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Abstract— This paper introduces Bayesian supervised and based on SAR images has bee approached by many authors
unsupervised segmentation algorithms aimed at oceanic segmen-yith the referred to classification-segmentation scheese{sr
tation of SAR images. The data term,i.e, the density of the gyample [3]): the SAR image is first segmented and then the
observed backscattered signal given the region, is modeled byclassification is focused on the regions with lower scattgri
a finite mixture of Gamma densities with a given predefined o g
number of components. To estimate the parameters of the classthe classifier then computes a number of features from these
conditional densities, a new expectation maximization algorithm regions including shape, moments, scale parameters,3tc. [
was developed. The prior is a multi-level logistic Markov ran-  pased on which a decision on whether the region corresponds
dom field enforcing local continuity in a statistical sense. The to oil or look-alike is taken. We should refer. however

smoothness parameter controlling the degree of homogeneity A licati h tati f ic SAR |
imposed on the scene is automatically estimated, by computing n application where segmentation or oceanic im-

the evidence with loopy belief propagation; the classical coding @ges is important is oil spill detection. In fact, many ap-
and least squares fit methods are also considered. The maximumproaches to this issue have been proposed in recent years.

a posteriori segmentation is computed efficiently by means of Most of them follow the described segmentation-classificat
recent graph-cut techniques, namely thex-Expansion algorithm — gryctyre, although other methods exist that do not, like fo

that extends the methodology to an optional number of classes. le k l-based v detect A . f
The effectiveness of the proposed approaches is illustrated with example kernel-based anomaly detectors [4]. review o

simulated images and real ERS and Envisat scenes containingSAR segmentation techniques for oil spill detection can be
oil spills. found in [3]. The present work, which is an elaboration of
Index Terms—Oceanic SAR images, Segmentation, Markov our previous Works 51, [6_]' (71, des_cribes glgorithms for
Random Fields, Energy minimization, Graph cuts, Mixture of the segmentation of dark signatures in oceanic SAR images,
Gammas, Oil spills. following a Bayesian approach. The adopted technique ises a
data model a finite Gamma mixture, with a given predefined
number of components, for modeling each class density. In
fact, this density is well suited to filtered intensity SARages
I. INTRODUCTION as showne.g, in [8] and in [9]. By using a mixture, we aim at
. ) o describing the continuous backscattering variabilityt tmey
A wide number of oceanic phenomena become visible g observed in the SAR sea data. Moreover, a mixture is able
SAR images as they have distinct scattering charactesjstiy gescribe densities presenting more than one maximum, as
namely the sea surface roughness and thus the normaliged the case of oceanic multi-look SAR images histograms.

radar cross section (NRCS). Among these phenomena gf§s cannot be achieved by none of the statistical models for
gravity waves, convective cells, oceanic internal wavesent - gaR intensities proposed in the literature, like for exagnpl
and coastal fronts, eddies, upwelling processes, ships\ah® 5y of the Pearson distributions.

oil pollution [1]. The automatic detection of these sigmatuis In this work we propose two supervised and one unsu-
of outmost interest for a panoply of ocean monitoring SysteMyervised algorithm. The supervised algorithms demand an
both for security, for commercial and for research applit&t  jnteraction with the user that manually selects a region- con
An example of an automated ocean feature detection sche@ging pixels from the dark signature of interest and aarg
able to detect fronts, ice edges and polar lows, is desc"bedcontaining water pixels. These regions should be reprateat

[2]. Another example is the Ocean Monitoring Workstatiogng can be made up of different not connected parts. The

(OMW), developed by the company Satlantic. Usually, thgnsupervised algorithm is an improvement of the supervised
first two steps of the processing chains of such systems gt and is completely automatic.

segmentation followed by classification. The SegmentationTg estimate the parameters of the class conditional dessiti
step computes a set of regions defining an image partitigney expectation maximization (EM) algorithm was devel-
where the features of each region, for example the grayslev%%ed_ Details are described in appendix. When segmenting

aresimilarin some sense. The classification focus then on eaghya|| sub-scenes of the image, a simplified data model with
region attaching a label to it. For example, oil spill def@ut op)y one Gamma function per class can be used.

. . _ The prior used to impose local homogeneity is a multi-
This work was supported by the Fun@acpara a @Gncia e Tecnologia, | | logistic (MLL del Mark d field (MRF) 110
under the grant PDCTE/CPS/49967/2003 and by the Europeace3xgency, eye ogistic ( ).mo el Markov ran om e - ( ) [10],

under the grant ESA/C1:2422/2003. with 2nd order neighborhood. To infer the prior smoothness

The authors are with Instituto de Telecomuni@eg and Instituto Su- nharameter controling the degree of scene homogeneity, we
perior Técnico, Av. Rovisco Pais, Torre Norte, Piso 10, 1049-001- Lisp ’

boa, Portugal (emailbioucas, soniap@Ix.itpt, tel-+3512184184@,7), develop an EM algorithm that uses loopy believe propagation
fax:+351218418472). (LBP) [11]. We have also exploited different classic estiora



methods, namely the least squares fit (LSF) and the codiBg Contributions

method (CD) (see [10] for details) for comparison. ~ We approach oil spill segmentation using a Bayesian frame-

To infer the labels, we adopt the maximum a posteriQfork and a multi-level Logistic (MLL) prior. Several methed
(MAP) criterion, which we implement efficiently and exactlyin the same vein have been proposed since the seminal work of
with graph-cut techniques [12]. Geman and Geman [19], seeg, [20]. Applications of these

Although the segmentation of oceanic dark patches jigeas in the segmentation of SAR images can be foerg,
typically based on the assumption of two classes, we haye[21], [22], [23].
generalized the problem to an optional number of classes. Th The main contributions of this work to the state-of-art ih oi
underlying integer optimization problem is now attackedwi gpjj| segmentation are the following:
the graph-cut based-Expansion algorithm [13].

To evaluate the accuracy of the proposed algorithms, differ *
ent simulations addressing both the referred Gamma model as
well as intensity images corrupted with Gaussian noise have
been carried out for error rate assessment. .

The algorithms have also been applied to real SAR images
containing well documented oil spills. For doing so, thersse
are divided in tiles and segmented individually.

the development of an EM algorithm to estimate the

parameters of a mixture of a pre-defined number of

Gamma distributions, in order to model the intensities

in a SAR image

the development of an EM algorithm using LBP to

estimate the smoothness parameter in the MRF used as

pior in our framework

« the application of recent graph-cut techniques for solving
the energy minimization problem that arises from the

A. Related Work followed Bayesian methodology.

the design of a semisupervised algorithm for oil spill

Relat roaches to the problem of oil spill segmentation® :
elated approaches to the problem of oil spill segmentatio segmentation supported on the tools referred to above.

are built on off-the-shelf segmentation algorithms suclhas
adaptive image thresholdingnd thehysteresis thresholding
Entropy methods based on the maximum descriptive lendth Paper Organization

(MDL) and wavelet based approaches have also been proTpe article is organized as follows: Section 1 introduces
posed. Another recently proposed segmentation methoglolage problem, with references to related work and giving the
applies Hidden Markov Chains (HMC) to a multiscale reprenain contributions of the present work; Section 2 overviews
sentation of the original image. Hereby the wavelet coeffits  the Bayesian methodology that builds the base to the prdpose
are statistical characterized by the Pearson system and a%’orithms. In addition, it briefly reviews the concept of th+
the the generalized Gaussian family [14]. When other SARxpansion technique that has been implemented to gereraliz
products are available, for example polarimetric datagoththe methodology to an optional number of classes; Section 3
methods have been described in the literature, like cohst@ascribes the used parameter estimation techniquespBecti
false alarm rate filters [15]. describes the supervised segmentation algorithms; ®ebtio
An example of an elaborated adaptive thresholding tec§escribes the unsupervided algorithm and Section 6 present
nique is provided by [16]. In this method, an image pyramigbsults of segmenting simulated and real images applyieg th
is created by averaging pixels in the original image. Froggorithms proposed in Section 4 and 5; Finally Section 7
the original image, the next level in the pyramid is createghntains the main conclusions and future work remarks. The
with half the pixel size of the original image. A thresholdyticle also includes an appendix where the referred to EM
is then computed for each level based on local estimatesdpéorithm, developed to estimate the parameters of thes clas

the roughness of the surrounding sea and on a look-up taghditional densities of the Gamma mixture data model, is
containing experimental values obtained from a trainintrdadescribed.

set.

Hysteresis thresholding has been used as the base for
detecting oil slicks in [17]. The method includes two steps: )
applying a so-called directional hysteresis thresholgbigT) A Bayesian Approach

Il. PROBLEM FORMULATION

and performing the fusion of the DHT responses using alet £ := {1,...,¢} be a set ofc classes andP :=
Bayesian operator. The MDL technique, which basically codd,2,..., N} be the set of N pixels (sites) where mea-
sists in applying information theory in order to find thesurementsy := {y1,v2,...,yn}, the SAR intensities, are

image description which has the lowest complexity, has beawailable. A labelinge := {1, z2,... 2y} IS @ mapping from
applied in [18] to segment speckled SAR images, namely thaBeto L, i.e, it assigns to each pixel € P a labelx, € L.
containing oil slicks. This segmentation method descrthes Any labelingz can be uniquely represented by a partition of
image as a polygonal grid and determines the number iofage pixelsP = {P|l € L}, whereP;, = {p € P|z, =1} is
regions and the location of the nodes that delimit the regiorthe subset of pixels to which the labkehave been assigned.
The two-dimensional wavelet transform, used as a bandp&isce there is an one-to-one correspondence betweermigbeli
filter to separate processes at different scales, has ako be and partitionsP, we use these notions interchangeably. By
adopted to oil slick detection in the framework of an aldurit applying a segmentation algorithm to the image y, we get
for automated detection and tracking of mesoscale featutes= {Z1,22...2n}, Whereg; is the inferred label for pixel
from satellite imagery. [2]. 1€ P.



B. Observation Model MREF, P (x); more specifically, by an MLL model (Ising model
In our problem formulation, we assume conditional inde? the case of two classes). The Markov property assumes that
pendence of the measurements given the lahels,

p (x| 25,5 € P) =p (x| x5,5 € Ni), (4)
N c
pyle) = [ pwilz:) = T T plwileh), (1) where N; is the set of neighbors of sitei. If
i=1 I=1i€P, p(zi| xj,7€N;) > 0, then the Hammersley-Clifford
where p(-|¢!) is the density corresponding to classind ¢; 'gjhfﬁgﬁ?onstates thap(z) has the form of the Gibbs
the correspondent vector of parameters. The adopted ylensf 1
is a finite Gamma mixture given by p(z) = = exp V@), (5)
K . ., . .
whereZ is the so called partition function arid is the ener
p(ile) = > al pyill), @ o P v
s=1
where K is the number of Gamma modes in the mixture, Ulw) = ;CVCZ (@), ©)

i indexes the pixel, and, for the clagsf’, is the vector of
parameters of the Gamma mode and o is the a priori where( is the set of cliques ant,; (z) is the clique potential
probability of modes. We denoted’ := (0},...,0%), ol :== defined over cliquel. In this work, we have pair-wise cliques
(af,...,ak), and¢' == (o, 0"). defined on a second-order neighborhood (8 pixels). That is,
Given thatp(y;|6.) is Gamma distributed, we have then C = {(,j) :i € N}, j € N;, i > j}.

In these conditions, the MLL clique potentials, in the

l
l (/\i)as al—1 l . . . .
, = Te X, S > isotropic case, is given b
p (1:l6%) T (al) ¥ exp (=Awi), % >0, (3) p 9 y
where ¢! := (al,\). The mean and variance of a random Vet (@, 25) = =30 (@r — ), (7)
variable with the density (3) is, respectively’/\, and

wherer,s € ¢l, §(x) := Iy(x) is the indicator function of

L7\)2
a,/(Xs) " . , set {0}, and parametef > 0 controls the degree of scene
The mixture parameterg’ are estimated from the datahomogeneity

by applying the EM Gamma mixture estimation algorithm

described in Appendix. The procedure is the same both for

the supervised and for the unsupervised algorithms. D. Maximum a Posteriori Estimate
We now make a brief comment on our choice of the Gamma

mixture for modeling the observation densities. Under the

assumption of fully developed speckle, the complex radar

amplitude is zero-mean circular Gaussian distributed. [2Zhg p(zly) < p(ylz)p (). (8)

average intensity computed over a number of independgftyrger to infers, we adopt the MAP criterion. This amounts

random variables with the same density is, thus, Gamma maximize the posterior density of the labeling given the
distributed. It happens, however, that in sea SAR imaginfyserved data:

one or more of the above assumptions may fail, rendering . 9
the Gamma density a poor model for SAR intensity [14]. A & = argmaxp (z[y), ©)

line of attack to obtain better models is to use more flexible

parametric families, such as the Pearson System [25, Ch. A?Td is equivalent to minimize the negative logarithm of (8).

(see also [9]). However, in our problem each class densm}s sense, we may rewrite the problem in the following way:

exhibits much more variability than that of accommodated
by the the Pearson System. We have very often, for exam-
ple, multi-modal densities. We should resort, therefore, Luhere
a mixture of Pearson System densities, what would lead to ‘o
complex learning procedures. We have experimentally ob- E(zy,...,zn) = —logp(aly) + ¢, 1)
served, however, that the Gamma mixture yields very goog]d ct¢ denotes an irrelevant constant. From equation (8), we
fittings for real SAR histograms, obtained with a moderate . ' '
complex learning algorithm. For this reason, we have adbpte
the Gamma mixture model.

The posterior of the labeling given the observed data is

& =argmin E(x1,...,%,), (20)

N

E(z1,...,zN) = ZEi (x;) + Z E (zg,25),  (12)
. =1 i,j€cl
C. Prior P o€

A second assumption we are making is of local smoothne¥ih
of the labels in a statistical sense. It is more likely to have
neighboring sites with the same label than the other way y
around. We model this local smoothness with a second order B (i, ;)

E'(x;) = —logp(yilxs) (13)



E. Energy Minimization whereH (z,|z,,y) is the number of times that a particular
As already stated, we are concerned with the minimizatiG3 configuration(z,|z,;,,y) occurs. The expression is then

of E(xy,...2N) g|ven by (12), which we term energy.€valuated for a number of distinct combinationsrgf z;, and

For two classes,if, ¢ = 2), the global minimum of Zx; in order to obtain an over-determined linear system of

E(x1,...2x)canbe computed exactly by applying the graptauations that is solved in order tb

cut algorithm described in [12]. This is a consequence of en-

ergy being graph-representabie,, £/ (0,0)+ E*/ (1,1) < B. Coding Method

E"7(0,1) + E*7 (1,0) (for details see [12]). For more than In this method the key idea (see [10]) is to partition the set

two classes, the solution of (9) can be approximately coeghutp into setsP*), called codings, such that no two sites in one

by the a-Expansion technique [13], also based on graptP(*) are neighbors. In the present work, the neighborhtd

cut concepts. This algorithm finds the local minimum of thg of 2nd order thus yielding four codings. As the pixels in

energy within a known factor of the global minimum. P*) are not neighbors, the variables associated with these
We now give a brief description of the-Expansion al- pixels, given the labels at all other pixels, are mutually

gorithm. Given a labeh, a move from a partition” (with  independent under the Markovian assumption. The following

correspondent labeling) to a new partition”’ (with corre- simple product is thus obtained for the likelihood:

spondent labeling’) is called am-Expansion ifP, C P, and *)

P/ C P, for any labell # «. In other words, am-Expansion P (@], y) = H P (zplr,. B.y) an

move allows any set of image pixels to change their label to pEP®)

a. The algorithm cycles through the labels7hin some fixed = Maximizing (17) in order tog8 gives the coding estimate

or random order and finds the lowestExpansion move from 3*). Although it is not clear how to combine the results

the current labeling. If the expansion move has lower energptimally, the arithmetic average, as suggested in [10&nis

than the current labeling, then it becomes the currentiladpel intuitive scheme that was adopted in this work.

The algorithm terminates when ne-Expansion move exist

corresponding to a local minimum of the energy. C. Loopy#-Estimation

of the smoothness paramet@r Based on the fact that the

margmal density (y|3), the so-called evidence, is a sum over
the missing labelg;, i.e.,

In this work, we consider three different techniques to
determine the smoothness parametera new EM method
hereafter introduced that uses loopy belief propagatidiP(L

and the classical LSF and CD methods. Because LSF and CD p(ylB) = Zp (y, z|3)
assume the existence of labeled data, we have conceived an
iterative labeling-estimation scheme, which alternatetsvben = ZP (ylz) p (z[5), (18)

a labeling step and an estimation step until the convergehce

0 is attained. On the contrary, the EM estimation algorithm,

that we have called “Loopy-Estimation”, is a one-shot we develop an EM algorithm [26] for the ML estimation
technique. In the following sections, we briefly review thef the parameter3. The EM algorithm alternates between
LSF and CD methods and provide a detailed description nfo steps: the E-step computes the conditional expectation
the Loopy#-Estimation method. In this section, the classf the logarithm of the complete a posteriori probability

parameters) := (¢!, ¢?, ..., ¢°) are assumed known. function, with respect to the missing variables, based @n th
] actual parameter value; the M-step updates the value of the
A. Least Squares Fit parameter, by maximizing the expression obtained in the

This procedure for parameter estimation in MRF, describédstep with respect to that parameter. We now derive the
in detail in [10], is based in the following equation that ¢l E-step and the M-step.
for the MLL model, for every pixep, with neighborhoodV,,,

and for every label paig,, z;, € L : E-step:
P (zplzn,, Yy Q(B;6:) = Ellogp(y,=|B)|y, B (19)
5neg) —neg)] = tog [ LAE0) _ o 20
p(a)]an,,y) = Ellogp(y|z)ly, 5] (20)
— (EP (2) — EP (z,)), (15) +E[log p(x|9)ly, Bt (21)
where n(z,) is the number of pixels in the set,, with Recalling that the MLL prior is given by
the same label as, and zy, = {z;,7 € N,}. We use
histograms to estimate the joint probabilitiegz, |z 7, , y) p(z| B) = eXp 3 Z S(mi—x)|,  (22)
andp (z)|zx,,y) in (15): assuming that there are a total of ‘e
M distinct 3x3 blocks in the image lattice with a given label . h
configurationz,,, then we take wit
=R H (x |x/\/p7y exp |3 5 i— T , (23)
p (Ip‘x./\/pvy) = %7 (16) Z ,JZECZ j



1/)ij(xi,xj) Fig. 1 depicts the graph that represents our pairwise MRF

for computing the two-node beliefs. In the square lattice,
/. /‘H\ /. ;5 (x4, ;) stands for the interaction potential that penalizes
(—(—J ) every dissimilar pair of neighboring labels, agdz;,y;) =
} [ J PiX.Y; p (yi| x;) represents the statistical dependency between the
B /. P \/./ /. labelsz; and the measuremenjs For computingy;; (z;, z;),
() o (z;,y;), is set to a constant value, making the result inde-
J I ] pendent of the data values
p /. \/. /. —~ Vi We solve (28) by a line search type algorithm, ensuring that
)

: N X, ?;Tg < 0, thus corresponding to a maximum ©f

Fig. 1. Latti ting the pairwise MRF.
9 aftice representing the painvise D. A few Remarks about the Vector of Parametpes

In the previous section, we have considered that the class pa

we obtain, up to an irrelevant constant, rameter vector is known and only the smoothness parameter
0 is to be inferred. However, still using the beliefs computed
Q(B;B) =—10g Z(B)+B Y E6(xi— ;)| y, B4 by LBP, the vector could have been inferred simultaneously
Bjeel with 8 by including in theQ function the additive term (20)
(24) . o g
M-step: corresponding to the class densities. We would have olitaine
Br1 = argmax Q (B, 5r) . (25)  Q(¢i¢u. 1) = Ellogp(yla)ly, ¢, 5]
N ¢
The stationary points of are the solution of = Z Zlogp(yiwl)p(xi =y, o1, B),
0Q _ _0log[Z(9) (26) =
B ap where the probabilities(z;, = Iy, ¢+, 5;) are given by the
+ 5 (z —x)p (i, 4] v, B)) = 0. LPB'm.etth. TheM-step would consist then in two.decoupled
”zezpl z%:ell ( i 73] 9 61)) maximizations; one with respect tband another with respect

) _ ) ) _ . to ¢. This approach is, however, beyond the scope of this
By introducing expression (23) into (26) and if we consid&iaper. Nevertheless, we present in Section V an unsupérvise
that ¢ (z; — z;) takes non-zero values only for equal labelsy|gorithm, which is suboptimal but faster than the LBP based

we obtain EM algorithm aimed at the inference of both the parameters
oQ - 3 and ¢.
B = Z Zp(xi =k,x; =kl y,Bt) An alternative to the proposed EM scheme based on LPB
ij€el k=1 is using Monte Carlo techniques to cope with the difficulty
—p(xi=k,x; =kl B) =0. (27) in computing theE-step and the partition functionz [28],

29], [30]. Supported on the performance of the LBP, we
lieve, however, that the EM scheme based on LPB is, for
? present problem, much more faster than the Monte Carlo
based techniques.

Since computing exact marginal distributions is infeasib
in our case, we replace them by pseudo-marginals using
This approach has been successfully applied in problems
approximate parameter learning in discriminative fieldg].[2
BP is an efficient iterative algorithm in which local message
are passed in graphical models. For singly-connected (loop IV. SUPERVISEDSEGMENTATION
free) pairwise MRFs, the two-node beliefs will correspond |, this section, we introduce two supervised algorithms

to the exact two-node marginal probabilities. In our casgyaq at the segmentation of sea SAR images. In both algo-
however, the graph that cqrresponds t_o the MRF Com,a'ﬁﬁms, the first step is the estimation of the class parammete
cycles, preventing the basic BP algorithm to be applieflsqy in the data model. This is done by asking the user to de-
We resort to a slightly modified version called loopy behe{ine representative regions of interest (ROI) in the imageced

propagation. In practice, this algorithm has often de#der v, roqions are defined, different approaches may be fotlowe

990d results [11]. We .approximate the marginal probabditi if a Gamma mixture is assumed for the observed data, as in
with the two-node beliefs;; (z;,z;) and bjj (z;, z;). These yhe cace of SAR images, the EM class parameters estimation
will provide approximations respectively for the margmalyqqrithm described in Appendix is applied to infer the slas
p (@i, 24|0:) andp(z;, 25y, 5). By doing so, the M-Step of ooqitional densities. If we are segmenting small subsen
our EM algorithm is given by the sum of the difference§ the radar range spreading loss has been compensated in th
betwgen the two node beliefs that take the evidepdato underlying SAR images, one single Gamma function per class
consideration and those that do not make usg:of often provides a good modeling for the SAR intensities. Ia th
oQ . case, a common ML Gamma estimator is used instead of the
Fi Z Zbij (k, k) — bij (k, k) = 0. (28) EM procedure. After this step, the data model is considered
by€el k=1 to be known and is used thereafter.



The pseudo-code for two supervised algorithms is presentdi@orithm 3 Unsupervised Segmentation
in Algorithm 1 and Algorithm 2. Algorithm 1 is of generalizedrequire: arbitrary parameteﬁ = f3, initial class parameters
likelihood type [31] implementing an iterative labelinghste ¢ = ¢y (EM Gamma Mixture Estimation)

with two steps being performed alternately: theEstimation 1. Computee Label,, = EP(x,) for every pixelp, using ¢,
and thesegmentatiorAlgorithm 2 is a one-shot procedure that 2. Compute initial labeling

performs3-Estimation using the Loopg-Estimation method & = xy = a-Expansiofif,, e Label)
described in Section IlI-C. 3: for stop criterium is not metdo
. _ . _ 4:  Compute¢ = ML-Estimation(z) R
Algorithm 1 Supervised Segmentation Using LSF/CBH 5. ComputeeLabel = EP(x,) for every pixelp, using ¢
6
7

Estimation Computei# = a-Expansiofi3, e Label)
Require: Initial parameter3 = 3, and estimated class pa- Compute = (-Estimatior{z, eLabel) {use LSF, CD
rametersp or Loopy}.
: ComputeeLabel = EP(z,) for every pixelp using ¢ 8: end for o
. while ’AB’ < § or nriterations< NrliterationsMaxdo 9: retun (1,5, ¢)

Computei = a-Expansion3, e Label)

Compute§ = p-Estimatior{z, eLabel) {LSF or CD}.
: end while VI. RESULTS
return (33"7 ﬁ)

o ahRhw N R

This section presents results of applying the proposed
methodology to simulated and real SAR images, as well
as some considerations regarding time complexity of the

. - - - algorithms.
Algorithm 2 Supervised Segmentation Using Loofy-
Estimation _ _
Require: estimated class parametefs A. Simulations
1: ComputeeLabel = EP(x,) for every pixelp using ¢ We have performed simulations corresponding to Gamma
2: Compute = Loopy-3-Estimation¢Label) data terms with two classes, and evaluated the overall accur
3: Computez = GraphCut—Segmentati(),ﬁ eLabel) cies of the obtained segmentations using Algorithms 1, 2 and
4 retumn (@’B) 3. We also illustrate in detail the EM Gamma mixture esti-
mation algorithm, by applying it to an example of simulated
data.

1) Segmentation Results with Gamma Data Telmorder
to compare the performance of the three proposed methods,
V. UNSUPERVISEDSEGMENTATION we have tested Algorithms 1, 2 and 3 on simulated images
generated by adding Gamma noise to ground-truth images
The unsupervised method is an improvement of the supgpntaining two classes. We have used the ground-truth de-
vised algorithms described in the previous sections. Th@ Majicted in Fig. 2 (a) and added noise with Gamma distributions
diﬁerence iS that the data mOde| iS not Considered to be hnoWaving mean Va|ues of five and nine. The parameters of the
but is also iteratively estimated along with the smoothneggstributions were choosen in order to obtain increasiriges
parameter and the segmentation. The scheme needs a roygfariances?2, corresponding to noisier images. We have then
initialization of the data model parameters. We computési thapplied Algorithm 1,with LSF and CD methods, Algorithm 2,
initialization by fitting an EM Gamma mixture to the completgyng Algorithm 3 with Loopys-Estimation. Furthermore, for
data. comparison, the images were also segmented tuning the beta
As our EM algorithm automatically eliminates unnecessagglue manually and for the case that no prior is usge=(0).
modes, we start with an overestimate &f the number of Fig. 2 shows the segmentations obtaineddos 2.6. As we
modes in the mixtures. In our experiments with real data, tlign see fromp = 0 this is a hard problem, on which LSF and
maximum number of modes we got was four. CD fails the inner structures, but Loog+Estimation provides
Then, different strategies are possible. In the experimetietter results, both in the supervised as in the unsupervise
reported in the next section, when considering 2 classes, method. This behavior is further confirmed by the rank in Fig.
we have assigned the mode with a lower mean value to aBewhich gives the OA obtained for images with different
of the classes and the remaining modes to the other classvalues (corresponding to images with more noise) for the six
In each iteration, we compute the ML estimate of thdifferent segmentation processes referred above.
vectorg based on the previous segmentation, compute the newVe have also tested the proposed algorithms in images
segmentation, and finally the new value @f The algorithm generated by adding Gamma noise to a ground-truth similar
may use any of the threg—parameter estimation methods ando an oil patch (see Fig. 4). Two images, Image A and Image
is applicable to an optional number of classes. The algorittB, with the histograms depicted in Fig. 4, corresponding to
stops when both the parametgrand the class parametefs different segmentation difficulty levels are segmenteck bést
converge to stable values. segmentation possible in this framework, achieved by tnin
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Fig. 3. OA for images corrupted with Gamma noise with increasinvglues:
TM = for 8 tuned manually; LE= Algorithm 2, using Loopy Estimation;
LSF = Algorithm 1 using LSF; CD= Algorithm 1 using CD, NP= no prior
and UNS= Algorithm 3 using Loopy Estimation.

m(e) I G
Segmentation using
'Algortihm-3' with Loopy Estimation 50 |

100

150

200+

250}

(9) 100 200 300 400 500 600

(a)
Fig. 2. Ground-truth and results of different segmentatioscesses for an
image with Gamma noise having mean values of five and nine and with a 5 oil 03 oil
value= 2.6. Notice the good performance of Algorithm 2 and Algorithm 3, 0

implementing the Loopy3-Estimation. 25 0.25
0.2 0.2
0.15 water 0.15
. . .,,0.1 .
the g value manually, and the segmentation obtained with ::015 water
no prior information (setting? = 0) are also displayed for 0
comparison. Fig. 5 shows the results obtained for Image A © 5 1€b) 15 20 25 0 5 10 (lSC) 20 25 0

and Fig. 6 the results obtained for Image B. For Image A, tt

segmented images using Algorithm 1, with CD and with LSI 5,
are not shown, as they are almost equal to the image segmer ,
with Algorithm 2. For Image B, Algorithm 3 has not provided
good results and the segmentation is not displayed. The t
performance of Algorithm 3 in this case arises from the not < >
good initialisation of the class parameters, due to the detmp 250
overlapping from the oil and the water histogramms. 100 200 300d4oo 500 600

160 200 30? 4§0 500 600
e

2) EM Algorithm for Gamma Mixtureln this subsection
we illustrate the behavior of the EM algorithm designed tBig. 4. Gamma Model: (a) Ground-truth, (b) Histogram of Image A,

infer Gamma mixtures. For details on the theoretical issud® Histogram of Image B, (d) Image A, (e) Image B with superimpose
elimiting line, for better visualization

we refer to the Appendix. In Fig. 7, we can see the ground-
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2000

Fig. 6. Segmentation results for Image B: (a) No prior inforomati(b) 8
value tuned manually, (c) graph depictiggestimation using Algorithm 2, (d)
Segmentation using Algorithm 2, (e) Segmentation using Afigor 1 with
BIOOPY LSF and (f) Segmentation using Algorithm 1 with CD.

(e)

05 055 06 065 0.7 0.75

Fig. 5. Segmentation results for image A: (a) No prior informmati(b) 3
value tuned manually, (c) Segmentation using Algorithm 3 witopy-3-
Estimation, (d) Segmentation using Algorithm 2 (Algorithm foyided the
same results with only 0.1% difference in OA), (e) graph daémgcthe 3
estimation in Algorithm 2.

truth used for simulating the image and the generated ima( \‘D-

according to the densities shown in Fig. 8. Thetwo classés,| . .~ . =
and water have been modeled respectively by a mixture of two (a) (b)

Gamma functions and a mixture of three Gamma functions.

For this particular case, we have selected a ROI containifig. 7. (a) Ground-truth used for simulating an oil spill. 8tarepresents
178 pixels for representing the water and a ROI containirgy 14 @nd white water; (b)Simulated SAR image

pixels for representing the oil. After 20 iterations of thmME

algorithm, we obtained the approximations for the proligbil ) _
distributions depicted in Fig. 9 and Fig. 10. The obtaingl® number of classes is typically setde- 2, although more

results are quite reasonable for the small sample sizes used@sses can be considered if we are interested in distiniggis
other phenomena occuring at the same time in the region of

interest. The application of the algorithms is straightfard:

B. Real Images the key idea, like in most state-of-the-art oil spill detect

We have tested the proposed methodology with three reaéthods (see for example [16]), is to partition the image in
SAR images for the special purpose of oil spill detectiorr. Failes and run the algorithm separately for each part. Ttap st
this type of application, an unsupervised algorithm is mois preceeded by the application of a landmask to the image,
indicated, and so we decided to apply Algorithm 3. Becauséat can be done using external coastline information or by
Loopy Estimation has proven to be an effective method adopting some coastline self-extraction procedure. Atter
the simulations, we have choosen Algorithm 3 with Loopgegmentation of each tile, a procedure for grouping patches
Estimation. Nevertheless, in order to have a comparisidietected on the tile borders should be carried on. Another
unsupervised approach versus supervised approach, we alsssibility to increase segmentation coherency in the dosrd
applied Algorithm 2 to two of the images. In oil spill detemti is to define overlapping tiles or to force continuity to some




Fig. 8.

superimposed histogram of generated data set. A three modesofu for
water and two modes function for oil was used.

0.035 . . . . . . . . .

0.03 T ——class1: oil 1
* - - class2: water

* classl gen data
= class2 gen data

0.025

0.02

0.015

0.01

0.005

e,

0 20 40 60 80 100 120 140 160 180

Probability functions used to generate the simulatedge with

Fig. 11. ERS-1 image from the Sicily Channel, Italy, acquiad 30th
January of 1992. The smaller and larger squares are subssiteidiave been
used respectively to estimate the wind direction and to apptyalgorithm.

0.025 :

0.02 -

0.015} \ ]
A - - - true pdf class 0
001 | “I —— estimative |
(@) (b)
0.005 ]
Fig. 12. Closer look to the sub-scenes of the ERS-1 image.(&gi$ used
for wind direction estimation; the estimated direction hasrbeverlapped as a
0 ‘ ‘ ‘ - green arrow. Part (b) contains an oil spill. The colouredaeg correspond to
0 20 40 60 80 100 120 140 160 180 the ROI's selected for class parameter estimation in the sigeer algorithm
Fig. 9. True and estimated class densities for oil.
degree on the estimated class and/or smoothness parameters
from one tile to the next. Nevertheless, at the moment we
are not doing this and these are considered future possible
improvements to our methodology. We segmented oil spills
0.018 ———— contained in three different scenes, described in theviatig
00161 | subsections.

1) Segmentation of an ERS-1 sub-sceWge have seg-
0.014r 1 mented part of an ERS-1 image from the Sicily Channel,
0.012} - -~ true pofclass 1 ltaly, that has been acquired on thet™0anuary of 1992.
oot —_ estimative | This image is referred in the ESA web pages regarding oil

slickshttp: //earth. esa.int/ew oil _slicks/ and
0.008) | contains three oil slicks, along with information regaglin
0.006 1 wind direction and intensity and existence of ships, shikesa
0.004 i natural oil films and currents.
0002 | Fig._ 11 provides a quicklook of the scene with two squares
superimposed: the larger representing the part to be se¢gthen
0 0 20 40 60 80 100 120 1‘40\ 160 180 and the smaller representing a part used for wind estiamtion
Fig. 12 provides zooms of the referred squares. By applying
Fig. 10. True and estimated class densities for water. the Radon Transform to the smaller square, the estimated

direction has been calculated and is depicted in the imagye. T
direction was consistent with the measured value reported i
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—— Water Gamma Distribution Estimation
—— Oil Gamma Distribution Estimation

0.03

0.025+ 1
0.02+ m i ,

0.015¢

. . . . . . 001l \ |
Fig. 13. Fitting of a mixture of Gammas to the data from the rechsgjin 0.005 il ]

the ERS-1 image. W

50 100 150 200 250 300

] Water Histogram [ Oil Histogram

Fig. 15. Class Parameters Estimation for Algorithm-2.

f Bt/
Fig. 14. Segmentation of ERS-1 subscene containing oil Witk 1.4, b M

estimated using Algorithm-3 with the Loopy-Estimation method.

the url site and is at the origin of the well-known "feathefin
effect that can be observed in this linear spill. We have com-
puted the backscattering values of the image, by performing
calibration using the ESA provided BEST softwats { p:
/learth.esa.int/services/best/)andthen applied
Algorithm-3 with Loopy/3-Estimation. The result of the
Gamma mixture estimation, in the initialisation of the al-
gorithm, is depicted in Fig. 13. After only three iteratipns
both the class parameters and the smoothness parameter have
converged. A3 value equal to 1.4 was estimated. The segmen-
tation is displayed in Fig. 14. We also applied Algorithm-2:
we selected two ROI's (160 pixels for water and 77 for oil)
in the image (shown in Fig. 12) and computed ML Gamma
Estimators for the two classes (see Fig. 15). We then applied
the algorithm and obtained an estimatedalue equal to 1.44.
The segmentation result is given in Fig. 16 and is similar to
the result obtained with Algorithm-3.

For comparison, we also provide the segmentation obtained
with no prior (corresponding t@ = 0) in Fig. 17. In practice,
the estimated value has proved to deliver a good segmemtatio
When lower 3 values were used, the result was noisier and
for higher 3 values, the details of the spill disappeared.  Fig 17. segmentation of ERS-1 subscene containing oil, @ith 0.

2) Segmentation of an Envisat ASAR IM sub-scene:
We have also applied Algorithm 3 to a fragment of an

Fig. 16. Segmentation of ERS-1 subscene containing oil Witk 1.44,
estimated using Algorithm-2.
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é 2

(b) (c)

Fig. 18. (a) ASAR image fragment with coloured regions for slparameter
estimation in Algorithm-2; (b) Segmentation result applyinig@ithm-2; (c) Fig. 19.

. \ . ) S Display of the ASA WSM full resolution image of the Rige
Segmentation result applying Algorithm-3 with LoogyEstimation.

accident occured in November 2002 in Galicia.

ASAR Image Mode image, acquired on 19 July 2004, in
the ocean between Cyprus and Lebanon. The fragment
contained an occurred oil spill of circa 10 km’'s (centered
on =~ 33°N,33°E39") that was documented on the EC
Oceanides project (a project in the framework of the Europe
's Global Monitoring for Environment and Security initiad)
database. After six iterations, we achieved convergence of
the 5 and 6 values. The segmentation result is given in Fig.
18, corresponding to a estimatgd= 1.83. The unsupervised
segmentation result is compared with the one provided by
Algorithm-2, where the user provided ROI's for water and
for oil that were used to estimate the class parameters at
the beginning of the process (see Fig. 18). In this case a
6 = 1.75 was obtained.

3) Segmentation of an Envisat ASAR WSM sub-scéne:
order to demonstrate the viability of applying Algorithmda
whole ASARWSM scene, we have run it over the very well
known image of a confirmed oil spill, namely the Prestige
case (see Fig. 19). This accident took place in Novembm®g. 20. Display of the segmentation results of applying Algon 3 with
2002, in Galicia (Spain), when a tanker carrying more thai?opy-3-Estimation to the image displayed in Fig. 19.

20 million gallons (around 67,000 tons) of oil split in half

off the northwest coast of Spain on 19 November 2002,

threatening one of the worst environmental disasters iofyis intensity data of the SAR image. On the other hand, our EM
For segmenting the image, we have first partitioned it istiie  algorithm allows us to start with a higher mode number, and
600x600 pixels each and then applied Algorithm-3 to eaeh tiflecreases this number automatically. We depict the restilts
independently. No post-processing of the borders or “clgain this fitting on one of the tiles, shown in Figure 23, by showing
operations (like for example morphological operationsyenathe histogram of the tile with the superimposed estimated
been carried out. Fig. 20 shows the segmented image, m&fgnma mixture (see Fig. 21 (a)). As we have explained, the
up of the concatenation of the segmentation of the inditidugiode corresponding to the lower mean value is assigned to
tiles. As we can see, the result can be considered in gendhg oil class and the others to the water class, providing an
very good, with only some discrepancies located on the' tilggitialisation to the class parameters. The estimationthese
borders. For initialising the algorithm, the EM Gamma migtu parameters are actualised along the algorithm and, afiter ni
estimation procedure was applied with four modés £ 4). iterations, we obtain the distributions shown in Fig. 21 (b)

In fact this number is enough to provide a good fitting of the To fully demonstrate the possibilities of our algorithm,
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0

005 01 015 02 025 03 035

0 01 02 03 04 05 06 07 08 09

Fig. 23. Display of one of the individual tiles in which the ig&in Figure
19 has been divided for segmentation.

(d)

Fig. 21. Results of applying the EM Gamma mixture estimation guiace to
the tile depicted in Figure 23: (a) Histogramm of the data eal(hormalised)
with superimposed estimated Gamma mixture; (b) Distributionsesponding
to the oil class (left) and water class (right) after ninedtsns of Algorithm

3: Histogramm and superimposed fitting.
I cata histogram
== gammal
= = gamma 2
gamma 3
—— gamma mixture| |

700

Fig. 22.

Histogramm of the data values (normalised) with sogmvsed

Fig. 24. Display of the initial segmentation result of applyiAlgorithm 3
with Loopy-3-Estimation and three classes to the tile depicted in Fig8re 2

estimated Gamma mixture when the number of classes is sett8

we again run it on the tile shown in Figure 23, but this
time setting the number of classes do= 3. By doing so,

we hope to be able to segment a third ambiguous zone,
corresponding to intermediate radiometry levels and folyba
due to atmospheric conditions originating a front. In thase

we choose to fitt a Gamma mixture efmodes to the data

for initialising the class parameters, as depicted in F@. 2
With this initialisation, the first obtained segmentatiosing
Algorithm 3 is displayed in Fig. 24, after only nine iterat®

all parameters have already converged to the segmentation

2

given in Fig. 25. When comparing this segmentation with
the one provided by a state-of-the-art algorithm, namely by?: 25.

Display of the final segmentation result, after niterations,

applying Algorithm 3 with Loopys-Estimation and three classes to the

multiscale HMC model in [14], we consider to have obtainesbttom left tile of Fig. 17.

a very good result.
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4) Time considerationsThe proposed algorithms display, Based on observations that oil spills in the ocean are often
in practical cases, a computational complexityfN), with dragged by the wind and align more or less perpendicular to
N being the number of pixels in the image. In fact, the mods direction, an interesting future issue is the incorgora
time-consuming steps in the algorithms are th&xpansion of wind information into our segmentation algorithms. By
and Graph-Cut segmentation routines. These use the masdepting anisotropic MRF in the prior, we intend to reflegs th
flow code implementation referred in [32] that has complexitdirectional dependency of the clique potentials. In thetica,
O(n%%) in the worst-case, however, in most situations ihe smoothness parametgris no longer considered to be a
O(N). Both Algorithm 1 and Algorithm 3 converge in fewconstant value but is clique-dependent according to thel win
iterations and, as an example, for images of the dimensiet uslirection and/or velocity. For estimating the wind profiterh
in the first simulation (64x64) (see VI-A.1), only a few seden the SAR data, state-of-the-art algorithms are used. We tuave
are needed to run the algorithms. For a 600x600 pixel the, lipromissing simulations, are currently testing this extmen
those in the Prestige example in VI-B.3, Algorithm 3 is takinreal data, and expect to obtain interesting results on a near
~ 1 minute, but this time performance could be improved biyture.

a more efficient implementation of our procedure, namely by
improving the implementation of the Loopy-Estimation and
by migrating our matlab code fully to C-code. APPENDIX

Fitting a Mixture of Gamma Densities

VIl. CONCLUSIONS . . . ]
As stated in the main text of this work, when segmenting

The results of applying the proposed methodology to Simpsa| SAR images, the adopted data model for each class is
lated images with Gamma data models and to real SAR d@&inite Gamma mixture. For completely defining the data
are promising. The developed EM Gamma mixture estimatioRoge| for each class (for lightness of the notation we have
algorithm, when incorporated into the proposed segmenntatidropped the class index), we need to estinzfé Gamma
algorithms, has proved to be an efficient tool for data modeli parametersgp = (61,...,0k), with 6, = (as,\,), and K
in SAR intensity images. a priori probabilitiesa = (ay,...,ak)). We infer ¢ =

With the supervised algorithms, high OA accuracies ha;i’ ) by computing its ML estimate from a training set.
been achieved even for simulated images with high levef$e ML estimate is computed via an EM algorithm [26].
of noise. In general the Bayesian approach has resultedrifting a Gamma mixture is addressed in [33]. However,
an OA increase in the segmentation process betwéeand the authors consideN-look SAR images meaning that the
15%, when compared to the segmentation using no prighderlying random variables are the averagé&/dhdependent
information. Hereby, Algorithm 1 with LSF and Algorithm 1and identically distributed exponential random variaptass,
with CD methods provided similar results, with a performantayving a Gamma density but with just one parameter free; if
close to that obtained by setting ti¥evalue manually. On the the mean ig:, then the variance is given hy?/N. We estimate
other hand, the LSF estimation procedure seems to becomgn the mean and the variance for each Gamma distribution
less reliable for noisier images. When compared to AlgorithiR the mixture, rendering the algorithm more adaptable &b re
2, using Loopys-Estimation, we see that this last methogheasurements.
allways provides equal or better results, outcoming Ao The key point in the EM technique is the introduction of the
1. Another advantage of Algorithm 2 is that it is usually &ast g5 ¢g)led missing data, such thatp (y|¢) = [ p(y, z|¢) dz
than Algorithm 1, being a one-shot process. Both algorithmg,q p(y,z|¢) is easier to manipulate thap(y|¢). In the
by introducing prior information into the segmentation Proparticular case of a mixture of densities, we will use as
cess, increase the OA significantly. As a conclusion, Alati - missing data a random variable, per site, with distribution
2 should be preferred to Algorithm 1, when using asuperwsg@zi = s) = a,. It is interpretable as the probability of
method for oceanic sar images segmentation. the s — th Gamma mode is selected at pixel The EM

Algorithm 3, totally unsupervised, has been conceived @gyorithm alternates between two steps: the E-step compute
an improvement to Algorithm 1 and 2. When testing it Ofhe conditional expectation of the logarithm of the commlet
simulated data the obtained results were very good, althoug posteriori probability function, with respect to the nimgs
slightly worst than the supervised ones, as expected. In g¢griables, based on the actual parameter value. The M-step
eral, after a few iterations, the class and smoothness Pargfhdates the values of the parameters, by maximizing the ex-

eters converge to stable and meaningful values. By applyiggbssion obtained in the E-step with respect to each paeamet
Algorithm 3 to real images containing documented oil spillgn tyrn, i.e,,

the segmentation has been considered successfull. We could

segment both linear and patch type oil spills. Furthermibre,

applicability of the method to segment whole scenes, asasell E-step : Q(¢;0") = E{logp(y,2]¢) |y, 0'} (29)
to segment more than two classes, has also been demonstrated M-step : @'+ = argmaxQ ( & ¢t) (30)
in a well known image from the Prestige accident. As a ' ® ’

conclusion, we believe the presented methods are suitable t

be used for segmenting oceanic SAR images. In particular fgfn0ting

oil spill detection, Algorithm 3 seems to be a suitable mdtho wl; = P (2 = s|y;, ¢") (31)
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and taking into account that «, = 1, theng!*! can be found

among the stationary points of the Lagrangean 1]

N K K

£(6) =D (Lailbs o) wly) +2 (Do —1), (32) P
i=1 s=1 s=1

(3]
(4]

with

Lsi(0s, cs) log (A¢*) —log [I' (as)]

+log (v ') — Asyi + log (), (33)

[5]
where\ denotes a Lagrange multiplier. The expressiondbr
(see [34]) is given by ]

TOX L aknl 6) y
In the M-step, after differentiating in order to the unknown [8]
parameters and setting the derivatives to zero, we obtain a
closed solution for the updating of the a priori probalshti [g)
«;'s, but numerical iteration is needed for determining param
etersa;'s and \;’'s of the Gamma densities. Expression (35910]
gives the update expression fay's.

1 N
t+1 § t
Qg = 7N ‘ We;-
i=1

Equation (36) and (37) give the update expressions for the
parameters\;'s and a;’s. (13]

t 1ot
wt _ Oésp(yl‘es) (34)

(11]

(35)
[12]

t N~V t
as 1= wsi 14
>‘§+1: %: 1 - (36) [14]

D1 YWy
[15]

ai+1 — gl log (\%) sz\; wi; + ZZV:I log (y:)wt;
| i v, [16]
(37)
where

¥ (0,) = o) @

T T )

is the psi function. We refer to the Appendix B of [35] for d18]
very fast Newton procedure to compute the inverse of thg)psi
function. Expressions (36) and (37) are iteratively recotag
until convergence is obtained, starting from initial vaue
computed from the observed data y. The initial parametﬁf)]
values are calculated in such a way, that the initial prditgbi
function is a sum of equidistant Gammas that span the most
representative data range. The EM scheme converges in a
tens of iterations.

(19]

(22]
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