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Abstract—Blind hyperspectral unmixing jointly estimates
spectral signatures and abundances in hyperspectral images.
Hyperspectral unmixing is a powerful tool for analyzing hy-
perspectral data. However, the usual huge size of hyperspectral
images may raise difficulties for classical unmixing algorithms,
namely due to limitations of the hardware used. Therefore, some
researchers have considered distributed algorithms. In this paper,
we develop a distributed hyperspectral unmixing algorithm that
uses the alternating direction method of multipliers (ADMM),
and `1 sparse regularization. The hyperspectral unmixing pro-
blem is split into a number of smaller subproblems which are
individually solved and then the solutions are combined. A key
feature of the proposed algorithm is that each subproblem does
not need to have access to the whole hyperspectral image. The
algorithm may also be applied to multitemporal hyperspectral
images with due adaptations accounting for variability that
often appears in multitemporal images. The effectiveness of the
proposed algorithm is evaluated using both simulated data and
real hyperspectral images.

Index Terms—Hyperspectral unmixing, feature extraction,
blind signal separation, linear unmixing, alternating direction
method of multipliers, distributed algorithms, multitemporal
unmixing

I. INTRODUCTION

INTEREST in hyperspectral images (HSIs) has increased
significantly over the past decade, mainly due to high

spectral resolution, which enables precise material identifi-
cation using spectroscopic analysis. HSIs were introduced
decades ago in mining and geology. Since then, their use has
spread to diverse fields such as manuscript research, medical
imaging, and remote sensing [1]–[3].

However, the spatial resolution of HSIs in remote sensing
applications is often of the order of meters or tens of meters,
such that more than one material may be present within one
pixel. Pixels containing more than one material are called
mixed pixels, in contrast to pure pixels, which only contain
one material. Each pixel in a HSI is thus composed of a
mixture of the spectral signatures of materials within the
spatial boundaries of the pixel.

The term endmember is used to describe one specific mate-
rial in a HSI, and an abundance map specifies the percentage
of one specific material for all the pixels. Hyperspectral unmix-
ing is the process of estimating the number of endmembers,
their spectral reflectance, termed endmember signatures, and
their corresponding abundance maps [2], [3].
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The linear mixture model (LMM) has extensively been used
to model HSIs. If the mixing is assumed to be macroscopic
and the image is flat, the LMM is a good approximation
for the light scattering phenomenon [2]. However, a remote
sensed HSI is not flat and the illumination conditions may vary
between sections of the image. For these reasons, the spectral
signatures measured by the sensor may vary both in amplitude
and form. Also, HSIs of the same region acquired at different
times may have endmembers that differ since the acquisition
conditions may not be identical for all acquisitions, i.e., the
endmembers from these different HSIs may have temporal
variability.

HSIs can be very large and with ever-improving optical,
computing, and processing equipment, they will only continue
to grow in size. This increase in size means that the memory
requirements of the hardware used to unmix these big hyper-
spectral data will also increase. Distributed methods can be
used to cope with these ever increasing requirements. The al-
ternative direction method of multipliers (ADMM) [4], [5] is a
framework that can be used to develop distributed algorithms.
Using ADMM, the optimization problem is solved iteratively;
in each iteration, a number of independent subproblems are
solved independently and then the different solutions are
merged. In this paper, we exploit the structure of the ADMM
iterative solver to design a distributed hyperspectral unmixing
algorithm, where each independent problem is solved by a
processor. Then, the solutions obtained by the processors are
merged using moderate communication resources.

A. Regularizers and Constraints In Hyperspectral Unmixing

Hyperspectral unmixing is a blind source separation pro-
blem that often uses regularizers to incorporate additional
information into the unmixing. From an inverse problem
perspective, regularizers help to cope with the ill-conditioned
nature of hyperspectral unmixing. Sparsity promoting regu-
larizers have been widely used in hyperspectral unmixing
[2], [6]–[9]. A paradigmatic example is the use of sparsity
inducing regularizers to promote sparse abundance maps, as it
is unlikely for every material in a HSI to be present in every
pixel in the image.

Constraining both the endmember signatures and abundan-
ces to be nonnegative is common practice in hyperspectral
unmixing, since the former are reflectances and the latter are
fractions. Constraining the sum of the abundances for each
pixel to be one is widely used in hyperspectral unmixing. This
constraint is called the abundance sum constraint (ASC). The
ASC also stabilize the unmixing solution. However HSIs are
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noisy, and the ASC does not take into account variations in
reflectance from the same material. For these reasons, the ASC
has received some criticism [10], and it is not obvious whether
to relax the ASC or consider it a part of the modeling error
[2]. Another constraint that also stabilizes the solution is the
endmember norm constraint (ENC). The ENC puts an unit
norm constraint on the endmembers, forcing the endmembers
to have the same energy. The ENC has been widely used in
hyperspectral unmixing [9], [11]–[13].

B. Related Work

A representative class of blind, non-pure pixel based, hyper-
spectral unmixing methods are variants of nonnegative matrix
factorization (NMF). NMF became widely used in many
fields of research following the publication of the Lee-Seung
algorithm [14] for NMF. Many NMF-type unmixing methods
apply a sparsity regularizer on the abundances, typically the
`1 norm [15]–[17]. In [18], the `0 norm is used to promote
sparse abundance maps and it is compared to the `1 norm. In
[9], the `q (0 ≤ q ≤ 1) regularizers are thoroughly evaluated
for hyperspectral unmixing. The minimum volume regularizer
on the mixing matrix [2], [19] is also a common regularizer
in hyperspectral unmixing.

Distributed and parallel hyperspectral unmixing has received
some attention recently. A distributed parallel algorithm was
presented in [20], where the HSI is split either by bands
or spectra. This approach still requires access to the whole
dataset. Two parallel endmembers algorithms are discussed in
[21], namely automatic morphological endmember extraction
[22], and orthogonal subspace projection [23]. In [12], ADMM
was used to develop a distributed version of NMF, and in [24],
a partial version of the algorithm proposed here was presented.

In [25], a multitemporal unmixing algorithm is proposed,
where a dynamical model based on the linear mixing processes
is used at each time instant. The estimated endmember spectra
are constrained to be similar to a set of endmember spectra
that is assumed to be known or estimated in some manner.
The abundances are similarly constrained to vary smoothly
temporally.

Endmember spectral variability has been addressed by vari-
ous researchers. In [26], the endmember spectra are assumed
to be realizations of multivariate distributions, and in [27],
they are represented as spectral signature bundles. In [28], a
review of different methods that address spectral variability in
HSIs was presented.

The topic of unmixing multitemporal images has also re-
cently received attention. In [29]–[33], multitemporal unmix-
ing was used for change detection, and in [34], an online
unmixing of HSIs was introduced, accounting for spectral
variability among the different images.

C. Paper Contribution

In this paper, a novel cost function is minimized by using
ADMM, to solve two different distributed sparse hyperspectral
unmixing problems. The first problem is distributed hyper-
spectral unmixing and the second problem is distributed mul-
titemporal unmixing. A regularizer is used to promote sparse

abundance maps. To handle multitemporal unmixing, the al-
gorithm proposed in [24] is extended to account for spectral
variability between the different subproblems by adopting the
approach used in [34]. The algorithm can therefore be used to
unmix multitemporal HSIs affected by temporal variability.

The proposed algorithm differs from the one in [34],
where the hyperspectral unmixing is formulated as a two-
stage stochastic program, since it is based on the ADMM and
uses dyadic cyclic descent optimization [35]–[38] to solve the
ADMM subproblems. The method does not assume that any
endmembers are known apriori, or estimated independently,
as was done in [25].

When unmixing a HSI, the image is first spatially split
into a number of smaller HSIs, which are then independently
unmixed. The obtained individual solutions are then merged
together. Each individual subproblem is solved using dyadic
cyclic descent and the solutions are merged together using
ADMM. In this case, we do not assume that there is spectral
variability between the different subimages. Each individual
subproblem does not need to have access to the full hyper-
spectral image. The algorithm can thus be applied to very
large datasets where traditional methods may fail because of
hardware limitations.

When using the algorithm to unmix multitemporal HSIs,
each temporal HSI is treated as one subproblem. The spectral
variability between the HSIs is properly addressed. Each
temporal HSI is unmixed independently and the solutions are
merged in a similar way to that of distributed unmixing.

D. Notation

The following notations are used in this paper:

s vectors are denoted by lower case bold letters.
S matrices are denoted by upper case bold letters.
sTp pth row of matrix S.
s(j) jth column vector of S.
S-j S with its jth column removed.
sk an estimate of s at iteration k.
tr(S) the trace of S.
‖s‖1 the `1 norm of s, which is the absolute sum of the
vector.
‖S‖1,1 the mixed `1 norm of S, i.e.

∑
i ||s(j)||1.

‖S‖F the Frobenius norm of S.
ΓM×r the set of elementwise nonnegative M × r matrices
where each column has the unit norm.
R
P×r
+ the set of elementwise nonnegative P × r matrices.

max(s,0) the elementwise maximum operator.
I(s) The elementwise identity operator.

E. Paper Structure

The paper is organized as follows. In Section II, the problem
formulation and the proposed algorithm are described. In
Section III, the algorithm is evaluated using simulated data. In
Section IV, the algorithm is applied to real HSIs. In Section
V, conclusions are drawn. In the Appendix, the details of the
estimation methods are described.
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II. PROBLEM FORMULATION

A. The Minimization Problem

In this paper, we will solve the following minimization
problem,

min
S∈RP×r

+

A∈ΓM×r

1

2
‖Y − SAT ‖2F + h‖S‖1,1, (1)

where P , M , and r are positive integers representing, respecti-
vely, the number of pixels, the number of spectral bands, and
the number of endmembers. Y is a P × M matrix, where
each row represents the spectral vector observed at a pixel
of the HSI, A is an M × r matrix where each column holds
endmember spectra, and S is a P ×r abundance matrix where
each column is a vectorized abundance map. Here, r � P ,
since it is assumed that the number of endmembers in the
image is much smaller than the number of pixels.

In this paper, we have traded the usual hardness associated
with `0 regularization with the joint use of `1 and normali-
zation of the columns of the mixing matrix, which is, from
the computational point of view, more manageable than `0
yielding, nevertheless, very good results.

B. Geometrical representation

Promoting sparse abundances has a similar flavor as the
minimum volume regularizer [2]. However, it is simpler to
use, since dealing with the `1 regularizer is easier than dealing
with the determinant of ATA, which is typically used as
a volume regularizer. To illustrate this, we use the Urban
data set described in Subsection IV-A. We unmix this data
set using different values of the sparsity parameter h, using
Algorithm 2 (given in the Appendix), to solve the optimization
(1). This is a blind unmixing problem using an `1 sparsity
inducing regularizer on the abundances, while constraining the
endmembers to have unit norm.

Fig. 1 shows, for different values of h, projection of the
spectral vectors on the plane defined by bands #60 and #140.
The endmembers, at the same bands, are also shown as red
triangles. The lines between the origin and the endmembers
are also shown in green.

From the four figures, we may conclude that when the
sparsity parameter is increased, the endmembers shown as
red triangles, are being pulled towards each other, implying
that the volume defined by the endmembers decreases. This
behavior is further highlighted in Fig 2, where the volume
(det
√
ATA) is shown as a function of the sparsity parameter.

C. Distributed Unmixing

In order to develop a distributed algorithm, the aim is to
decompose (1) into smaller problems. To accomplish this,
problem (1) is reformulated into N constrained subproblems
as

min
Si∈R

Pi×r

+

Ai,Z∈ΓM×r

N∑
i=1

(1
2
‖Yi−SiA

T
i ‖2F +h‖Si‖1,1

)
s.t. Ai −Z = 0,

(2)
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Fig. 1. A geometrical representation of the effects the `1 regularizer, showing
how the endmembers change when the sparsity parameter h, changes.

0 0.025 0.05 0.075 0.1
10−7

10−4

10−1

h

vo
lu

m
e

Fig. 2. The volume that the endmembers enclose as a function of the sparsity
parameter h.

where the subscript i corresponds to subproblem number i,
Y = [Y T

1 ,Y
T
2 ,...,Y

T
N ]T , S = [ST

1 ,S
T
2 ,...,S

T
N ]T , Ai is the

endmember matrix corresponding to subproblem i,
∑
Pi = P ,

and Z is the consensus matrix representing the endmember
matrix of the global problem. Problem (2) is nonconvex,
since ΓM×r is a nonconvex set and the data fidelity term is
nonconvex.

D. Distributed Multitemporal Unmixing

For a multitemporal distributed unmixing algorithm, the
original problem is decomposed into N subproblems, each one
corresponding to the unmixing of a complete HSI acquired
at a given time instant. To account for variability in the
endmembers, linked to the different acquisition times and
seasonal variations, we introduce N perturbation matrices,
Mi, into (2) as
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min
Si∈R

Pi×r

+

Ai,Z∈ΓM×r

N∑
i=1

(1
2
‖Yi − Si(Ai +Mi)

T ‖2F+

h‖Si‖1,1 +
ψ

2
‖Mi‖2F

)
(3)

s.t. (Ai +Mi) ∈ RM×r
+ , Ai −Z = 0.

Each matrix Mi holds the variable part of endmembers.
Therefore matrix Mi accounts for the spectral variability of
the endmembers associated with the ith problem, while Ai

accounts for the non-variable consensus part.

E. Algorithm

To solve the multitemporal distributed unmixing problem in
(3), an algorithm based on ADMM [5], [39] is developed. The
ADMM subproblems are solved using dyadic cyclic descent
(DCD) [35], [36]. We will focus on solving (3), since (2) is
a special case of (3) with Mi = 0. The algorithm used to
solve (3) is based on using the augmented Lagrangian (for
one subproblem), i.e.,

Li(Yi,Si,Ai,Mi,Λi,Z) =

1

2
‖Yi − Si(Ai +Mi)

T ‖2F

+ h‖Si‖1,1 +
ψ

2
‖Mi‖2F

+ tr
(
ΛT

i (Ai −Z)
)
+
ρ(k)

2
‖Ai −Z‖2F ,

i = 1,..., N,

(4)

where Λi is a matrix of size M × r holding the Lagrange
multipliers, and ρ(k) is the augmented Lagrangian weight. The
complete Lagrangian is

L(Y ,S,A,M ,Λ,Z) =

N∑
i=1

Li(Yi,Si,Ai,Mi,Λi,Z). (5)

An ADMM-type algorithm is used to solve (3), where (5)
is iteratively minimized w.r.t. each optimization variable. The
pseudo code for algorithm, termed distributed multitemporal
unmixing (DMU), is shown in Algorithm 1. In this algorithm,
we use Algorithm 2, shown in the Appendix, to solve the
individual subproblems.

Note that each subproblem in Algorithm 1 does not need
to have access to the whole image matrix, but only to the
corresponding subimage. All the subproblems can thus be
solved in parallel. The optimization problem that is solved
here is nonconvex and, therefore, there is no guarantee of
convergence. We have however systematically observed that
the algorithm does perform well, and that the variables of
interest (Ai,Si,Mi) do converge using both simulated and
real data.

The stop criteria for Algorithm 2 is

‖A(k)
i +Mk

i − (Ak−1
i +Mk−1

i )‖F
‖Ak

i +Mk
i ‖F

< 10−7, (7)

and
‖Sk

i − S
k−1
i ‖F

‖Sk
i ‖F

< 10−7. (8)

Algorithm 1: The distributed multitemporal unmixing
algorithm (DMU).
Input: Y , r, N , h
Initialization:

Split Y into N matrices, Y1,Y2, ...,YN .
Initialize ρ(0), A0

i , S
0
i , M

0
i = 0, i = 1, ..., N

Set Z(0) = 0,Λ(0) = 0
for k = 0... do

for i = 1...N do
Using Algorithm 2 (see Appendix), estimate1

(Ak+1
i ,Sk+1

i ,Mk+1
i ) =

argminLi(Yi,Si,Ai,Mi,Λ
k
i ,Z

k, h)

s.t. Si ∈ RPi×r
+ , Ai ∈ ΓM×r, (Ai +Mi) ∈ RM×r

+

Estimate Zk+1 using

Z̃ = max

(
1

N

N∑
i=1

(Ak+1
i +

1

ρ(k)
Λk

i ), 0

)
,

zk+1
(j) =

z̃(j)

‖z̃(j)‖
, j = 1,..., r. (6)

Estimate Λk+1
i using

Λk+1
i = Λk

i + ρ(k)(Ak+1
i −Zk+1).

Update ρ(k) using (14)

ρ(k) = 10k
8
30 + 0.02MPσ2

Output: Ẑ, M̂i, Ŝi, i = 1, ..., N

Similarly, Algorithm 1 is terminated if the endmembers esti-
mated in all the subproblems have converged to the consensus
endmembers, i.e., if

‖Zk −Ak
i ‖F

‖Zk‖F
< 10−6, i = 1, ..., N, (9)

or if the maximum number of iteration is achieved.

F. Tuning Parameter Selection

There are five tuning parameters that need to be estimated:
the number of endmembers r, the sparsity parameter h, the
variability parameter ψ, the number of subproblems N , and the
augmented Lagrangian weight ρ(k). To estimate the sparsity
parameter h, in the cost function, the extended Bayesian
information criteria (EBIC) [40] is minimized. EBIC is a
criterion for model selection, where the model with the lowest
EBIC is preferred. The EBIC tries to find the best model, here,
the best fit of for the data, while minimizing the number of free
parameters. The number of free parameters increases when the
sparsity of S decreases. The EBIC is therefore used to find a

1The variables from the previous iteration used as initial values in the
minimization.
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balance, where the data fidelity term is low while the sparsity
of sparsity S preferred. The EBIC objective function is [41]

EBIC =M log(σ̂2) +
1

P

‖Y − ŜÂT ‖
σ̂2

+

(
log(P ) + 4α log(M)

)
d

P
, (10)

where α∈[0, 1], and d is the number of free parameters in the
model, i.e.,

d = ‖Ŝ‖0 +Mr − r2, (11)

where ‖Ŝ‖0 is the number of nonzero values in Ŝ. Unless
stated otherwise, we use α = 0.5, and

σ̂2 =
1

PM
‖Y − ŜÂT ‖2F . (12)

The simultaneous estimation of all the parameters is com-
putationally intensive, since we would need to estimate A, S
and M for all combinations of the parameters. Therefore, we
will first estimate the number of endmembers, r, using h = 0;
in this case, the number of free parameters is

d = PM +Mr − r2. (13)

The augmented Lagrangian weight ρ(k) is set to a low value
and it is incremented in each iteration forcing all endmember
matrices Ai to converge to Z as the algorithm iterations
evolve. A maximum of 30 iterations is allowed, and ρ(k) is
set according to

ρ(k) = 10k
8
30 + 0.02MPσ2, (14)

where k is the iteration number, and σ2 is variance of the HSI.
The median absolute deviation [42] is used to calculate σ2 for
each band and the average value is used.

Using (14), ρ(k) is initially very low and in each iteration
it is incremented, and in the last iteration ρ(30) ≈ 108.
Using this scheme, the different endmember matrices, Ai, will
converge to Z. Our experiments show that using (14) gives
good results, and the variables of interest do converge.

Setting the number of subproblems, N , is done manually,
but when unmixing temporal images, the number of subpro-
blems is the same as the number of temporal HSIs.

The variation parameter ψ is set according to

ψ = 103σ2, (15)

where σ2 is estimated using [42]. For this value of ψ, the the
temporal perturbation matrices Mi will be constrained, but
still be able to adapt and capture the temporal variations of
the endmembers.

The procedure for estimating the parameters is:
1) Choose the number of subproblems, N .
2) Estimate the dimensionality, r, with h = 0 using (10),

(12) and (13). This is done by unmixing the data using
different values of r and then calculating the EBIC using
the solutions obtained. The value of r that yields the
lowest EBIC is then chosen.

3) Estimate the sparsity parameter, h, for a given r, using
(10), (11) and (12). In a similar manner as when esti-
mating r, different solutions are obtained using different

values of h. The value of h that yields the lowest EBIC
is chosen.

To lighten the overall computational complexity in our simu-
lations and experiments, we use one subproblem to estimate
the parameters. We have observed in our simulations that
using only one subproblem gives an accurate estimate of
the parameters and yields good results. The estimated set of
parameters is then used for all the subimages.

G. The Subimages

There are no constraints on how the HSI is split up, but
different splittings may affect the speed of the algorithm. Here,
we show two methods to split the HSI into subimages, the first
method splits the HSI vertically into spatially continuous N
strips. The second method will randomly place each pixel in
the image into one of the N subimages. By randomly selecting
pixels into subproblems, we increase the probability that all
the endmembers will be present in all the subimages. This will
decrease the convergence time of the algorithm and improve
the performance. Our proposed algorithm uses the random
splitting. An illustration of these two methods is shown in
Fig. 3. These two methods to split the data into subimages
will be denoted spatial and random splitting, respectively.

Simulated image Spatial splitting Random splitting

Fig. 3. Left: A simulated image. Center: spatial splitting into 4 subimages.
Right: random splitting.

III. SIMULATIONS

To evaluate the algorithm, we will use simulated data. The
endmembers are mineral signatures from a pruned USGS
spectral library2, containing 100 distinct spectral signatures
where the minimum spectral angle distance between any two
signatures is 0.16 rad (9o). The first and last spectral bands
are removed so the number of bands used is M = 222.

In these simulations, five endmembers from the pruned
library are used. The abundances are generated following a
Dirichlet distribution, with unit parameters (i.e., uniform on
the simplex) [43]. Abundance variability is also added by
allowing the sum of each abundance vector to be between 0.7
and 1.3. The sparsity of the abundance maps is approximately
35%, which means that 35% of all abundance values are set to
zero. This is implemented by randomly setting entries in the
abundance map to zero. Gaussian i.i.d. noise is added to the
simulated data, resulting in a signal to noise ration of 35dB.
The maximum purity of any pixel in the image is 85%.

The spatial dimensions of the simulated image is (200×80)
pixels. The image is split into N=4 equal subimages, where

2http://speclab.cr.usgs.gov/spectral.lib06
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the each subimage is (200 × 20) pixels in size. We will use
both spatial and random splitting, respectively. The simulated
data will also be unmixed using N =1 subimage, i.e., unmix
the whole image in the classical way without splitting it.

In these simulations, the sparsity parameter is estimated
using the EBIC, the number of endmembers is manually set
to the correct value, r = 5. We manually set r to the correct
value so we are able to evaluate the algorithm.

However, to show that EBIC does yield good results, we
show in Fig. 4 the calculated EBIC using the simulated data
generated as described in Subsection III-A. The number of
endmembers was varied in the interval r = 3, ..., 10. EBIC
correctly estimated the rank for this simulated data. In Fig. 5,
EBIC and SAD plots obtained when estimating λ, when r = 5
are given.

Fig. 4. A surface plot of EBIC, calculated for simulation data with r =
3, ..., 10. Each row shows EBIC calculated for r̂ = 1, ..., 12. The white ’x’
shows the minima of EBIC, which is the rank estimated by the EBIC.
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Fig. 5. The EBIC and SAD (rad), obtained when estimating h using simulated
data.

Figures 4 and 5 displays accurate estimates of r. Also, the
EBIC gives a very good estimate for h, which is very close to
minimizing the SAD between the estimated endmembers and
the true endmembers.

We will consider three test simulations. In the first two
simulations, the data will not suffer from spectral variability
and ψ = 0 and Mi = 0. In the third simulation, the
endmembers used will have spectral variability.

Simulation 1 All of the endmembers are found in all of the
subimages.

Simulation 2 Two of the endmembers are only present in one
subimage. So, these two endmembers are not present in
the other subimages. The other three endmembers are
present in all four subimages.

Simulation 3 All of the endmembers are found in all of the
subimages and spectral variability is added to the different
subimages.

For each simulation, 10 simulations are performed, new end-
members are randomly selected from the library, and new
abundance maps are generated. The following metrics are used
to evaluate the algorithm;

nMSEAS =
‖SAT − ŜÂT ‖2F
‖SAT ‖2F

, (16)

nMSES =
‖S − Ŝ‖2F
‖S‖2F

, (17)

sad(â(j),a(j)) = arccos

(
âT
(j)a(j)

‖â(j)‖‖a(j)‖

)
, (18)

SAD(Â,A) =
1

r

r∑
j=1

sad(â(j),a(j)). (19)

nMSEAS measures the reconstruction error, and
nMSES measures the reconstruction error of the abundance
maps. The columns in Â are scaled to have the same `2 norm
as the columns of A. The columns of Ŝ are also scaled so
that the product, ŜÂT , is not changed, before calculating the
nMSES . The spectral angle distance (SAD) is given in (18)
and calculates the angle between the two endmembers being
considered and a low value means that the two endmembers
being compared are similar and a high value means that
the two endmembers are dissimilar. The SAD given in (19)
calculates the average SAD for all the endmembers in a HSI.

The algorithms used to unmix the simulated data are:
• The proposed distributed algorithm (DMU).
• The non-distributed version of DMU, with N = 1

(DMU1).
• Vertex Component analysis, an endmember estimation

algorithm (VCA) [44].
• A statistical approach to identifying endmembers in hy-

perspectral images (ICE) [45].
• Minimum volume constrained nonnegative matrix facto-

rization (MVC) [46].
VCA is a geometrical endmember estimation algorithm which
assumes that there are pure pixels in the image. We include
VCA in our comparisons despite the fact that there are not
pure pixels in our simulations as it is a well known and used
method.

A. Simulation 1

Here, all of the endmembers are found in every subimage.
Table I shows the average SAD, along with one standard
deviation between the estimated endmembers and the original
endmembers. The HSI is split into subimages using the spatial
method.

In Table I, we can see that the distributed unmixing and
the classical unmixing results are very similar. The metrics
calculated are virtually identical and show that both the end-
members and abundances are very similar to the original data.
The sparsity (% of zero values) of the abundance matrix is
also shown for the proposed method and for MVC, along with
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TABLE I
THE METRICS CALCULATED USING THE RESULTS OF SIMULATION 1, WHERE ALL OF THE ENDMEMBERS ARE FOUND IN ALL OF THE SUBIMAGES

average SAD(rad) ±1 std
Endm. # DMU DMU1 VCA ICE MVC

1 0.005± 0.003 0.005± 0.003 0.051± 0.029 0.023± 0.022 0.018± 0.008
2 0.018± 0.020 0.018± 0.020 0.072± 0.056 0.058± 0.057 0.021± 0.008
3 0.009± 0.010 0.009± 0.010 0.062± 0.023 0.037± 0.041 0.033± 0.031
4 0.021± 0.036 0.021± 0.036 0.073± 0.059 0.048± 0.074 0.025± 0.029
5 0.032± 0.053 0.032± 0.053 0.117± 0.099 0.137± 0.210 0.032± 0.034

average 0.017 0.017 0.075 0.061 0.026

nMSEAS(dB) −49.93± 0.27 −49.93± 0.27 N/A N/A −51.567± 0.06
nMSES(dB) −28.42± 3.58 −28.41± 3.59 N/A N/A −20.987± 3.74

Sparsity of S 18% 18% N/A N/A 3%

Average Computation time 196s 71s 0.16s 63s 168s

TABLE II
THE METRICS CALCULATED USING THE RESULTS OF SIMULATION 2, WHERE TWO OF THE ENDMEMBERS ARE ONLY PRESENT IN ONE SUBIMAGE EACH

average SAD(rad) ±1 std
Endm. # DMU(a) DMU(b) DMU1 VCA ICE MVC

1 0.162± 0.102 0.047± 0.043 0.061± 0.052 0.090± 0.092 0.090± 0.099 0.075± 0.072
2 0.108± 0.122 0.023± 0.022 0.027± 0.020 0.059± 0.042 0.056± 0.067 0.049± 0.034
3 0.052± 0.034 0.028± 0.038 0.030± 0.025 0.077± 0.078 0.025± 0.016 0.090± 0.067
4 0.112± 0.125 0.056± 0.091 0.046± 0.041 0.084± 0.079 0.095± 0.132 0.056± 0.052
5 0.143± 0.124 0.036± 0.030 0.087± 0.102 0.153± 0.132 0.093± 0.108 0.136± 0.142

average 0.115 0.038 0.050 0.092 0.072 0.081

nMSEAS(dB) −41.61± 4.54 −49.23± 0.83 −47.87± 2.39 N/A N/A −51.562± 0.10
nMSES(dB) −3.14± 9.09 −11.25± 13.48 −7.70± 14.88 N/A N/A −7.805± 9.42

the average computational time needed. The proposed method
is more computationally intensive than the other methods.
Note that the parallel calculations for DMU are simulated as
described in subsection III-D. In Fig. 6, the SAD is shown as
a function of the signal to noise ratio (SNR) of the simulation
data. The proposed method does very well compared to the
other when the SNR is larger than 26dB, but ICE achieves a
lower SAD when the noise is less than 26dB.

20 25 30 35 40
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ICE VCA

Fig. 6. The SAD, calculated when the signal to noise ration (SNR) of the
simulation data varies from 20dB to 40dB.

B. Simulation 2

In this simulation, we will investigate how the distributed
algorithm performs when some endmembers are not present
in all subimages. The simulation is split into two parts. In the
first simulation (denoted by a), endmembers 1 and 5 are only
present in subimages 1 and 4, respectively. The presence of
endmembers in each of the subimages is shown in Table III.
The HSI is split into subimages using the spatial method.

In the second part (denoted by b), the same data is used as in
the first part, but here the random splitting method was used.

TABLE III
THE PRESENCE OF ENDMEMBERS IN THE SUBIMAGES. IN SIMULATION

(A), ENDMEMBERS 1 AND 5 ARE ONLY PRESENT IN SUBIMAGES 1 AND 4,
RESPECTIVELY

Simu- Subimage Endmember #
lation # 1 2 3 4 5

(a)

1 x x x
2 x x x
3 x x x
4 x x x

splitting, the probability of every endmember being present in
every subimage is greatly increased.

In Table II, we can see that the results of the distributed
unmixing are not as good as the results obtained using the
non-distributed approach when the spatial splitting is used, and
the results are in fact worse than the methods we compare to.
The SAD is high and the variance is also quite high. This
is also reflected in the higher values of the reconstruction
metrics, nMSEAS and nMSES . The proposed method (with
spatial splitting) has trouble coping with this data because the
number of endmembers in the subimages is not the same as the
number of estimated endmembers. However, when the random
splitting is used, the distributed approach works as well as the
non-distributed approach.

C. Simulation 3

Here, the endmembers will be present in all subimages, but
the endmembers in each image will have spectral variability.
The variability is added to each endmembers so that the
endmembers in each subproblem will not be identical. In Fig.
7, the variability vectors, along with two endmembers in one of
the simulations are shown. The endmembers for one subimage
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are composed of a consensus endmember from the library,
and variability is introduced by adding one of the variability
vectors shown in Fig. 7 to the endmembers.

In this simulation, VCA, ICE and MVC are used to
unmix each subimage separately and the average metrics
are calculated and compared to the proposed algorithm, and
given in Table IV. In addition to evaluation of the perturbed
endmembers (Z + Mi) for each subproblem, we will also
examine the consensus endmembers (Z).

1) DMU(Z): Here we are only evaluating the non-variable
part of the endmembers without perturbations.

2) DMU(Z+Mi):Mi is the perturbation matrix. Therefore,
Z +Mi are the endmembers found for subproblem i.

In Table IV, we can see that the algorithm is able to
estimate the perturbed endmembers very well. The common
endmembers are similar to the real endmembers, but with
the addition of the perturbation matrix (Mi), the estimation
is greatly improved. Thus, the majority of the endmember
morphology is captured by Z and the variations are captured
by Mi. This is shown in Fig. 8

D. Computations

In this section, we will examine the running time of DMU,
which is programmed in Matlab. The data needed for each
subproblem is saved in a Matlab (.mat) file. Each individual
subproblem reads all the data it needs from the mat file
and saves the result in mat-file. The combination part of the
algorithm reads all the individual results files and combines
the results. The parallel calculations are simulated, meaning
that the computational time for the individual subproblems
are assumed to be equal to the longest computational time of
individual subproblems.

We unmix simulated data using N ∈ {1,..., 128}. The
setting is the same as in Simulation 1, but the number of
pixels is P = 90000. The sparsity parameter is estimated to
be h = 0.0089, and this value is used in all the simulations.

As can be seen in Fig. 9, if the subproblems are solved
in parallel, the distributed algorithm can be faster than the
non distributed one (N = 1), given that the number of
subproblems is not very low, i.e., when N > 30. If the
number of subproblems is small, the computation times may
increase because of the extra computations needed to solve
the distributed problem. This is apparent in Fig. 9 when
2 ≤ N ≤ 30.

When a hyperspectral image is split into N subimages, the
data each subproblem needs to have access to is the subimage,
Yi of size P × M , and its corresponding endmember and
abundance data, i.e., Ai of size M × r and Si of size P × r.
The overhead data that is needed by each subproblem are three
matrices: Λi, Z, and Mi, each of size M×r. Given that for
a typical hyperspectral image, Pi � M and M � r, and
Pi = P/N , the memory requirements for each subproblem is
reduced by a factor of N , compared to the memory needed to
process the whole image.

IV. REAL HYPERSPECTRAL IMAGES

A. The HYDICE Urban Image

The first real HSI used here is a HYDICE image3 of an
urban landscape. The number of spectral bands in this data
set is 210 and covers the 400-2500nm spectral range.

This image is 307×307 pixels and the whole image is
used. Spectral bands numbered [74-77 86-90 102-111 136-
153 202-210] are manually identified as water absorption or
noisy bands, and are removed, resulting in 164 usable bands.
Matrix Y is thus of dimensions 3072 × 164. An RGB image,
generated using the hyperspectral data, is shown in Fig. 11.
The RGB image is created by using specific spectral bands
from the data set, to represent the red, green, and blue channels
of the RGB image. The HSI image is split into N = 4 matrices
using random splitting. Using EBIC, the number of estimated
number are estimated r = 8, and the sparsity parameter is
h = 0.002 (resulting in 13% sparsity in the abundance maps).

The Urban image will also be unmixed without splitting
the image (using the proposed algorithm), and with MVC,
respectively. Three out of eight abundance maps estimated
by the algorithms are shown in Fig. 11. The results obtained
by the DMU and the DMU1 algorithm are very similar. The
abundance maps shown are easily associated with material
seen in the RGB image. The three maps represent trees, grassy
areas, and rooftops, respectively.

B. The AVIRIS Cuprite Image

The second real world hyperspectral image we will consider
is the Aviris Cuprite image4 which has 224 spectral bands
covering 410-2450nm. The image is 350× 350 pixels in size.
We discard spectral bands [1 2 105-115 150-170 222-224] and
use the remaining 187. An RGB generated image of the scene
in shown in Fig. 10.

We unmix the image using four values for N , respectively,
i.e., N = {1, 8, 16, 32}. Using EBIC, the sparsity parameter
was estimated to be h = 0.0022 (resulting in approximately
10% sparsity), and the number of endmembers was r = 11.

A ground truth for this image is not available, but the image
has been used extensively by researchers and there are many
well documented minerals exposed in the landscape. These
minerals are known to be in the USGS spectral library. We
compare the endmembers obtained, to the spectral signatures
in this library. The spectral signatures in the library that have
the lowest SAD from the estimated endmenbers are found and
given in Table V. The SAD values in Table V can not be
viewed as quality metrics, since a unmixing ground truth is
not available for this data set. Here, the SAD only shows how
similar the different solutions are. Both the endmembers and
the abundances estimated using different values for N were
very similar. Many of the endmembers that had the lowest
SAD from the estimated endmembers are known to be in the
area. The reconstruction error,

ERR =
‖Y − ŜÂT ‖2F
‖Y ‖2F

, (20)

3http://www.agc.army.mil/hypercube/
4http://aviris.jpl.nasa.gov/data/free data.html
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Fig. 7. Left: The variability added to the subimage endmembers. Center and right: The 4 different variations used.

TABLE IV
THE METRICS CALCULATED USING THE RESULTS OF SIMULATION 3, WHERE VARIABILITY IS ADDED TO THE ENDMEMBERS

average SAD(rad) ±1 std
Endm. # DMU(Z +Mi) DMU(Z) VCA ICE MVC

1 0.006± 0.003 0.046± 0.030 0.060± 0.054 0.031± 0.038 0.033± 0.030
2 0.007± 0.005 0.034± 0.013 0.041± 0.034 0.053± 0.056 0.016± 0.008
3 0.009± 0.012 0.041± 0.032 0.045± 0.028 0.043± 0.056 0.030± 0.021
4 0.030± 0.062 0.074± 0.105 0.089± 0.096 0.090± 0.121 0.048± 0.072
5 0.007± 0.005 0.044± 0.027 0.046± 0.036 0.033± 0.041 0.031± 0.027

average 0.012 0.048 0.056 0.050 0.032

nMSEAS(dB) −51.52± 0.34 N/A N/A N/A −37.745± 4.10
nMSES(dB) −20.36± 6.56 N/A N/A N/A −15.844± 3.39
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Fig. 8. One of the estimated endmembers in Simulation 3. The consensus endmember (z(j)) is similar to the original, but the estimated endmember
(z(j) +mi(j)) is much closer to the original.
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Fig. 9. The computational time as a function of the number of subproblems.

is also calculated and given in Table V.

In Fig. 12, three out of eleven endmembers and abundance
maps are shown. All the DMU solutions and the ERR, for
different values of N are very similar.

Fig. 10. An RGB generated image of the Cuprite data set.

C. The AVIRIS Lake Tahoe Images
In this subsection multiple AVIRIS HSIs from the Lake

Tahoe region5 are unmixed. We will focus on a small 200×150
5Available at http://aviris.jpl.nasa.gov/alt locator/
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Fig. 11. In the top row, an RGB image of the Urban dataset is show along with the endmembers estimated by the DMU algorithm. In the other rows, three
out of eight abundance maps are shown, estimated by the DMU, DMU1 and MVC algorithms, respectively.
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Fig. 12. Three of eleven endmembers and corresponding abundance maps estimated by DMU for N = {1, 8, 16, 32}.

pixel region surrounding a small lake named Mud Lake6.
6Latitude: 38.84197o, longitude: -119.7356347o

These HSIs are referred to as Mud Lake. The HSIs have 244
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TABLE V
THE SPECTRAL ANGLE DISTANCE BETWEEN LIBRARY SIGNATURES AND

THE ENDMEMBERS OBTAINED.

Endmember # / Mineral SAD
N = 1 N = 8 N = 16 N = 32

1. Montmorillonite CM20 0.078 0.120 0.097 0.098
2. Roscoelite EN124 0.110 0.133 0.122 0.124
3. Alunite-K 0.093 0.093 0.092 0.090
4. Hematitic Alt. Tuff 0.107 0.120 0.117 0.116
5. Fluorapatite WS416 0.060 0.058 0.052 0.057
6. Illite IL105 0.113 0.096 0.107 0.103
7. Jarosite WS368 0.090 0.111 0.107 0.101
8. Hematite Thin Film 0.073 0.082 0.108 0.127
9. Chlorite Serpentine 0.105 0.080 0.081 0.087

10. Sagebrush YNP-SS-2 0.084 0.120 0.115 0.112
11. Alun Na+Kaol+Hemat 0.148 0.149 0.148 0.139
Average SAD 0.0966 0.1056 0.1041 0.1050
ERR 6.3e-05 6.3e-05 5.9e-05 5.9e-05

spectral bands. We remove water absorption bands, leaving
179 spectral bands.

Five images are used in this evaluation. These images and
their acquisition dates are shown in Fig. 13. Eleven pixels from
image (a) and 14 pixels from image (e) are removed from the
data. These are outlier pixels, some of them having overflow
errors.

The results obtained by the proposed algorithm are com-
pared to the results obtained when unmixing the images
with MVC. To acquire consistent results using MVC, we
initialize the algorithm, using the endmembers obtained using
VCA [44] on the first image (April 10, 2014). MVC is thus
initialized identically for all the HSIs. The proposed algorithm
is initialized with random values.

The number of subproblems is equal to the number of
images, i.e., N = 5. Using a majority vote, the number of
endmembers used is r = 11. The sparsity parameters are
estimated to be hi={5.1e-4, 1.6e-3, 1e-3, 1e-3, 5e-4}, resulting
in an average sparsity of 17% for the abundance maps. A
ground truth for this image is not available so we will evaluate
the algorithm by examining the consistency of the endmembers
and we will also calculate the average reconstruction error,

avERR =
1

N

N∑
i=1

‖Yi − ŜiÂ
T
i ‖2F

‖Yi‖2F
, (21)

for the proposed algorithm, and also for MVC.
In Fig. 13, two abundance maps estimated using DMU

and MVC are shown. The abundance maps have similarities
with the RGB image, one map is associated with the circular
agricultural region in the upper left corner of the image while
the other is associated with the water region in the lower part
of the image. We will refrain from drawing more conclusion
from the abundance maps since an accurate ground truth is
not available.

In Fig. 14, the endmembers corresponding to the abundance
maps in Fig. 13 are shown. The endmembers estimated by
DMU are more consistent and have less variations than the
endmembers estimated by MVC. The average reconstruction
errors, calculated using (21) and shown in Table VI, and
are also very similar, albeit the MVC reconstruction error is
slightly lower.

TABLE VI
THE AVERAGE RECONSTRUCTION ERRORS CALCULATED FOR THE MUD

LAKE DATASET.

DMU MVC
avERR 4.30e-05 4.13e-05

V. CONCLUSIONS

In this paper, a sparse distributed hyperspectral unmixing al-
gorithm is developed using ADMM and an `1 regularizer. The
model parameters are estimated using the extended Bayesian
information criteria. The hyperspectral image is split into N
subproblems, and each subproblem is independently solved.
The unmixing results from these subproblems is then merged
into a global solution using ADMM. As each subproblem does
not need to have access to the whole dataset, the algorithm
can be applied on very large datasets. The algorithm is
able to account for spectral variability between the different
subproblems and is thus well suited to unmix multitemporal
hyperspectral data. The algorithm is extensively evaluated
using simulation data and compared to other well established
unmixing algorithms. Using this simulated data, the algorithm
performs very well and is able to achieve comparable results
to non-distributed algorithms. An evaluation is also performed
using three real hyperspectral images, one of which is a
multitemporal image, acquired on five different dates. The
algorithm performs well on all the real hyperspectral images,
and the results of the multitemporal unmixing gives more
consistent endmembers than independently unmixing each
temporal HSI.

APPENDIX
ESTIMATION METHODS

In this appendix, we detail the estimation methods used to
solve the minimization problem in Algorithm 1. A cyclic des-
cent method is used which iteratively estimates the variables
interest. In the following subsections, the algorithm is derived.

A. S-step

Estimating Si is done by minimizing

Sk+1
i = argmin

Si∈R
Pi×r

+

1

2
‖Yi−Si(A

k
i +M

k
i )

T ‖2F +h‖Si‖1,1 (22)

The task of estimating one column of Si is done by minimi-
zing

si
k+1
(j) = argmin

si(j)∈R
Pi×1

+

1

2
‖Rij−si(j)(ai

k
(j)+mi

k
(j))

T ‖2F+‖si(j)‖1

(23)
where Rij = Yi − Si-j(Ai

k
-j +Mi

k
-j)

T . The update rule for
si

k+1
(j) is nonnegative soft thresholding [47], i.e.,

si
k+1
(j) = αmax(0,Rij(ai

k
(j) +mi

k
(j))− h), (24)

where α = 1/‖ai
k
(j) +mi

k
(j)‖

2. When the problem is multi-
temporal unmixing, and Mi needs to be estimated, we add a
debiasing step which attempts to remove the bias caused by



13

(a) April 10, 2014 (b) June 2, 2014 (c) Sept. 19, 2014 (d) Nov. 17, 2014 (e) June 29, 2015
R

G
B

im
ag

es
D

M
U

m
ap

s
1

M
V

C
m

ap
s

1
D

M
U

m
ap

s
2

M
V

C
m

ap
s

2

Fig. 13. In top top row are are the generated RGB images of the five Mud Lake HSIs used in the evaluation. In the second and fourth rows are two out of
12 abundance maps estimated by the DMU algorithm and in rows three and five are the corresponding abundance maps estimated by MVC.

the soft thresholding done in (24). The debiasing step involves
adding back αh to the non-zero values of sik+1

(j) , i.e.,

s̃i
k+1
(j) = (si

k+1
(j) + αh) ∗ I(sik+1

(j) ) (25)

where ∗ denotes elementwise multiplication and I(·) is the
identity operator. We stress that this debiasing step is only
applied in the multitemporal case, when Mi needs to be
estimated, and it is otherwise not applied.
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Fig. 14. Two endmembers estimated by DMU and MVC for all five Mud Lake HSIs. In the DMU plots, the blue line shows the consensus endmembers and
the red line show each of the estimated endmembers.

B. A-step
The minimization task when estimating Ai is

Ak+1
i =argmin

A∈ΓM×r

1

2
‖Yi − Sk+1

i (Ai +M
k
i )

T ‖2F

+ tr
(
(Λk

i )
T (Ai −Zk)

)
+
ρ(k)

2
‖Ai −Zk‖2F

(26)

Estimating one column in Ai is done by optimizing

ai
k+1
(j) = argmin

a(j)∈ΓM×1

fa(ai(j))

where

fa(ai(j)) =
1

2
‖Rij − sk+1

(j) (ai(j) +mi
k
(j))

T ‖2F+

(λi
k
(j))

T (ai(j) − zk(j)) +
ρ(k)

2
(ai(j) − zk(j))(ai(j) − zk(j))

T ,

and Rij = Yi − Si
k+1
-j (Ai-j +Mi

k
-j)

T . To solve this mini-
mization problem, we use Lagrangian multiplier theory. The
Lagrange function is chosen as

La(a, γ) = fa(a) + γ(aTa− 1)

where γ is the Lagrange multiplier. Finding the differential of
La(a, γ) w.r.t. a, and setting it to zero yields (omitting sub-
and superscripts)

dLa

da
= 0⇒ a =

(RT −msT )s− λ+ ρ(k)z

sTs+ ρ(k) + 2γ
. (27)

By defining

ã = max
((
RT

ij−mi
k
(j)(si

k+1
(j) )T

)
si

k+1
(j) −λi

k
(j)+ρ(k)z

k
(j),0

)
,

and choosing γ such that a =∈ ΓM×1, yields the update rule
for ai

k+1
(j) ,

ai
k+1
(j) =

ã

‖ã‖
. (28)

C. M -step

The minimization task when estimating Mi is

Mk+1
i = argmin

(Ai+Mi)∈RM×r
+

1

2
‖Yi − Sk+1

i (Ak+1
i +Mi)

T ‖2F

+
ψ

2
‖Mi‖2F (29)

Using Rij = Yi − Si
k+1
-j (Ai

k+1
-j + Mi-j)T , the task of

estimating one column in Mi becomes

mi(j) = argmin fm(mi(j))

s.t. (ai(j) +mi(j)) ∈ RM×1
+

(30)

where

fm(mi(j)) =
1

2
‖Rij−sik+1

(j) (ai
k+1
(j) +mi(j))

T ‖2F+
ψ

2
‖mi(j)‖2F .

Finding the differential of fm(mi(j)) w.r.t. m, and setting it
to zero yields

dfm
dm

= 0⇒mi
k+1
(j) =

(RT
ij − ai

k+1
(j) (si

k+1
(j) )T )si

k+1
(j)

(si
k+1
(j) )Tsi

k+1
(j) + ψ

. (31)

To account for the nonnegativity of (ai
k+1
(j) + mi

k+1
(j) ), we

threshold mi
k+1
(j) such that (mi

k+1
(j) + ai

k+1
(j) ) ≥ 0.

D. Z-step

Estimating Z is done by minimizing

Zk+1 = argmin
Z∈ΓM×r

N∑
i=1

{
tr(Λk

i )
T (Ak+1

i −Z)

+
ρ(k)

2
‖Ak+1

i −Z‖2F
}
,

(32)
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and the update rule for Z is

Z̃ = max

(
1

N

N∑
i=1

(Ak+1
i +

1

ρ(k)
Λk

i ), 0

)
,

zk+1
(j) =

z̃(j)

‖z̃(j)‖
, j = 1,..., r. (33)

E. DCD algorithm

A cyclic descent algorithm is used to estimate Ai, Si and
Mi in the DMU algorithm. The algorithm is iterative and
estimates one column in one of the matrices while holding all
other columns fixed.

Algorithm 2: The DCD algorithm used to estimate Ai,
Si and Mi.

Input: Yi, Ai, Si, Mi, ρ, h
for k = 0... do

for j = 1...r do
Estimate column j in Si using (24)
Estimate column j in Ai using (28)
Estimate column j in Mi using (31)

Output: Ŝi, Âi, M̂i
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