual information by means of an MRF regularization
scheme to refine the classification results. Fig. 1 shows the
relationship between the methods considered in this study. As
it can be observed from Fig. 1, estimating class conditional
probability distributions is an intrinsic issue for the subsequent
MRF-based classification. In the following, we outline the
different strategies used to characterize spectral and spatial
information, respectively, in the presented approach.

A. Characterization of Spectral Information

Let x ≡ {x1,x2, . . . ,xn} be the input hyperspectral image,
where xi = [xi1,xi2, . . . ,xid]

T denotes a spectral vector asso-
ciated with an image pixel i ∈ S, S = {1, 2, . . . , n} is the set
of integers indexing the n pixels of x, and d is the number of
spectral bands. Let y ≡ (y1, . . . ,yn) denote an image of class
labels yi ≡ [yi1, yi2, . . . , yic . . . , yik]

T , where k is the num-
ber of classes, yic = {0, 1}, for c = 1, . . . , k, and

∑
c yic = 1.

Furthermore, let Dl ≡ {(x1,y1), . . . , (xl,yl)} be the labeled
training set, with l being the number of samples in Dl. With
the aforementioned definitions in mind, probabilistic pixelwise
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Fig. 1. Relationship between the different components of the presented ap-
proach for spectral–spatial classification of hyperspectral data.

classification intends to obtain, for a given pixel xi, the class
label vector yi. This vector can be obtained by computing the
posterior probability p(yic = 1|xi,Dl) as follows:

yic =

⎧⎨
⎩

1, if p(yic = 1|xi,Dl) > p(yict = 1|xi,Dl)
∀ ct �= c

0, otherwise.
(1)

Various probabilistic classification techniques have been
used to process hyperspectral data [3]. In this paper, we use
the probabilistic SVM [39] and the MLRsub classifiers [18]
for probability estimation. SVMs and MLRsub rely, respec-
tively, on discriminant functions and posterior class distribu-
tions which have shown good performance in hyperspectral
data classification, particularly in scenarios dominated by small
training samples. In the following, we describe these probabilis-
tic classifiers in more details.

1) Probabilistic SVM Algorithm: The SVM classifier is typ-
ically defined as follows [39]:

f(xj) =
∑
i

αiyiΦ(xi,xj) + b (2)

where xj ∈ x, xi ∈ Dl, b is the bias, and {αi}li=1 represents
Lagrange multipliers which are determined by the parameter C
(that controls the amount of penalty during the SVM optimiza-
tion). Here, Φ(xi,xj) is a function of the inputs, which can be
linear or nonlinear. In SVM classification, kernel methods have
shown great advantage in comparison with linear methods [14].
In this paper, we use a Gaussian radial basis function kernel
K(xi,xj) = exp(−γ‖xi − xj‖2), whose width is controlled
by parameter γ. Although the original SVM does not provide
class probability estimates, different techniques can be used to
obtain class probability estimates based on combining all pair-
wise comparisons [39]. In this paper, one of the probabilistic
SVM methods [41] included in the popular LIBSVM library
[42] is used.

2) MLRsub Algorithm: MLR-based techniques are able to
model the posterior class distributions in a Bayesian frame-
work. In these approaches, the densities p(yi|xi) are modeled
with the MLR, which corresponds to discriminative model of
the discriminative–generative pair for p(xi|yi) Gaussian and
p(yi) multinomial. The MLR model is formally given by [43]

p(yic = 1|xi,ω) =
exp

(
ω(c)h(c)(xi)

)
∑k

c=1 exp
(
ω(c)h(xi)

) (3)

where h(c)(xi) ≡ [h
(c)
1 (xi), . . . ,h

(c)
l (xi)]

T is a vector of l
fixed functions of the input data, often termed as features;
ω(c) is the set of logistic regressors for class c, and ω ≡
[ω(1)T , . . . ,ω(c−1)T ]T . Recently, Li et al. [18] have proposed
to combine MLR with a subspace projection method called
MLRsub to cope with two main issues: the presence of mixed
pixels in hyperspectral data and the availability of limited train-
ing samples. The idea of applying subspace projection methods
to improve classification relies on the basic assumption that
the samples within each class can approximately lie in a lower
dimensional subspace. Thus, each class may be represented by
a subspace spanned by a set of basis vectors, while the clas-
sification criterion for a new input sample would be the distance
from the class subspace [18]. In this formulation, the input
function is class dependent and is given by

h(c)(xi) =

[
‖xi‖2,

∥∥∥xT
i U

(c)
∥∥∥2]T (4)

where U(c) = {u(c)
1 , . . . ,u

(c)

r(k)} is a set of r(k)-dimensional
orthonormal basis vectors for the subspace associated with class
c (r(c) � d).

B. Characterization of Spatial Information

In this section, we describe the mechanism used to include
spatial–contextual information in the presented method. For
this purpose, we use MRF, which is a widely used contextual
model and a classical probabilistic method to model spatial cor-
relation of pixel neighbors. This approach has been successfully
applied in the context of remote sensing problems [35], [37],
[41]. In the MRF framework, the MAP decision rule is typically
formulated as the minimization of a suitable energy function
[34]. Normally, the MRF-based approach can be implemented
in two steps in hyperspectral image analysis. First, a probabilis-
tic pixelwise classification method (such as those described in
the previous section) is applied to learn the posterior probability
distributions from the spectral information. Second, contextual
information is included by means of an MRF regularization to
refine the classification, as already outlined in Fig. 1.

According to the MAP-MRF framework, a pixel belonging
to a class c is very likely to have neighboring pixels belonging
to the same class. By using the Hammersley–Clifford theorem
[45], we can write the MAP estimate of y as follows:

ŷ = argmin
y

⎛
⎝∑

i∈S
− log p(yi|xi)− μ

∑
i∼j

δ(yi − yj)

⎞
⎠ (5)
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Fig. 2. Flowchart of the proposed SVM-MLRsub-MRF method.

where the term p(yi|xi) is the spectral energy function from
the observed data, which needs to be estimated by probabilistic
methods. In this paper, we use the probabilistic SVM and
MLRsub to learn the probabilities. Parameter μ is tunable and
controls the degree of smoothness, and δ(y) is the unit impulse
function, where δ(0) = 1 and δ(y) = 0 for y �= 0. Notice that
the pairwise terms, δ(yi − yj), attach higher probability to
equal neighboring labels than the other way around. Minimiza-
tion of expression (5) is a combinatorial optimization problem
involving unary and pairwise interaction terms. A good ap-
proximation can be obtained by mapping the problem into the
computation of a series of min-cuts on a suitable graphs [45].
This aspect has been thoroughly explored in the context of hy-
perspectral image classification in previous contributions [15].

III. PROPOSED APPROACH

In this section, we present the proposed spectral–spatial
classification approach called SVM-MLRsub-MRF. The full
methodology is summarized by a detailed flowchart in Fig. 2.
As shown in Fig. 2, the proposed approach mainly con-
tains four steps: 1) generation of the class combination map;
2) calculation of the local and global probabilities; 3) decision
fusion; and 4) MRF regularization. In the following, we present
the details of each individual steps.

A. Generation of the Class Combination Map

The class combination map is generated from the proba-
bilistic SVM classification results. Notice that the probabilistic
SVM is only used as an indicator to determine the number of
mixtures appearing in each pixel and does not contribute to the
probability learning. For this purpose, a subset of the M most
reliable class labels (mixed components) is chosen for each
pixel as the possible class combinations for that pixel, and M ≤
k. In case M = k, the local learning is equivalent to the global
learning. It is also important to emphasize that, although in this
work we use the probabilistic SVM for pixelwise classification
due to its proved effectiveness in hyperspectral classification
[14], other probabilistic classifiers could also be used as far as
they are well suited to hyperspectral analysis. Furthermore, as
a classifier, the probabilistic SVM has different characteristics

Fig. 3. Example of the generation of a class combination map using threshold
M = 2.

in comparison with MLRsub, thus allowing for the possibility
to use both classifiers in combined fashion in order to remove
irrelevant class labels and to improve the efficiency of the class-
dependent subspace projection step in the MLRsub method,
which will be described in the following section.

For illustrative purposes, Fig. 3 shows an example of how
to generate a class combination map using the aforementioned
strategy for a three-class problem, where the classes are denoted
as {A,B,C} and the number of mixed components is set to
M = 2. Using the probabilistic SVM, for each pixel, we obtain
a vector of three probabilities with respect to classes A, B, and
C. As shown in Fig. 3, for the pixel at the top-right corner of the
image, we assume that the probabilities are 0.3, 0.1, and 0.6 (for
classes A, B, and C, respectively). Under these assumptions,
the pixel would be assigned to the subset {A,C} (from all
possible combinations of the three classes). Notice that, in this
example, there is no pixel assigned to the class combination
{B,C}. Finally, it should be noted that the number of class
combinations is given by C(k,M), where, in this example, it is
C(3, 2) = 3.

B. Calculation of the Local and Global Probabilities

In this section, we describe the procedure used to calculate
the local and global probabilities. Here, we use the MLRsub
algorithm to learn the posterior probability distributions locally
for the M classes selected in the previous step and globally for
all classes. Let pg and pl denote the global and local posterior
probabilities, respectively. For example, if we take the pixel
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used as an example in the previous section (i.e., the one located
at the top-right corner in Fig. 3), in this case, compute the global
and local probabilities as follows:

pg = {p(yic = 1|xi,ωg), c = A,B,C} (6)

pl = {p(yiA = 1|xi,ωl), 0, p(yiC = 1|xi,ωl)} (7)

where (6) is the global learning step and ωg represents the
corresponding logistic regressors. On the other hand, (7) is the
local learning step, and ωl represents the associated regressors.
The global probability pg in (6) is learned from the original
data by the MLRsub algorithm [18]. Here, we exploit the good
capabilities of MLRsub when dealing with mixtures. At this
point, it is important to emphasize that we selected the MLRsub
because, in real images, it is very likely that an observed pixel is
a mixture of several components/classes. However, it is unlikely
that the pixel is mixed by many components/classes [38]. Based
on this observation, (7) uses MLRsub to locally learn the
class posterior probabilities from the class combination map
generated by the probabilistic SVM. Notice that, in the local
estimation, only M classes are considered for each pixel, and
we remove the remaining ones, i.e., their probabilities are set to
0. For instance, in (7), p(yic = 1|xi,ωl) = 0, which means that
c is a removed class. In this way, by setting the probability of
the irrelevant classes to zero, we remove those irrelevant classes
from the combination set such that we eliminate the influence
of the less relevant classes (or noise) in the local area. There-
fore, considering the mixtures at a local (pixel) level is very
important due to the following reasons. First, by eliminating the
less relevant classes, the proposed approach locally eliminates
noise, which greatly improves the separability of the features
from noise, thus improving the performance of the MLRsub
algorithm. Second, the class-dependent subspace reduces its
dimensionality such that less training samples are required for
learning.

C. Decision Fusion

In this step, we combine the local and global probability
distributions learned by the MLRsub algorithm to produce
the final probabilities. For this purpose, we use the consensus
theory [46] which follows a linear opinion pool [47]:

p(yic = 1|xi) =

N∑
j=1

λjpj(yic = 1|xi) (8)

where N is the number of data sources, pj(yic = 1|xi) is
a source-specific posterior probability associated with data
source j, and λj’s are source-specific weights which control
the relative influence of the data sources, where 0 ≤ λj ≤ 1

and
∑N

j=1 λj = 1. In this paper, we consider two data sources:
global and local probability distributions. We simply combine
these two data sources to compute the final class probability
estimates as

p(yic=1|xi)=λpg(yic=1|xi,ωg)+(1− λ)pl(yic =1|xi,ωl)
(9)

where λ is a tunable parameter which controls the weights
between the global and local probabilities and 0 ≤ λ ≤ 1. It

should be noted that, if λ = 1, only the global information is
considered and the method remains as the original MLRsub. If
λ = 0, only the local information is used. In our experimental
results section, we will analyze the impact of parameter λ and
discuss the relevance of global information and local informa-
tion in the obtained classification results.

D. MRF-Based Spatial Regularization

The last step of our proposed method consists of including
the spatial–contextual information. As shown by Fig. 2, this
stage is applied on the output of the decision fusion step.
Although many strategies can be used for this purpose, we
follow a commonly used strategy which relies on an MAP-
MRF framework [18], as described in Section II-B. The strategy
adopted in this work is similar to the one adopted by the
MLRsub-MRF [15], which will be used for comparative pur-
poses in the following section. Our strategy is also similar to the
one used by the SVM-MRF in [35] but emphasizes that, in our
comparisons, we do not exactly use the algorithm introduced
in [35] but an implementation of SVM-MRF developed by
ourselves and based on graph-cuts [45].

IV. EXPERIMENTAL RESULTS

In this section, we use both synthetic and real hyperspectral
data sets to evaluate the performance of the proposed SVM-
MLRsub-MRF classification algorithm in different analysis
scenarios. The main objective of the experimental validation
with synthetic hyperspectral image is the assessment and char-
acterization of the algorithm in a fully controlled environment,
whereas the main objective of the experimental validation with
real data sets is to compare the performance of the proposed
method with other state-of-the-art methods in the literature.
The remainder of this section is organized as follows. First, we
describe the hyperspectral data sets (synthetic and real) used in
experiments. Then, we describe the experimental setting. Next,
we describe several experiments intended to address several
important aspects of the presented method, such as the impact
of parameters λ and M , a comparison with other standard
methods, and an evaluation of the performance of the method in
the presence of training sets with different numbers of samples.

A. Hyperspectral Data Sets

1) Synthetic Data: A synthetic image has been generated
with a size of n = 80× 120, and the class distribution is
displayed in Fig. 4(a). The synthetic scene comprises eight
classes which contain linear mixtures of a set of spectral
signatures randomly selected from a digital spectral library
compiled by the U.S. Geological Survey (USGS) and available
online.1 The USGS library contains spectral plots for nearly
500 materials (mostly minerals) in the 400–2500-nm spectral
range, where the bands have been convolved to the number
of bands available for the Airborne Visible/Infrared Imaging

1http://speclab.cr.usgs.gov/spectral-lib.html
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Fig. 4. (a) Classes in a synthetic scene with n = 80× 120. (b) Spectral signatures of randomly selected materials from the USGS digital library used in the
simulation. (c) Fractional abundance distributions considered for generating mixed pixels using a Gaussian filter of size k = 25 and standard deviation σ = 30.

Spectrometer (AVIRIS) [48] that comprises 224 spectral bands.
Fig. 4(b) shows the spectral signatures of eight randomly
selected mineral signatures allocated to the main classes dis-
played in Fig. 4(a).

In order to simulate mixed pixels using linear mixtures, the
eight class abundance maps are filtered by a k × k symmetric
Gaussian low-pass filter with a fixed standard deviation σ.
For illustrative purposes, Fig. 4(c) shows the abundance maps
associated to the eight classes of the synthetic scene after
applying a Gaussian filter of size k = 25 and standard deviation
σ = 20. In each pixel of the scene, the fractional abundances
vary from 0% (black color) to 100% (white color) and sum to
unity. Using this procedure, signature abundance is not constant
over class regions, and the pixels closer to the borders of the
regions are more heavily mixed, as expected in real scenarios.
Finally, zero-mean Gaussian noise is added to each band of the
synthetic hyperspectral image so that the signal-to-noise ratio
is equal to 20 dB according to the definition given in [49].

2) Real Data: Two real hyperspectral data sets are used
to evaluate the proposed approach. The first one is the well-
known AVIRIS Indian Pines scene [see Fig. 5(a)], collected
over Northwestern Indiana in June 1992 [2]. The scene is avail-
able online2 and contains 145 × 145 pixels and 220 spectral

2https://engineering.purdue.edu/~biehl/MultiSpec/

bands between 0.4 and 2.5 μm. A total of 20 spectral bands
was removed prior to the experiments due to noise and water
absorption in those channels. The ground-truth image displayed
in Fig. 5(b) contains 10 366 samples and 16 mutually exclu-
sive classes having 20–2468 samples. These data are widely
used as a benchmark for testing the accuracy of hyperspectral
data classification algorithms, mainly because it constitutes a
challenging classification problem due to the presence of mixed
pixels in available classes and also because of the unbalanced
number of available labeled pixels per class.

We have also used a scene collected by the Reflective Optics
Spectrographic Imaging System (ROSIS) for evaluation pur-
poses. These data were acquired over the urban area of the
University of Pavia, Pavia, Italy. The flight was operated by the
Deutschen Zentrum for Luftund Raumfahrt (DLR; the German
Aerospace Agency) in the framework of the HySens project,
managed and sponsored by the European Commission. The im-
age size in pixels is 610 × 340, with very high spatial resolution
of 1.3 m/pixel. The number of data channels in the acquired
image is 103 (with spectral range from 0.43 to 0.86 μm).
Fig. 6(a) shows a false color composite of the image, while
Fig. 6(c) shows nine ground-truth classes of interest, which
comprise urban features, as well as soil and vegetation features.
In the original data set, out of the available ground-truth pixels,
3921 were used for training, and 42 776 samples were used for
testing [see Fig. 6(b)].
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Fig. 5. AVIRIS Indian Pines data set. (a) False color composition. (b) Ground truth as a collection of mutually exclusive classes.

Fig. 6. ROSIS Pavia University data set. (a) False color composition. (b) Training data. (c) Ground truth as a collection of mutually exclusive classes.

B. Experimental Setting

Before describing our results, it is first important to discuss
some considerations that define our experimental setting. For
the synthetic image experiments, we considered two strategies.
In our first strategy, we simulated some pure pixels for each
class (using k = 20 and σ = 30 in the synthetic data simula-
tion). In the second strategy, we increased the size of the filter
to k = 25 (with the same σ = 30) so that all of the simulated
pixels inside a class region were mixed with abundance frac-
tions less than 80%, and the simulated image did not contain
any pure pixels. In both cases, training samples were extracted
from the purest available classes. All of the results reported in
this paper with synthetic data sets were obtained after 50 Monte
Carlo runs in which we randomly select 8 different materials
and also randomly select different training sets.

Concerning our real data experiments, the experimental set-
ting can be briefly summarized as follows. For the experiments
with the AVIRIS Indian Pines data, the training samples were
randomly selected from the available ground truth, and the
remaining samples are used for validation. For the smallest
classes of this data set, if the total number of available labeled

samples per class in the ground truth is smaller than the given
number of training samples, we take half of the total samples for
training. For the ROSIS Pavia University data set, the training
sets are composed of subsets of the original training samples,
and the remaining test sets are used for validation. All of the
results reported in this paper with the two considered real data
sets were obtained after 30 Monte Carlo runs.

The classifiers compared in the presented study are the pro-
posed SVM-MLRsub-MRF in addition to the standard SVM,
MLRsub, and SVM-MRF. In all experiments for the MLRsub
and MLRsub-MRF algorithms, we optimized the parameters as
indicated in [18]. Concerning the probabilistic SVM classifier,
we optimized the related parameters using tenfold cross valida-
tion. Finally, for the proposed approach, we use SVM-MLRsub
and SVM-MLRsub-MRF to denote the algorithms with and
without the MRF spatial regularizer, respectively.

C. Quantitative and Comparative Assessment

In this section, we conduct an experimental assessment of
the presented approach using the simulated and real data sets
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TABLE I
OVERALL (OA) AND AVERAGE (AA) CLASSIFICATION ACCURACIES (IN PERCENT; AS A FUNCTION OF PARAMETER λ) OBTAINED BY THE

SVM-MLRsub-MRF METHOD FOR THE SYNTHETIC AND REAL DATA SETS CONSIDERED IN THE EXPERIMENTS.
THE BEST RESULTS ARE OUTLINED IN BOLD TYPEFACE

Fig. 7. Classification results obtained by the proposed method after using different values of parameters λ and M for the (a) AVIRIS Indian Pines and (b) ROSIS
Pavia University scenes. (a) AVIRIS Indian Pines. (b) ROSIS Pavia University.

described in Section IV-A and bearing in mind the experimental
setting described in Section IV-B. The experiments reported in
this section can be summarized as follows. In a first experiment,
we perform an assessment of the impact of parameter λ, which
controls the degree of global information and local informa-
tion used by the presented method. In a second experiment,
we evaluate the impact of parameter M , which controls the
number of class combinations for local estimation. In a third
experiment, we compare the proposed method with other state-
of-the-art methods. Finally, in a fourth experiment, we analyze
the sensitivity of the considered method to different training
sets and show the good performance of the proposed approach
in the presence of limited training samples.

1) Experiment 1. Impact of Parameter λ: In this experiment,
we perform an analysis of the impact of parameter λ for
the SVM-MLRsub-MRF algorithm by using the considered
(synthetic and real) data sets with M = 2; this means that we
set the number of class combinations to 2. The reason for this

selection is to keep the number of mixtures per pixel low,
as it is often the case in real scenarios. Table I shows the
overall (OA) and average (AA) classification accuracies (as a
function of parameter λ) for the different scenes considered.
For illustrative purposes, Fig. 7 provides a detailed analysis
of the classification results obtained by the proposed method
after using different values of parameters λ and M for the two
considered hyperspectral scenes. In all experiments, we choose
50 random samples per class for training so that, in total, we
have 400, 697, and 450 training samples for the synthetic data,
AVIRIS Indian pines, and ROSIS Pavia University data sets,
respectively (it should be noted that, for the AVIRIS Indian
Pines scene, we may select a different number of samples for
the small classes).

Several conclusions can be obtained from Table I and Fig. 7.
First and foremost, it is remarkable that the proposed approach,
which integrates the global information and local information,
obtained the best performance in comparison with those results
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TABLE II
OVERALL (OA) AND AVERAGE (AA) CLASSIFICATION ACCURACIES (IN PERCENT; AS A FUNCTION OF PARAMETER M , WITH FIXED λ = 0.5)

OBTAINED BY THE SVM-MLRsub-MRF METHOD FOR THE SYNTHETIC AND REAL DATA SETS CONSIDERED IN THE EXPERIMENTS.
THE BEST RESULTS ARE OUTLINED IN BOLD TYPEFACE

TABLE III
OVERALL (OA), AVERAGE (AA), AND INDIVIDUAL CLASS ACCURACIES (IN PERCENT), AND KAPPA STATISTIC (κ) OBTAINED BY DIFFERENT

METHODS WITH THE SYNTHETIC IMAGE DATA SET, USING A TOTAL OF 450 TRAINING SAMPLES (50 PER CLASS)

obtained only from the local (λ = 0) or global (λ = 1) infor-
mation. While λ ∈ [0.4, 0.6], the proposed approach obtained
very good results for all considered data sets (hence, a reason-
able setting is to assign equal weight to local information and
global information, i.e., λ = 0.5). For other suboptimal values
of λ, the obtained results are still better or comparable to those
obtained by using the local or global information alone.

Furthermore, Fig. 7(a) reveals that the results obtained for the
AVIRIS Indian Pines using the global information only (λ = 1)
are better than those obtained using the local information alone
(λ = 0). In turn, Fig. 7(b) reveals an opposite behavior for
the ROSIS Pavia University data. However, it is clear from
Fig. 7 that an intermediate value of λ (which is equivalent to
considering both local and global probabilities) leads to good
classification results in the two considered cases, particularly
when the value of M is low (this is expected, since the number
of mixtures in a given pixel is generally low). It can also be
seen in Fig. 7 that the value of M is more relevant for the
ROSIS Pavia University data than for the AVIRIS Indian Pines
data, which is related with the different spatial resolutions of
the considered scenes. From this experiment, we conclude that,

in the considered case studies, low values of M and values of
λ that ensure a good balance between local information and
global information lead to good classification results.

2) Experiment 2. Impact of Parameter M : In this experi-
ment, we perform an evaluation of the impact of parameter M
(controlling the number of class combinations) on the presented
approach. Table II shows the classification results obtained by
the proposed approach using different values of parameter M
for all of the considered data sets. For the real data, the best
results are obtained with M = 2, which means that most of the
pixels are either pure or made up of two mixing components.
This is a reasonable assumption since, in reality, most pixels
are made up by a mixture of a limited number of materials,
especially for images with high spatial resolution. However,
in our synthetic image experiments, the mixed pixels were
simulated in a way that pixels mixed by a higher number of
materials are present in the scene. As a result, in the synthetic
image experiments, better results can be obtained by using
higher values of M .

3) Experiment 3. Comparison With Other Methods: Table III
shows a comparison of the classification results obtained by
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TABLE IV
OVERALL (OA), AVERAGE (AA), AND INDIVIDUAL CLASS ACCURACIES, AND KAPPA STATISTIC (κ) OBTAINED BY DIFFERENT METHODS WITH THE

AVIRIS INDIAN PINES DATA SET, USING A TOTAL OF 697 TRAINING SAMPLES (50 PER CLASS, EXCEPT FOR VERY SMALL CLASSES)

the proposed approach (using different values of parameter M )
with regard to those provided by other methods for the synthetic
image data. Similarly, Tables IV and V show a comparison of
the presented approach to other methods using the AVIRIS In-
dian Pines and ROSIS Pavia University data sets, respectively.
In all cases, different values of parameter M were considered
for the proposed method, and parameter λ was set to 0.5.

Several conclusions can be obtained from the experiments
reported in Tables III–V. First and foremost, it is noticeable that
the MLRsub-MRF and SVM-MLRsub-MRF, which include
spatial information and also perform mixed pixel characteriza-
tion, outperform the SVM-MRF which does not characterize
mixed pixels. For instance, Table V reveals that the proposed
SVM-MLRsub-MRF approach obtained an OA of 92.68%,
which contrasts with the OA of 83.96% achieved by SVM-MRF
in the ROSIS Pavia University experiments. Similarly, Table III
also reveals an OA of about 9.5% larger than that obtained by
the SVM-MRF algorithm. However, the situation is different
for the experiments with the AVIRIS Indian Pines reported
in Table IV. Specifically, the MLRsub-MRF did not show a
significant improvement with regard to the SVM-MRF, and
consequently, the results obtained by the SVM-MLRsub-MRF

method are not significant. The main reason for this behavior
is the difference in the reference data for different classes
in the AVIRIS Indian Pines scene, which varies from 20 to
2468 pixels per class. For these data, we chose very limited
training sets, and the samples are not evenly distributed among
classes. For example, if we take one of the large classes such
as Soybeans-min till (which contains 2418 samples), we only
consider 50 samples for training, which is less than 0.02%
of this class. This number of training samples is not enough
to completely characterize the class, as it is also the case for
other similar classes such as Soybeans-no till and Soybeans-
clean till. Another problem observed in the classification of
this image is the fact that class Bldg-Grass-Tree-Drives is a
highly mixed class. Hence, it is not efficient to use the training
samples from this class in the subspace projection procedure,
and consequently, the classification accuracies for the methods
MLRsub-MRF and SVM-MLRsub-MRF are not significantly
increased with regard to other methods as it was the case in the
experiments with other data sets.

If we focus on the results reported in Table III in a fully
controlled environment, we can conclude that the class prob-
abilities estimated by the SVM classifier may not be fully
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TABLE V
OVERALL (OA), AVERAGE (AA), AND INDIVIDUAL CLASS ACCURACIES (IN PERCENT), AND KAPPA STATISTIC (κ) OBTAINED BY DIFFERENT

METHODS WITH THE ROSIS PAVIA UNIVERSITY DATA SET, USING A TOTAL OF 450 TRAINING SAMPLES (50 PER CLASS)

TABLE VI
STATISTICAL SIGNIFICANCE OF THE DIFFERENCES IN CLASSIFICATION ACCURACIES (MEASURED USING THE MCNEMAR’S TEST

IN [50]) FOR DIFFERENT METHODS WITH ALL OF THE CONSIDERED DATA SETS

reliable to be used in the MRF regularization procedure. This
is because of the nature of the SVM method, which is a hard
classifier. In turn, the MLRsub-MRF method better character-
ized noise and mixed pixels. However, the SVM-MLRsub-MRF
method provided the highest classification accuracies in this
experiment. For instance, in the synthetic experiment using
pure training samples, the OA achieved by the presented
method improved by 3.77% and 9.23% of the OA achieved by
the MLRsub-MRF and SVM-MRF, respectively. When mixed
training samples were used, the proposed SVM-MLRsub-MRF
algorithm obtained an OA of 79.73%, which is the best result
for this data set (4.40% and 10.05% higher than MLRsub-MRF
and SVM-MRF, respectively). This is because mixed training
samples are near the decision boundaries and can be very
effective in class discrimination.

If we now focus on Table V, we can observe that, in
this experiment, the pixelwise SVM classifier already pro-
vides high classification accuracies. However, including the
spatial–contextual information significantly improves the clas-

sification accuracies as it can be particularly observed in the
SVM-MLRsub-MRF method. Here, by using only 50 training
samples per class (in total 450 samples, which is a very low
number for this scene), the proposed algorithm obtained an OA
of 92.68%, which is 5.18% and 8.72% higher than MLRsub-
MRF and SVM-MRF, respectively.

In order to analyze the statistical significance of the results
obtained by the different compared methods, we have used
McNemar’s test [50]. In this test, a value of |Z| > 1.96 indi-
cates that there is a significant difference in accuracy between
two classification methods. The sign of Z is also a criterion to
indicate whether a first classifier is more accurate than a second
one (Z > 0) or vice versa (Z < 0). Table VI provides the re-
sults obtained for all of the considered (synthetic and real) data
sets. As it can be seen from Table VI, the differences in classifi-
cation accuracies between our proposed method (implemented
with parameters M = 2 and λ = 0.5) and the MLRsub-MRF
method are statistically significant. Compared to the SVM-
MRF method, SVM-MLRsub-MRF exhibits a statistically
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Fig. 8. Classification results and overall classification accuracies (in parentheses) obtained by different methods for the AVIRIS Indian Pines data set.

significant improvement in classification accuracies except for
the AVIRIS Indian Pines scene, in which the McNemar’s
test indicates that the performances of the two methods are
similar.

For illustrative purposes, Figs. 8 and 9 show some of the
obtained classification maps for the AVIRIS Indian Pines and
ROSIS Pavia University data sets, respectively. Each of the
maps corresponds to one out of the 30 Monte Carlo experi-
ments which were averaged to produce the results, respectively,
reported in Tables IV and V. As shown in Figs. 8 and 9, good
classification results with adequate class delineation and spatial
consistency can be observed for the presented method (which
was run in both cases using M = 2 and λ = 0.5) in comparison
to other approaches.

4) Experiment 4. Impact of the Number of Training Samples:
In this experiment, we first conduct an evaluation of the impact
of the number of training samples on the proposed approach,
using the two real data sets and fixing parameters M = 2 and
λ = 0.5. Table VII shows the classification accuracies obtained
by the presented method as a function of the number of training
samples per class (where the total number of training samples
is given in parentheses). In the case of the ROSIS Pavia Uni-
versity scene, we also performed an experiment using all of the
available training samples (3921) in order to establish an upper
bound to the presented results and to explore if, with a more
limited training set, the results are indeed close to that bound.

The results reported in Table VII show that, for the AVIRIS
Indian Pines data, we only need 40 training samples per class
(for a total of 570) in order to achieve an OA of around 90.00%
(and AA larger than 93%). For the ROSIS Pavia University
data, we only need less than 40 samples per class in order

to obtain an OA of 90%. This is remarkable, as sometimes
it is very difficult to collect large training sets in practice.
Table VII also reveals that the presented method provided
results which are comparable to those provided by the SVM-
MRF and superior than those provided by MLRsub-MRF with
the AVIRIS Indian Pines data. For the ROSIS Pavia University
data, the proposed approach obtained an OA of 94.57% using
only 80 training samples per class (for a total of 720 samples).
This result is quite close to the upper bound result, obtained
using all available (3921) training samples for this scene. In
fact, this result is 4.32% higher than the results provided by
MLRsub-MRF and 9.89% higher than the results provided by
the SVM-MRF. This leads to two main observations. First,
by including the local information, the SVM-MLRsub-MRF
greatly improved the performance obtained by the MLRsub-
MRF algorithm which only considers the global information.
A second observation is that the methods that characterize
mixed pixels, i.e., MLRsub-MRF and SVM-MLRsub-MRF,
can outperform the methods that do not incorporate mixed
pixel characterization, even for scenes collected at high spatial
resolution.

To conclude this section, Fig. 10 compares the perfor-
mances of the methods: SVM-MRF, MLRsub-MRF, and SVM-
MLRsub-MRF in 30 Monte Carlo runs conducted for different
random sets of training sample sets for the two real hyperspec-
tral scenes (AVIRIS Indian Pines, at the top of the figure, and
ROSIS Pavia University, at the bottom of the figure). In order to
establish a fair comparison, in each iteration, the same training
set is used by all three methods. As Fig. 10 shows, when
compared with MLRsub-MRF, the proposed method shows
more uniform results and appears less sensitive to the quality of
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Fig. 9. Classification results and overall classification accuracies (in parentheses) obtained by different methods for the ROSIS Pavia University data set.

training samples. When compared with SVM-MRF, the pro-
posed method shows slightly superior results for the AVIRIS
Indian Pines scene and consistently better performance for the
Pavia University scene. Again, we reiterate that the SVM-
MLRsub method takes the advantages of both SVM and
MLRsub and can compensate the situation in which one of
the methods does not provide good performance by taking
advantage of the other method. This is also the reason why
the proposed SVM-MLRsub-MRF method can provide good
performance in those cases in which none of the methods SVM-
MRF and MLRsub-MRF exhibits good classification accura-
cies. This is the case, for instance, in iterations 6, 13, and 25 for
the ROSIS Pavia University experiments reported in Fig. 10.

V. CONCLUSION AND FUTURE RESEARCH LINES

In this paper, we have introduced a novel spectral–spatial
classifier for hyperspectral image data. The proposed method
is based on the consideration of both global posterior probabil-
ity distributions and local probabilities which result from the

whole image and a set of previously derived class combina-
tion maps, respectively. The proposed approach, which intends
to characterize mixed pixels in the scene and assumes that
these pixels are normally mixed by only a few components,
provides some distinguishing features with regard to other
existing approaches. At the local learning level, the presented
method removes the impact of irrelevant classes by means of a
preprocessing stage (implemented using the probabilistic SVM)
intended to produce a subset of M most probable classes for
each pixel.

This stage locally eliminates noise and enhances the impact
of the most relevant classes. These aspects, together with the
joint characterization of mixed pixels and spatial–contextual
information, make our method unique and representative of a
framework that, for the first time in the literature, integrates
local and global probabilities in the analysis of hyperspectral
data in order to constrain the number of mixing components
used in the characterization of mixed pixels. This is consistent
with the observation that, despite the presence of mixed pixels
in real hyperspectral scenes, it is reasonable to assume that the
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TABLE VII
OVERALL (OA) AND AVERAGE (AA) ACCURACY (IN PERCENT) AS A FUNCTION OF THE NUMBER OF TRAINING SAMPLES PER CLASS FOR THE

SVM-MLRsub-MRF METHOD, WHERE THE TOTAL NUMBER OF TRAINING SAMPLES IS GIVEN IN PARENTHESES

Fig. 10. Comparison of the performances of the methods: SVM-MRF, MLRsub-MRF, and SVM-MLRsub-MRF in 30 Monte Carlo runs conducted for different
random sets of training sample sets for the two real hyperspectral scenes: (top) AVIRIS Indian Pines and (bottom) ROSIS Pavia University. In each run, the same
training set is used by all three methods.

mixing components in a given pixel are limited. Our experi-
mental results, conducted using both synthetic and real hyper-
spectral scenes widely used in the hyperspectral classification
community, indicate that the proposed approach leads to state-
of-the-art performance when compared with other approaches,

particularly in scenarios in which very limited training samples
are available.

As future research, we are currently developing a version of
the presented algorithm in which parameter M is adaptively
estimated for each pixel rather than set in advance as in the
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version of the algorithm reported in this paper. Interestingly,
we have empirically observed that the adaptive selection pro-
duces similar results to those obtained in this work with fixed
parameter settings such as M = 2 or M = 3, which result in
much lower computational cost than an adaptive estimation of
the parameter on a per-pixel basis. As a result, we will continue
exploring the possibility to select this parameter adaptively
in order to improve the obtained classification results without
increasing computational complexity, which currently stays on
the same order of magnitude as the other methods used in the
comparisons reported in this work. In future developments, we
will further explore the relationship between the parameters
of our method and the spatial resolution, level of noise, and
complexity of the analyzed scenes. We are also planning on
exploring the applications of the presented method for the
analysis of multitemporal data sets.

ACKNOWLEDGMENT

The authors would like to thank Prof. D. Landgrebe for mak-
ing the AVIRIS Indian Pines hyperspectral data set available
to the community, Prof. P. Gamba for providing the ROSIS
data over University of Pavia, Pavia, Italy, along with the
training and test sets, and the Associate Editor who handled
this paper and the three anonymous reviewers for providing
truly outstanding comments and suggestions that significantly
helped in improving the technical quality and presentation of
this paper.

REFERENCES

[1] C.-I. Chang, Hyperspectral Data Exploitation: Theory and Applications.
New York, NY, USA: Wiley, 2007.

[2] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sens-
ing. Hoboken, NJ, USA: Wiley, 2003.

[3] J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis., 4th ed.
Berlin, Germany: Springer-Verlag, 2006.

[4] A. Plaza, J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone,
G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, J. A. Gualtieri,
M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in tech-
niques for hyperspectral image processing,” Remote Sens. Environ.,
vol. 113, no. S1, pp. 110–122, Sep. 2009.

[5] R. A. Schowengerdt, Remote Sensing: Models and Methods for Image
Processing, 3rd ed. New York, NY, USA: Academic, 2007.

[6] L. Samaniego, A. Bardossy, and K. Schulz, “Supervised classification of
remotely sensed imagery using a modified k-NN technique,” IEEE Trans.
Geosci. Remote Sens., vol. 46, no. 7, pp. 2112–2125, Jul. 2008.

[7] S. Subramanian, N. Gat, M. Sheffield, J. Barhen, and N. Toomarian,
“Methodology for hyperspectral image classification using novel neural
network,” in Proc. SPIE Algorithms Multispectr. Hyperspectr. Imagery
III, Aug. 1997, vol. 3071, pp. 128–137.

[8] H. Yang, F. V. D. Meer, W. Bakker, and Z. J. Tan, “A back-propagation
neural network for mineralogical mapping from AVIRIS data,” Int. J.
Remote Sens., vol. 20, no. 1, pp. 97–110, Jan. 1999.

[9] C. Hernández-Espinosa, M. Fernández-Redondo, and J. Torres-Sospedra,
“Some experiments with ensembles of neural networks for classification
of hyperspectral images,” in Proc. ISNN, 2004, vol. 1, pp. 912–917.

[10] G. M. Foody and A. Mathur, “The use of small training sets containing
mixed pixels for accurate hard image classification: Training on mixed
spectral responses for classification by a SVM,” Remote Sens. Environ.,
vol. 103, no. 2, pp. 179–189, Jul. 2006.

[11] J. A. Gualtieri and R. F. Cromp, “Support vector machines for hyper-
spectral remote sensing classification,” in Proc. SPIE, 1998, vol. 4584,
pp. 506–508.

[12] C. Huang, L. S. Davis, and J. R. Townshend, “An assessment of sup-
port vector machines for land cover classification,” Int. J. Remote Sens.,
vol. 23, no. 4, pp. 725–749, Feb. 2002.

[13] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sens-
ing images with support vector machines,” IEEE Trans. Geosci. Remote
Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[14] G. Camps-Valls and L. Bruzzone, “Kernel-based methods for hyperspec-
tral image classification,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 6, pp. 1351–1362, Jun. 2005.

[15] J. Li, J. Bioucas-Dias, and A. Plaza, “Hyperspectral image segmentation
using a new Bayesian approach with active learning,” IEEE Trans. Geosci.
Remote Sens, vol. 49, no. 10, pp. 3947–3960, Oct. 2011.

[16] A. Villa, J. Chanussot, J. A. Benediktsson, and C. Jutten, “Spectral un-
mixing for the classification of hyperspectral images at a finer spatial
resolution,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 521–
533, Jun. 2011.

[17] X. Jia, C. Dey, D. Fraser, L. Lymburner, and A. Lewis, “Controlled
spectral unmixing using extended support vector machines,” in Proc. 2nd
WHISPERS, Reykjavik, Iceland, Jun. 2010, pp. 1–4.

[18] J. Li, J. Bioucas-Dias, and A. Plaza, “Spectral–spatial hyperspectral image
segmentation using subspace multinomial logistic regression and Markov
random fields,” IEEE Trans. Geosci. Remote Sens, vol. 50, no. 3, pp. 809–
823, Mar. 2012.

[19] P. C. Smits, “Multiple classifier systems for supervised remote sensing
image classification based on dynamic classifier selection,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 4, pp. 801–813, Apr. 2002.

[20] J. A. Benediktsson, J. Chanussot, and M. Fauvel, “Multiple classifier
systems in remote sensing: From basics to recent developments,” in Proc.
Multiple Classif. Syst., 2007, vol. 4472, pp. 501–512.

[21] G. M. Foody, D. S. Boyd, and C. Sanchez-Hernandez, “Mapping a specific
class with an ensemble of classifiers,” Int. J. Remote Sens., vol. 28, no. 8,
pp. 1733–1746, Apr. 2007.

[22] P. Du, J. Xia, W. Zhang, K. Tan, Y. Liu, and S. Liu, “Multiple classi-
fier system for remote sensing image classification: A review,” Sensors,
vol. 12, no. 4, pp. 4764–4792, Apr. 2012.

[23] J. Ham, Y. Chen, and M. M. Crawford, “Investigation of the random forest
framework for classification of hyperspectral data,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 3, pp. 492–501, Mar. 2005.

[24] J. C.-W. Chan and D. Paelinckx, “Evaluation of random forest and ad-
aboost tree-based ensemble classification and spectral band selection for
ecotope mapping using airborne hyperspectral imagery,” Remote Sens.
Environ., vol. 112, no. 6, pp. 2299–3011, Jun. 2008.

[25] S. Kumar, J. Ghosh, and M. M. Crawford, “Hierarchical fusion of multiple
classifiers for hyperspectral data analysis,” Pattern Anal. Appl., vol. 5,
no. 2, pp. 210–220, Jun. 2002.

[26] X. Ceamanos, B. Waske, J. A. Benediktsson, J. Chanussot, M. Fauvel, and
J. R. Sveinsson, “A classifier ensemble based on fusion of support vector
machines for classifying hyperspectral data,” Int. J. Image Data Fusion,
vol. 1, no. 4, pp. 293–307, Dec. 2010.

[27] R. Kettig and D. Landgrebe, “Classification of multispectral image data
by extraction and classification of homogenous objects,” IEEE Trans.
Geosci. Electron., vol. GE-14, no. 1, pp. 19–26, Jan. 1976.

[28] H. Ghassemian and D. Landgrebe, “Object-oriented feature extraction
method for image data compaction,” IEEE Control Syst. Mag., vol. 8,
no. 3, pp. 42–48, Jun. 1988.

[29] S. M. de Jong and F. D. van der Meer, Remote Sensing Image Analysis:
Including the Spatial Domain. Norwell, MA, USA: Kluwer, 2004.

[30] Y. Wang, R. Niu, and X. Yu, “Anisotropic diffusion for hyperspectral
imagery enhancement,” IEEE Sensors J., vol. 10, no. 3, pp. 469–477,
Mar. 2010.

[31] S. Velasco-Forero and V. Manian, “Improving hyperspectral image clas-
sification using spatial preprocessing,” IEEE Geosci. Remote Sens. Lett.,
vol. 6, no. 2, pp. 297–301, Apr. 2009.

[32] van der Linden, A. Janz, B. Waske, M. Eiden, and P. Hostert, “Classifying
segmented hyperspectral data from a heterogeneous urban environment
using support vector machines,” J. Appl. Remote Sens., vol. 1, no. 1,
p. 013543, Mar.–Oct. 2007.

[33] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spec-
tral and spatial classification of hyperspectral data using SVMs and mor-
phological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11,
pp. 3804–3814, Nov. 2008.

[34] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed.
London, U.K.: Springer-Verlag, 2009.

[35] A. Farag, R. Mohamed, and A. El-Baz, “A unified framework for map
estimation in remote sensing image segmentation,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 7, pp. 1617–1634, Jul. 2005.

[36] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “SVM
and MRF-based method for accurate classification of hyperspectral im-
ages,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736–740,
Oct. 2010.



KHODADADZADEH et al.: HYPERSPECTRAL DATA CLASSIFICATION USING LOCAL AND GLOBAL PROBABILITIES 6313

[37] J. Li, J. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectral im-
age segmentation using multinomial logistic regression with active learn-
ing,” IEEE Trans. Geosci. Remote Sens, vol. 48, no. 11, pp. 4085–4098,
Nov. 2010.

[38] M.-D. Iordache, J. Bioucas-Dias, and A. Plaza, “Sparse unmixing of
hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6,
pp. 2014–2039, Jun. 2011.

[39] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multiclass
classification by pairwise coupling,” J. Mach. Learn. Res., vol. 5, pp. 975–
1005, Dec. 2004.

[40] V. Vapnik and A. Chervonenkis, “The necessary and sufficient condi-
tions for consistency in the empirical risk minimization method,” Pattern
Recognit. Image Anal., vol. 1, no. 3, pp. 283–305, 1991.

[41] C.-J. Lin, H.-T. Lin, and R. C. Weng, “A note on Platt’s probabilistic
outputs for support vector machines,” Dept. Comput. Sci., Nat. Taiwan
Univ., Taipei, Taiwan, 2003.

[42] C. Chang and C. Lin, LIBSVM: A Library for Support Vector Machines
2009. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[43] D. Böhning, “Multinomial logistic regression algorithm,” Ann. Inst. Stat.
Math., vol. 44, no. 1, pp. 197–200, Mar. 1992.

[44] P. Clifford, “Markov random fields in statistics,” in Disorder in Physical
Systems: A Volume in Honour of John M. Hammersley. Oxford, U.K.:
Clarendon, 1990, pp. 19–32.

[45] Y. Boykov, O. Veksler, and R. Zabih, “Efficient approximate energy mini-
mization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 11, pp. 1222–1239, Nov. 2001.

[46] J. A. Benediktsson and P. H. Swain, “Consensus theoretic classification
methods,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 4, pp. 688–704,
Jul./Aug. 1992.

[47] J. A. Benediktsson and I. Kanellopoulos, “Classification of multisource
and hyperspectral data based on decision fusion,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 3, pp. 1367–1377, May 1999.

[48] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson,
B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis,
M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Envi-
ron., vol. 65, no. 3, pp. 227–248, Sep. 1998.

[49] J. Nascimento and J. Bioucas-Dias, “Vertex component analysis: A fast
algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 4, pp. 898–910, Apr. 2005.

[50] G. M. Foody, “Thematic map comparison: Evaluating the statistical sig-
nificance of differences in classification accuracy,” Photogramm. Eng.
Remote Sens., vol. 70, no. 5, pp. 627–633, May 2004.

Mahdi Khodadadzadeh (S’10) received the B.Sc.
degree in electrical engineering from the Sadjad
Institute of Higher Education, Mashhad, Iran, in
2008 and the M.Sc. degree from Tarbiat Modares
University, Tehran, Iran, in 2011. He is currently
working toward the Ph.D. degree in the Hy-
perspectral Computing Laboratory (HyperComp),
Department of Technology of Computers and Com-
munications, Escuela Politécnica, University of
Extremadura, Cáceres, Spain.

His research interests include remote sensing, pat-
tern recognition, and signal and image processing, with particular emphasis on
spectral and spatial techniques for hyperspectral image classification.

Mr. Khodadadzadeh is a manuscript reviewer of the IEEE GEOSCIENCE

AND REMOTE SENSING LETTERS.

Jun Li (M’13) received the B.S. degree in geo-
graphic information systems from Hunan Normal
University, Changsha, China, in 2004, the M.E.
degree in remote sensing from Peking University,
Beijing, China, in 2007, and the Ph.D. degree in
electrical engineering from the Instituto de Tele-
comunicações, Instituto Superior Técnico (IST),
Universidade Técnica de Lisboa, Lisbon, Portugal,
in 2011.

From 2007 to 2011, she was a Marie Curie Re-
search Fellow with the Departamento de Engenharia

Electrotécnica e de Computadores and the Instituto de Telecomunicações, IST,
Universidade Técnica de Lisboa, in the framework of the European Doctorate
for Signal Processing (SIGNAL). She has also been actively involved in the
Hyperspectral Imaging Network, a Marie Curie Research Training Network
involving 15 partners in 12 countries and intended to foster research, training,
and cooperation on hyperspectral imaging at the European level. Since 2011,
she has been a Postdoctoral Researcher with the Hyperspectral Computing
Laboratory, Department of Technology of Computers and Communications,
Escuela Politécnica, University of Extremadura, Cres, Spain. She has been
a Reviewer of several journals, including the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING, IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS, Pattern Recognition, Optical Engineering, Journal of
Applied Remote Sensing, and Inverse Problems and Imaging. Her research
interests include hyperspectral image classification and segmentation, spectral
unmixing, signal processing, and remote sensing.

Dr. Li received the 2012 Best Reviewer Award of the IEEE JOURNAL
OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE
SENSING.

Antonio Plaza (M’05–SM’07) is an Associate Pro-
fessor (with accreditation for Full Professor) with
the Department of Technology of Computers and
Communications, University of Extremadura, Cres,
Spain, where he is the Head of the Hyperspectral
Computing Laboratory (HyperComp). He was the
Coordinator of the Hyperspectral Imaging Network,
a European project with a total funding of 2.8 MEuro
(2007–2011). He is the author of more than 370
publications, including more than 100 JCR journal
papers (60 in IEEE journals), 20 book chapters, and

over 230 peer-reviewed conference proceeding papers (90 in IEEE confer-
ences). He has been the Guest Editor of seven special issues of JCR journals
(three in IEEE journals).

Prof. Plaza was the Chair of the IEEE Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing in 2011. He was a recipient
of the recognition of Best Reviewers of the IEEE Geoscience and Remote
Sensing Letters in 2009 and a recipient of the recognition of Best Reviewers
of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING in
2010, a journal for which he served as Associate Editor in 2007–2012. He
is also an Associate Editor of IEEE ACCESS and IEEE GEOSCIENCE AND
REMOTE SENSING MAGAZINE. He was a member of the Editorial Board of
the IEEE GEOSCIENCE AND REMOTE SENSING NEWSLETTER in 2011–2012
and a member of the steering committee of the IEEE JOURNAL OF SELECTED
TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING in
2012. He served as the Director of Education Activities of the IEEE Geoscience
and Remote Sensing Society (GRSS) in 2011–2012, and he has been the
President of the Spanish Chapter of IEEE GRSS since November 2012. He
has been the Editor-in-Chief of the IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING since January 2013.

Hassan Ghassemian (M’99–SM’06) was born in
Iran in 1956. He received the B.S.E.E. degree from
Tehran College of Telecommunication, Tehran, Iran,
in 1980 and the M.S.E.E. and Ph.D. degrees from
Purdue University, West Lafayette, IN, USA, in 1984
and 1988, respectively.

Since 1988, he has been with Tarbiat Modares
University, Tehran, Iran, where he is a Professor of
electrical and computer engineering. He has pub-
lished more than 300 articles in peer-reviewed jour-
nals and conference papers. He has trained more than

100 M.S. and Ph.D. students who have assumed key positions in software and
computer system design applications related to signal and image processing
in the past 25 years. His research interests focus on multisource signal/image
processing, information analysis, and remote sensing.



6314 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 10, OCTOBER 2014

José M. Bioucas-Dias (S’87–M’95) received the
B.S.E.E., M.Sc., Ph.D., and “Agregado” degrees in
electrical and computer engineering from Instituto
Superior Técnico (IST), Technical University of
Lisbon (TULisbon), Lisbon, Portugal, in 1985, 1991,
1995, and 2007, respectively.

Since 1995, he has been with the Department of
Electrical and Computer Engineering, IST, where
he was an Assistant Professor from 1995 to 2007
and where he has been an Associate Professor since
2007. Since 1993, he has also been a Senior Re-

searcher with the Pattern and Image Analysis Group, Instituto de Telecomuni-
cações, which is a private nonprofit research institution. His research interests
include inverse problems, signal and image processing, pattern recognition,
optimization, and remote sensing.

Dr. Bioucas-Dias was an Associate Editor of the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS (1997–2000). He is an Associate Editor of
the IEEE TRANSACTIONS ON IMAGE PROCESSING and IEEE TRANSAC-
TIONS ON GEOSCIENCE AND REMOTE SENSING. He was a Guest Editor
of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING for
the Special Issue on Spectral Unmixing of Remotely Sensed Data and of
the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVA-
TIONS AND REMOTE SENSING for the Special Issue on Hyperspectral Image
and Signal Processing. He is a Guest Editor of the IEEE SIGNAL PROCESSING

MAGAZINE for the Special Issue on Signal and Image Processing in Hyper-
spectral Remote Sensing. He was the General Cochair of the 3rd IEEE GRSS
Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote
Sensing (WHISPERS’2011), and he has been a member of program/technical
committees of several international conferences.

Xia Li received the B.S. and M.S. degrees from
Peking University, Beijing, China, and the Ph.D.
degree in geographical information sciences from the
University of Hong Kong, Hong Kong.

He is a Professor and the Director of the Centre
for Remote Sensing and Geographical Information
Sciences, School of Geography and Planning, Sun
Yat-Sen University, Guangzhou, China. He is also a
Guest Professor with the Department of Geography,
University of Cincinnati, Cincinnati, OH, USA. He
got the ChangJiang scholarship and the award of the

Distinguished Youth Fund of NSFC in 2005. He is currently on the edito-
rial boards of several international journals including International Journal
of Geographical Information Science, Computers, Environment and Urban
Systems, and GeoJournal. He is an Associate Editor of a Chinese journal
Tropical Geography. He has about 200 articles, of which many appeared in
international journals. His papers are widely published in top international
GIS and remote sensing journals, such as Remote Sensing of Environment,
International Journal of Remote Sensing, Photogrammetric Engineering &
Remote Sensing, International Journal of Geographical Information Science,
Environment and Planning A, and Environment and Planning B. His major
research interests include the development of urban cellular automata and
agent-based models for simulating urban growth and land use changes. Some
of his researches focus on the development of methodologies for calibrating
these simulation models. Recently, he has carried out the researches on using
ant intelligence for spatial optimization. His other researches include the use of
radar remote sensing for urban applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


