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Abstract

Remotely sensed hyperspectral imaging allows for the detailed analysis of the surface of the Earth using advanced

imaging instruments which can produce high-dimensional images with hundreds of spectral bands. Supervised hy-

perspectral image classification is a difficult task due to the unbalance between the high dimensionality of the data

and the limited availability of labeled training samples inreal analysis scenarios. While the collection of labeled

samples is generally difficult, expensive and time-consuming, unlabeled samples can be generated in a much easier

way. This observation has fostered the idea of adopting semi-supervised learning techniques in hyperspectral image

classification. The main assumption of such techniques is that the new (unlabeled) training samples can be obtained

from a (limited) set of available labeled samples without significant effort/cost. In this paper, we develop a new

approach for semi-supervised learning which adapts available active learning methods (in which a trained expert

actively selects unlabeled samples) to a self-learning framework in which the machine learning algorithm itself

selects the most useful and informative unlabeled samples for classification purposes. In this way, the labels of the

selected pixels are estimated by the classifier itself, withthe advantage that no extra cost is required for labeling

the selected pixels using this machine-machine framework when compared with traditional machine-human active

learning. The proposed approach is illustrated with two different classifiers: multinomial logistic regression (MLR)

and a probabilistic pixel-wise support vector machine (SVM). Our experimental results with real hyperspectral images

collected by the NASA Jet Propulsion Laboratory’s AirborneVisible Infra-Red Imaging Spectrometer (AVIRIS) and

the Reflective Optics Spectrographic Imaging System (ROSIS), indicate that the use of self learning represents an

effective and promising strategy in the context of hyperspectral image classification.
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I. I NTRODUCTION

Remotely sensed hyperspectral image classification [1] takes advantage of the detailed information contained

in each pixel (vector) of the hyperspectral image to generate thematic maps from detailed spectral signatures. A

relevant challenge for supervised classification techniques (which assume prior knowledge in the form of class

labels for different spectral signatures) is the limited availability of labeled training samples, since their collection

generally involves expensive ground campaigns [2]. While the collection of labeled samples is generally difficult,

expensive and time-consuming, unlabeled samples can be generated in a much easier way. This observation has

fostered the idea of adopting semi-supervised learning techniques in hyperspectral image classification. The main

assumption of such techniques is that new (unlabeled) training samples can be obtained from a (limited) set of

available labeled samples without significant effort/cost[3].

The area of semi-supervised learning has experienced a significant evolution in terms of the adopted models,

which comprise complex generative models [4]–[7], self learning models [8], [9], multi-view learning models [10],

[11], transductive support vector machines (SVMs) [12], [13], and graph-based methods [14]. A survey of semi-

supervised learning algorithms is available in [15]. Most of these algorithms use some type of regularization which

encourages the fact that “similar” features are associatedto the same class. The effect of such regularization is to

push the boundaries between classes towards regions with low data density [16], where the usual strategy adopted

first associates the vertices of a graph to the complete set ofsamples and then builds the regularizer depending

on variables defined on the vertices. This trend has been successfully adopted in several recent remote sensing

image classification studies. For instance, in [17] transductive SVMs (TSVMs) are used to gradually search a

reliable separating hyperplane (in the kernel space) with atransductive process that incorporates both labeled and

unlabeled samples in the training phase. In [18], a semi-supervised method is presented that exploits the wealth

of unlabeled samples in the image, and naturally gives relative importance to the labeled ones through a graph-

based methodology. In [19], kernels combining spectral-spatial information are constructed by applying spatial

smoothing over the original hyperspectral data and then using composite kernels in graph-based classifiers. In [20],

a semisupervised SVM is presented that exploits the wealth of unlabeled samples for regularizing the training kernel

representation locally by means of cluster kernels. In [21], [22], a new semi-supervised approach is presented that

exploits unlabeled training samples (selected by means of an active selection strategy based on the entropy of the

samples). Here, unlabeled samples are used to improve the estimation of the class distributions, and the obtained

classification is refined by using a spatial multi-level logistic prior. In [23], a novel context-sensitive semi-supervised

SVM is presented that exploits the contextual information of the pixels belonging to the neighborhood system of

each training sample in the learning phase to improve the robustness to possible mislabeled training patterns. In

[24], two semi-supervised one-class (SVM-based) approaches are presented in which the information provided by

unlabeled samples present in the scene is used to improve classification accuracy and alleviate the problem of

free-parameter selection. The first approach models data marginal distribution with the graph Laplacian built with

both labeled and unlabeled samples. The second approach is amodification of the SVM cost function that penalizes
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more the errors made when classifying samples of the target class. In [25] a new method to combine labeled

and unlabeled pixels to increase classification reliability and accuracy, thus addressing the sample selection bias

problem, is presented and discussed. In [26], an SVM is trained with the linear combination of two kernels: a

base kernel working only with labeled examples is deformed by a likelihood kernel encoding similarities between

labeled and unlabeled examples, and then applied in the context of urban hyperspectral image classification. In

[27], similar concepts to those addressed before are adopted using a neural network as the baseline classifier. In

[28], a semi-automatic procedure to generate land cover maps from remote sensing images using active queries is

presented and discussed.

In contrast to supervised classification, the aforementioned semi-supervised algorithms generally assume that a

limited number of labeled samples are availablea priori, and then enlarge the training set using unlabeled samples,

thus allowing these approaches to address ill-posed problems. However, in order for this strategy to work, several

requirements need to be met. First and foremost, the new (unlabeled) samples should be generated without significant

cost/effort. Second, the number of unlabeled samples required in order for the semi-supervised classifier to perform

properly should not be too high in order to avoid increasing computational complexity in the classification stage.

In other words, as the number of unlabeled samples increases, it may be unbearable for the classifier to properly

exploit all the available training samples due to computational issues. Further, if the unlabeled samples are not

properly selected, these may confuse the classifier, thus introducing significant divergence or even reducing the

classification accuracy obtained with the initial set of labeled samples. In order to address these issues, it is very

important that the most highly informative unlabeled samples are identified in computationally efficient fashion, so

that significant improvements in classification performance can be observed without the need to use a very high

number of unlabeled samples.

In this work, we evaluate the feasibility of adapting available active learning techniques (in which a trained

expert actively selects unlabeled samples) to a self-learning framework in which the machine learning algorithm

itself selects the most useful unlabeled samples for classification purposes, with the ultimate goal of systematically

achieving noticeable improvements in classification results with regards to those found by randomly selected training

sets of the same size. In the literature, active learning techniques have been mainly exploited in a supervised context,

i.e. a given supervised classifier is trained with the most representative training samples selected after a (machine-

human) interaction process in which the samples are actively selected according to some criteria based on the

considered classifier, and then the labels of those samples are assigned by a trained expert in fully supervised

fashion [22], [29]–[33]. In this supervised context, samples with high uncertainty are generally preferred as they

are usually more informative. At the same time, since the samples are labeled by a human expert, high confidence

can be expected in the class label assignments. As a result, classic (supervised) active learning generally focuses

on samples with high confidence at the human level and high uncertainty at the machine level.

In turn, in this work we adapt standard active learning methods into a self-learning scenario. The main idea

is to obtain new (unlabeled) samples using machine-machineinteraction instead of human supervision. Our first

(machine) level –similar to the human level in classic (supervised) active learning– is used to infer a set of candidate
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unlabeled samples with high confidence. In our second (machine) level –similar to the machine level for supervised

active learning– the machine learning algorithm itself automatically selects the samples with highest uncertainty

from the obtained candidate set. As a result, in our proposedapproach the classifier replaces the human expert. In

other words, here we propose a novel two-step semi-supervised self learning approach:

• The first step infers a candidate set using a self learning strategy based on the available (labeled and unlabeled)

training samples. Here, a spatial neighborhood criterion is used to derive new candidate samples as those which

are spatially adjacent to the available (labeled) samples.

• The second step automatically selects (and labels) new samples from the candidate pool by assuming that

those pixels which are spatially adjacent to a given class can be labeled with high confidence as belonging to

the same class.

As a result, our proposed strategy relies on two main assumptions. The first assumption (global) is that training

samples having the same spectral structure likely belonging to the same class. The second assumption (local) is that

spatially neighboring pixels likely belong to the same class. As a result, our proposed approach naturally integrates

the spatial and the spectral information in the semi-supervised classification process.

The remainder of the paper is organized as follows. Section II describes proposed approach for semi-supervised

self learning. We illustrate the proposed approach with twoprobabilistic classifiers: multinomial logistic regression

(MLR) and a probabilistic pixel-wise support vector machine (SVM), which are both shown to achieve significant

improvements in classification accuracy resulting from itscombination with the proposed semi-supervised self

learning approach. Section III reports classification results using two real hyperspectral images collected by the

Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)[34] and the Reflective Optics Spectrographic Imaging

System (ROSIS) [35] imaging spectrometers. Finally, section IV concludes the paper with some remarks and hints

at plausible future research lines.

II. PROPOSEDAPPROACH

First, we briefly define the notations used in this paper. LetK ≡ {1, . . . ,K} denote a set ofK class labels,

S ≡ {1, . . . , n} a set of integers indexing then pixels of an image,x ≡ (x1, . . . ,xn) ∈ R
d×n an image ofd-

dimensional feature vectors,y ≡ (y1, . . . , yn) an image of labels,Dl ≡ {(yl1 ,xl1), . . . , (yln ,xln)} a set of labeled

samples,ln the number of labeled training samples,Yl ≡ {yl1 , . . . , yln} the set of labels inDl, Xl ≡ {xl1 , . . . ,xln}

the set of feature vectors inDl, Du ≡ {Xu,Yu} a set of unlabeled samples,Xu ≡ {xu1
, . . . ,xun

} the set of

unlabeled feature vectors inDu, Yu ≡ {yu1
, . . . , yun

} the set of labels associated withXu, andun the number of

unlabeled samples. With this notation in mind, the proposedsemi-supervised self learning approach consists of two

main ingredients: semi-supervised learning and self learning, which are described next.

A. Semi-Supervised Learning

For the semi-supervised part of our approach, we use two different probabilistic classifiers to model the class

posterior density. The first one is the MLR, which is formallygiven by [36]:
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p(yi = k|xi,ω) =
exp(ω(k)T h(xi))∑K

k=1 exp(ω
(k)Th(xi))

, (1)

whereh(x) = [h1(x), ..., hl(x)]
T is a vector ofl fixed functions of the input, often termed features;ω are the

regressors andω = [ω(1)T , ...,ω(K)T ]T . Notice that, the functionh may be linear,i.e., h(xi) = [1, xi,1, ..., xi,d]
T ,

where xi,j is the j-th component ofxi; or nonlinear,i.e., h(xi) = [1,Kxi,x1
, ...,Kxi,xl

]T , whereKxi,xj
=

K(xi,xj) andK(·, ·) is some symmetric kernel function. Kernels have been largely used because they tend to

improve the data separability in the transformed space. In this paper, we use a Gaussian Radial Basis Function

(RBF) K(xi,xj) = exp(−‖xi − xj‖
2/2σ2) kernel, which is widely used in hyperspectral image classification

[37]. We selected this kernel (after extensive experimentation using other kernels, including linear and polynomial

kernels) because we empirically observed that it provided the best results. From now on,d denotes the dimension of

h(x). Under the present setup, learning the class densities amounts to estimating the logistic regressors. Following

the work in [38], [39], we can computeω by obtaining the maximum a posteriori (MAP) estimate:

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (2)

wherep(ω) ∝ exp(−λ‖ω‖1) is a Laplacian prior to promote sparsity andλ is a regularization parameter controlling

the degree of sparseness ofω̂ in [38], [39]. In our previous work [39], it was shown that parameterλ is rather

insensitive to the use of different datasets, and that thereare many suboptimal values for this parameter which lead

to very accurate estimation of parameterω. In our experiments, we setλ = 0.001 as we have empirically found

that this parameter setting provides very good performance[40]. Finally, ℓ(ω) is the log-likelihood function over

the training samplesDl+u ≡ Dl +Du, given by:

ℓ(ω) ≡

ln+un∑

i=1

log p(yi = k|xi,ω). (3)

As shown by Eq. (3), labeled and unlabeled samples are integrated to learn the regressorsω. The considered semi-

supervised approach belongs to the family of self learning approaches, where the training setDl+u is incremented

under the following criterion. LetDN (i) ≡ {(ŷi1 ,xi1), . . . , (ŷin ,xin)} be the set of neighboring samples of(yi,xi)

for i ∈ {l1, . . . , ln, u1, . . . , un}, wherein is the number of samples inDN (i) and ŷij is the maximum a posteriori

(MAP) estimate from the MLR classifier, withij ∈ {i1, . . . , in}. If ŷij = yi, we increment the unlabeled training set

by adding(ŷij ,xij ), i.e., Du = {Du, (ŷij ,xij )}. This increment is reasonable due to the following considerations.

First, from a global viewpoint, samples which have the same spectral structure likely belong to the same class.

Second, from a local viewpoint, it is very likely that two neighboring pixels also belong to the same class. Therefore,

the newly included samples are reliable for learning the classifier. In this work, we run an iterative scheme to

increment the training set as this strategy can refine the estimates and enlarge the neighborhood set such that the

set of potential unlabeled training samples is increased.

It is important to mention that problem (2), although convex, is very difficult to compute because the termℓ(ω)

is non-quadratic and the termlog p(ω) is non-smooth. The sparse MLR (SMLR) algorithm presented in[38] solves

this problem withO((d(K − 1))3) complexity. However, most hyperspectral data sets are beyond the reach of this
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algorithm as their analysis becomes unbearable when the number of classes increases. In order to address this issue,

we take advantage of the logistic regression via variable splitting and augmented Lagrangian (LORSAL) algorithm

[41] which allows replacing a difficult non-smooth convex problem with a sequence of quadratic plus diagonall2-l1

problems with practical complexity ofO(d2(K − 1)). Compared with the figureO((d(K − 1))3) of the SMLR

algorithm, the complexity reduction ofd(K − 1)2 is quite significant [39], [41].

Finally, we have also used an alternative probabilistic classifier for the semi-supervised learning part of our

methodology. This is the probabilistic SVM in [12], [42]. Other probabilistic classifiers could be used, but we

have selected the SVM as a possible alternative to MLR since this classifier is already widely used to analyze

hyperspectral data [17], [18], while the MLR has only recently emerged as a feasible technique for this purpose. It

should be noted that the standard SVMs do not provide probability estimates for the individual classes. In order to

get these estimates, pairwise coupling of binary probabilistic estimates is applied [42], [43], which has been applied

for hyperspectral classifications [44].

B. Self learning

The proposed semi-supervised self learning approach is based on two steps. In the first step, a candidate set

(based on labeled and unlabeled samples) is inferred using aself learning strategy based on spatial information,

so that high confidence can be expected in the class labels of the obtained candidate set. This is similar to human

interaction in classic (supervised) active learning, in which the class labels are known and given by an expert. In

a second step, we run standard active learning algorithms onthe previously derived candidate set, so that they are

adapted to a self learning scenario to automatically (and intelligently) select the most informative samples from the

candidate set. Here, the goal is to find the samples with higher uncertainty.

As a result, in the proposed semi-supervised self learning scheme our aim is to select the most informative

samples without the need for human supervision. The class labels of the newly selected unlabeled training samples

are predicted by the considered semi-supervised algorithmas mentioned in subsection II-A. LetDc be the newly

generated unlabeled training set at each iteration, which meets the criteria of the considered semi-supervised

algorithm. Notice that the self learning step in the proposed approach leads to high confidence in the class labels of

the newly generated setDc. Now we can run standard active learning algorithms overDc to find the most informative

setDu, i.e., samples with high uncertainty, such thatDu ⊆ Dc. Due to the fact that we use discriminative classifiers

and a self learning strategy for the semi-supervised algorithm, algorithms which focus on the boundaries between

the classes are preferred. In our study, we use four different techniques to evaluate the proposed approach [26]: 1)

margin sampling (MS), 2) breaking ties (BT), 3) modified breaking ties (MBT) [39], and 4) normalized entropy

querying by bagging (nEQB) [30], in addition to random selection (RS) in which the new samples are randomly

selected from the candidate set. In the following we briefly outline each method (for a more detailed description

of these approaches, we refer to [22], [45]):

• The MS technique [45] samples the candidates lying within the margin by computing their distance to the

hyperplane separating the classes. In other words, the MS minimizes the distance of the sample to the optimal
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separating hyperplane defined for class in a one-against-all setting for multiclass problems.

• The BT algorithm [46] relies on the smallest difference of the posterior probabilities for each sample. In a multi-

class setting, the algorithm can be applied (independentlyof the number of classes available) by calculating

the difference between the two highest probabilities. As a result, the algorithm finds the samples minimizing

the distance between the first two most probable classes. In previous work [39], it has been shown that the

BT criterion generally focuses on the boundaries comprising many samples, possibly disregarding boundaries

with fewer samples.

• The MBT scheme [39] was originally proposed to include more diversity in the sampling process as compared

to the BT approach. It finds the samples maximizing the probability of the largest class for each individual

class. This method takes into account all the class boundaries by conducting the sampling in cyclic fashion,

making sure that the MBT does not get trapped in any class whereas BT could be trapped in a single (complex)

boundary.

• The nEQB approach [30] is a form of committee-based samplingalgorithm that quantifies the uncertainty of

a pixel by considering a committee of learners. Each member of the committee exploits different hypotheses

about the classification problem and consequently labels the pixels in the pool of candidates. The algorithm then

selects the samples showing maximal disagreement between the different classification models in the committee.

Specifically, the nEQB approach uses bagging [47] to build the committee and Entropy maximization as the

multiclass heuristic, which provides a measure that is thennormalized in order to bound it with respect to the

number of classes predicted by the committee and avoid hot spots of the value of uncertainty in regions where

several classes overlap. The version of nEQB used in this work is the one implemented in1.

At this point, it is important to emphasize that the aforementioned sampling algorithms have been used in this

work for intelligently selecting the most useful candidatesamples based on the available probabilistic information.

As a result, spatial information is not directly addressed by these methods, but by the strategy adopted to generate

the pool of candidate samples. Since spatial information isthe main criterion adopted in this stage, there is a risk

that the initial pool of candidate samples may smooth out broad areas in the scene. However, we emphasize that our

proposed method for generating the pool of initial candidates is not exclusively spatial as we use the probabilistic

information provided by spectral-based classifiers (such as MLR or probabilistic SVM) in order to assess the

similarity between the previously selected samples and thenew candidates. Hence, as we have experimentally

observed, no significant smoothing effects happen in broad areas and good initial candidates are generally selected.

It is also worth noting that, in this work, we use two classifiers with probabilistic output that are well-suited for

the aforementioned algorithms (MLR and probabilistic SVM). However, the proposed approach can be adapted to

any other probabilistic classifiers.

For illustrative purposes, Fig. 1 illustrates how spatial information can be adopted as a reasonable criterion to

select unlabeled samples and prevent labeling errors in a semi-supervised classification process using a probabilistic

1http://code.google.com/p/altoolbox

October 14, 2012 DRAFT



8

Fig. 1. A graphical example illustrating how spatial information can be used as a criterion for semi-supervised self learning in hyperspectral

image classification.

classifier. As Fig. 1 shows, we use an iterative process to achieve the final classification results. First, we use a

probabilistic classifier (in this work, the MLR or the probabilistic SVM) to produce a global classification map

which contains the probability of each pixel to belong to each class in the considered hyperspectral image. Based

on a local similarity assumption, we identify the neighborsof the labeled training samples (using first-order spatial

connectivity) and then compute the candidate setDc by analyzing the spectral similarity of the spatial neighbors

with regards to the original labeled samples. This is done byanalyzing the probabilistic output associated to each

neighboring sample. In this way, the candidate setDc is obtained based on spectral and spatial information and

its samples are highly reliable. At the same time, it is expected that there may be redundant information inDc. In

other words, some of the samples in the candidate set may not be useful for training the classifier as they may be

too similar to the original labeled samples. This could introduce difficulties from the viewpoint of computational

complexity. Therefore, afterDc is obtained, we run active learning algorithms on the candidate set in order to

automatically select the most informative unlabeled training samples. Since the active learning algorithms are based

on the available probabilistic information, they are adapted to a self-learning scenario and used to intelligently

reduce possibly existing redundancies in the candidate set, thus obtaining a highly informative pool of training
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samples which ultimately contain only the most relevant samples for classification purposes. The newly obtained

labeled and unlabeled training samples are finally used to retrain the classifier. The procedure is repeated in iterative

fashion until a convergence criterion is met, for example, until a certain number of unlabeled training samples is

obtained.

III. E XPERIMENTAL RESULTS

In this section, two real hyperspectral images are used to evaluate the proposed approach for semi-supervised

self learning. In our experiments with the MLR and SVM classifiers, we apply the Gaussian RBF kernel to a

normalized version of the considered hyperspectral data set2. We reiterate that the Gaussian RBF kernel was

selected after extensive experimentation with other kernels. In all cases, the reported figures of overall accuracy

(OA), average accuracy (AA),κ statistic, and class individual accuracies are obtained byaveraging the results

obtained after conducting 10 independent Monte Carlo runs with respect to the labeled training setDl from the

ground truth image, where the remaining samples are used forvalidation purposes. Finally, the optimal parameters

C (parameter that controls the amount of penalty during the SVM optimization [12]) andσ (spread of the Gaussian

RBF kernel) were chosen by 10-fold cross validation. These parameters are updated at each iteration.

In order to illustrate the good performance of the proposed approach, we use very small labeled training sets

on purpose. As a result, the main difficulties that our proposed approach should circumvent can be summarized as

follows. First and foremost, it is very difficult for supervised algorithms to provide good classification results as very

little information is generally available about the class distribution. Poor generalization is also a risk when estimating

class boundaries in scenarios dominated by limited training samples. Since our approach is semi-supervised, we

take advantage of unlabeled samples in order to improve classification accuracy. However, if the number of labeled

samplesl is very small, increasing the number of unlabeled samplesu could bias the learning process.

In order to analyze the aforementioned issues and provide a quantitative evaluation of our proposed approach

with regards to the optimal case in whichtrue active learning methods (i.e. those relying on the knowledge of the

true labels of the selected samples) were used, we have implemented the following validation framework. LetDur

be a set of unlabeled samples for which true labels are available. These samples are included in the ground-truth

associated to the hyperspectral image but are not used in theset of labeled samples used initially by the classifier.

In order to evaluate the effectiveness of the proposed approach, we can effectively label these samples inDur
using

their true (ground-truth) labels instead of estimating thelabels by our proposed approach. Clearly, these samples will

be favored over those selected by our proposed method which makes use of estimated labels. But it is interesting to

quantify such an advantage (the lower it is, the better for our method). Following this rationale, the optimal case is

that most samples inDu have true labels available, which means thatDur
contains most of the unlabeled samples

in Du. In our experiments, we denote bylr the number of unlabeled samples for which a true label is available

in the ground-truth associated to the considered hyperspectral image. If lr = 0, this means that the labels of all

2The normalization is simply given byxi :=
xi

(
√∑

‖xi‖
2)

, for i = 1, . . . , n, wherexi is a spectral vector.

October 14, 2012 DRAFT



10

unlabeled samples are estimated by our proposed approach. If lr = ur, this means that true labels are available for

all the samples inDur
. Using this strategy, we can substantiate the deviation of our proposed approach with regards

to theoptimal case in which true labels for the selected samples are available. Typically, true labels will be only

available for part of the samples as the considered hyperspectral data sets do not contain ground-truth information

for all pixels. In this scenario, theoptimal case comprises both true (whenever available) and estimated labels (the

value of lr is given in all experiments).

The remainder of this section is organized as follows. In subsection III-A we introduce the two datasets used for

evaluation purposes in this work. In subsection III-B, we describe the experiments conducted using the first data

set: AVIRIS Indian Pines. Finally, subsection III-C conducts experiments using a second data set: ROSIS Pavia

University. In all cases, the results obtained by the supervised versions of the considered classifiers are also reported

for comparative purposes.

A. Hyperspectral data sets

Two hyperspectral data sets collected by different instruments are used in our experiments:

• The first hyperspectral image used in experiments was collected by the AVIRIS sensor over the Indian Pines

region in Northwestern Indiana in 1992. This scene, with a size of 145 lines by 145 samples, was acquired

over a mixed agricultural/forest area, early in the growingseason. The scene comprises 220 spectral channels

in the wavelength range from 0.4 to 2.5µm, nominal spectral resolution of 10 nm, moderate spatial resolution

of 20 meters by pixel, and 16-bit radiometric resolution. After an initial screening, several spectral bands were

removed from the data set due to noise and water absorption phenomena, leaving a total of 200 radiance

channels to be used in the experiments. For illustrative purposes, Fig. 2(a) shows a false color composition of

the AVIRIS Indian Pines scene, while Fig. 2(b) shows the ground-truth map available for the scene, displayed

in the form of a class assignment for each labeled pixel, with16 mutually exclusive ground-truth classes,

in total, 10366 samples. These data, including ground-truth information, are available online3, a fact which

has made this scene a widely used benchmark for testing the accuracy of hyperspectral data classification

algorithms. This scene constitutes a challenging classification problem due to the presence of mixed pixels in

all available classes, and because of the unbalanced numberof available labeled pixels per class.

• The second hyperspectral data set was collected by the ROSISoptical sensor over the urban area of the

University of Pavia, Italy. The flight was operated by the Deutschen Zentrum for Luftund Raumfahrt (DLR,

the German Aerospace Agency) in the framework of the HySens project, managed and sponsored by the

European Union. The image size in pixels is610 × 340, with very high spatial resolution of 1.3 meters per

pixel. The number of data channels in the acquired image is 103 (with spectral range from 0.43 to 0.86µm).

Fig. 3(a) shows a false color composite of the image, while Fig. 3(b) shows nine ground-truth classes of

interest, which comprise urban features, as well as soil andvegetation features.

3Available online: http://dynamo.ecn.purdue.edu/biehl/MultiSpec
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(a) (b)

Fig. 2. (a) False color composition of the AVIRIS Indian Pines scene. (b) Ground truth-map containing 16 mutually exclusive land-cover

classes (right).

(a) (b)

Fig. 3. (a) False color composition of the ROSIS Pavia scene.(b) Ground truth-map containing 9 mutually exclusive land-cover classes.

B. Experiments with AVIRIS Indian Pines Data Set

In the first experiment we evaluated the impact of the number of unlabeled samples on the classification

performance achieved by the two considered probabilistic classifiers using the AVIRIS Indian Pines data set in Fig.

2(a). Fig. 4 shows the OAs in classification accuracy as a function of the number of unlabeled samples obtained by

the MLR (top) and probabilistic SVM (bottom) classifiers, respectively. The plots in Fig. 4, which were generated

using estimated labels only, reveal clear advantages of using unlabeled samples for the proposed semi-supervised

self learning approach when compared with the supervised algorithm alone. In all cases, the proposed strategy

outperforms the corresponding supervised algorithm significantly, and the increase in performance is more relevant

as the number of unlabeled samples increases. These unlabeled samples are automatically selected by the proposed

approach, and represent no cost in terms of data collection or human supervision which are key aspects for self
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(a) 5 labeled samples per class (ln = 80) (b) 10 labeled samples per class (ln = 160) (c) 15 labeled samples per class (ln = 240)

Fig. 4. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the AVIRIS Indian Pines data set

using the MLR (top) and probabilistic SVM (bottom) classifier, respectively. Estimated labels were used in all the experiments, i.e.,lr = 0.

learning. In Fig. 4 it can also be seen that using intelligenttraining sample selection algorithms such as MS,

BT, MBT or nEQB greatly improved the obtained accuracies in comparison with simple random selection (RS).

The results in Fig. 4 also reveal that BT outperformed other strategies in most cases, with MBT providing lower

classification accuracies than BT. This is expected, as the candidate setDc is more relevant when the samples are

obtained from the class boundaries. Finally, it can also be observed that the MLR always performed better than the

probabilistic SVM in terms of classification accuracies.

In order to show the classification results in more details, Table I shows the overall, average, individual classifica-

tion accuracies (in percentage) and theκ statistic obtained by the supervised MLR and probabilisticSVM –trained

using only 10 labeled samples per class– and by the proposed approach (based on the same classifier) using the

four considered sample selection algorithms (executed using 30 iterations) in comparison with theoptimal case for

the same algorithms, in which true labels are used whenever available in the ground-truth. In all cases, we report

the value oflr to provide an indication of the number of true versus estimated labels used in the experiments. It

is noticeable that, by including unlabeled samples, the classification results are significantly improved in all cases.

Furthermore, it can be observed that the MLR classifier is more robust than the probabilistic SVM in our framework.

For example, withun = 750 and BT sampling, only 2.24% difference in classification canbe observed between

the implementation using only estimated labels and theoptimal case in which both true and estimated labels are

considered. However, for the probabilistic SVM classifier the difference is 6.67%. Similar observation can be made

for the other sampling algorithms considered in our experiments.

For illustrative purposes, Fig. 5 analyzes the convergenceof our proposed approach by plotting the obtained

classification accuracies for the AVIRIS Indian Pines sceneas a function of the number of unlabeled samples, using
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TABLE I

OVERALL , AVERAGE, INDIVIDUAL CLASSIFICATION ACCURACIES [%], AND κ STATISTIC OBTAINED USING THEMLR AND PROBABILISTIC

CLASSIFIERS WHEN APPLIED TO THEAVIRIS I NDIAN PINES HYPERSPECTRAL DATA SET, WITH 10 LABELED SAMPLES PER CLASS(160

SAMPLES IN TOTAL) AND un = 750 UNLABELED TRAINING SAMPLES. lr DENOTES THE NUMBER OF TRUE LABELS AVAILABLE INDu

(USED TO IMPLEMENT AN OPTIMAL VERSION OF EACH SAMPLING ALGORITHM ). THE STANDARD DEVIATIONS ARE ALSO REPORTED FOR

EACH TEST.

MLR classifier

Supervised
MS BT MBT nEQB RS

lr = 0 lr = 683 lr = 0 lr = 668 lr = 0 lr = 646 lr = 0 lr = 603 lr = 0 lr = 747

Alfalfa (54) 83.64±5.12 84.55±6.10 86.82±5.00 85.00±6.43 84.77±5.87 87.27±2.92 89.09±3.18 82.50±3.40 81.14±4.92 79.55±4.48 80.23±5.87

Corn-Notill (1434) 48.38±6.54 71.64±6.05 75.23±6.07 72.88±4.58 74.23±4.32 72.23±3.86 72.16±5.00 77.96±4.56 73.62±3.16 60.25±7.97 61.84±9.02

Corn-Min (834) 47.65±7.33 66.36±12.63 72.73±12.55 64.60±12.79 72.28±11.97 63.86±10.46 68.50±8.56 64.82±11.64 69.14±10.11 53.39±8.47 53.18±6.63

Corn (234) 70.63±9.43 85.76±8.13 85.49±5.74 87.54±5.86 88.04±4.53 92.23±2.45 90.67±6.48 86.38±6.30 80.40±13.18 66.29±16.34 71.74±12.94

Grass-Pasture (497) 75.42±7.35 85.50±4.93 87.37±7.43 85.48±5.32 88.67±5.57 87.08±6.30 89.45±5.96 79.49±8.35 83.78±7.28 81.79±5.15 83.59±6.71

Grass-Trees (747) 86.01±4.61 96.54±1.17 96.65±1.21 95.97±2.02 97.06±1.17 96.53±1.23 97.08±1.77 91.37±5.16 93.31±2.93 94.02±2.75 94.12±2.96

Grass-Pasture-Mowed (26) 88.12±6.88 93.75±6.62 87.50±5.89 93.75±5.47 86.88±8.56 89.38±7.25 90.63±5.31 90.63±4.42 88.12±9.97 85.00±6.72 86.25±5.74

Hay-Windrowed (489) 88.89±5.41 97.45±0.82 97.43±0.89 98.27±0.55 98.16±0.64 98.77±0.39 98.60±0.61 99.19±0.33 96.43±1.75 96.74±1.33 96.35±1.38

Oats (20) 98.00±4.22 96.00±11.35 95.00±10.80 97.00±11.35 96.00±6.99 99.00±3.16 99.00±3.16 97.00±6.75 96.00±6.99 99.00±4.22 98.00±4.22

Soybeans-Notill (968) 58.68±9.18 80.87±7.17 83.39±7.99 83.36±7.39 86.03±5.47 79.84±7.40 83.25±5.37 82.00±8.82 81.86±6.29 67.47±11.43 65.50±11.99

Soybeans-Min (2468) 44.85±10.85 72.51±4.70 74.49±7.29 70.14±5.28 72.76±5.72 62.58±8.20 65.36±5.96 68.04±5.60 69.29±5.43 50.81±12.98 54.02±8.23

Soybeans-Clean (614) 52.50±9.91 80.88±10.40 85.02±7.99 82.04±9.54 86.61±6.53 85.45±8.62 85.12±9.42 83.77±10.90 87.28±6.05 61.79±12.36 65.71±11.30

Wheat (212) 98.76±1.57 99.21±0.33 99.26±0.42 99.16±0.41 99.31±0.71 99.60±0.31 99.31±0.35 98.96±0.28 97.77±0.85 99.55±0.28 99.50±0.33

Woods (1294) 75.63±9.38 92.40±3.41 93.23±3.76 94.21±5.14 94.07±2.80 94.81±3.74 93.78±3.95 86.45±10.15 82.32±7.40 88.86±6.18 89.55±6.78

Bldg-Grass-Tree-Drives (380) 50.84±7.65 66.70±7.56 65.62±6.12 67.38±11.11 68.86±7.84 66.89±7.02 67.51±7.20 78.30±12.87 72.73±7.75 55.38±8.20 54.16±9.98

Stone-Steel-Towers (95) 79.88±8.22 82.94±7.91 84.12±10.90 80.94±7.75 83.29±9.79 91.06±3.19 90.82±3.91 79.53±5.74 85.06±10.23 77.53±8.55 78.00±7.73

OA 60.12± 3.08 80.00± 1.09 82.14±5.88 80.04± 1.28 82.28±6.12 78.34± 2.11 79.68±5.28 79.02±1.53 79.64±4.88 68.01± 3.04 69.28±2.63

AA 71.74± 1.54 84.57± 1.03 85.58±3.60 84.86± 1.53 86.06±3.86 85.41± 1.12 86.27±3.84 84.15±1.24 83.64±3.05 76.09± 1.76 76.98±1.46

κ 55.43± 3.20 77.31± 1.26 79.74±6.50 77.39± 1.45 79.93±6.79 75.59± 2.29 77.08±5.85 76.31±1.66 76.85±5.40 64.01± 3.30 65.39±2.86

Probabilistic SVM classifier

Supervised
MS BT MBT nEQB RS

lr = 0 lr = 695 lr = 0 lr = 717 lr = 0 lr = 649 lr = 0 lr = 701 lr = 0 lr = 740

Alfalfa (54) 79.77±12.70 75.23±8.67 65.23±11.19 84.32±3.78 84.77±3.72 89.77±3.08 85.91±0.96 80.00±12.21 55.45±7.74 82.05±7.68 66.14±7.98

Corn-Notill (1434) 32.32±14.21 63.90±13.67 77.46±1.89 62.97±15.49 76.54±3.16 51.33±19.49 59.70±2.85 60.72±17.53 75.67±2.12 44.56±18.39 55.32±3.61

Corn-Min (834) 37.17±19.56 56.70±25.76 80.24±3.09 58.12±24.62 76.58±4.23 55.98±22.21 72.34±2.15 55.42±22.33 77.97±1.64 43.28±25.34 61.77±6.22

Corn (234) 68.62±10.32 87.95±3.29 89.24±1.73 82.10±13.80 86.38±3.52 81.03±13.28 84.06±2.72 86.38±4.02 86.34±4.26 72.50±13.19 85.49±2.64

Grass-Pasture (497) 77.19±7.29 87.54±7.09 91.21±3.01 89.16±6.02 93.37±1.35 88.17±6.40 93.24±1.23 82.40±6.03 90.60±2.99 85.73±5.77 89.45±2.47

Grass-Trees (747) 65.36±14.50 93.96±2.75 91.90±2.82 95.29±2.62 94.02±2.53 90.39±4.96 88.66±2.22 87.72±7.29 92.29±2.42 88.36±5.99 82.63±4.95

Grass-Pasture-Mowed (26) 90.63±6.75 90.00±7.34 93.75±2.95 92.50±4.93 95.00±3.95 90.00±4.37 93.75±2.95 89.38±6.62 93.13±1.98 87.50±8.33 93.13±1.98

Hay-Windrowed (489) 78.06±8.12 95.80±1.75 97.70±0.60 97.89±0.89 98.10±0.46 98.52±1.19 98.27±0.43 93.26±3.95 97.93±1.38 93.49±4.39 97.24±0.67

Oats (20) 97.00±6.75 93.00±9.49 100.00 93.00±6.75 99.00±3.16 95.00±12.69 100.00 98.00±4.22 97.00±4.83 95.00±7.07 100.00

Soybeans-Notill (968) 49.42±18.23 80.96±7.68 88.68±3.02 82.03±8.88 91.39±2.14 72.13±24.41 87.21±2.60 71.34±27.13 85.75±2.73 65.10±18.05 84.38±3.66

Soybeans-Min (2468) 33.90±12.83 65.50±12.51 65.98±2.15 63.36±15.50 68.60±2.36 50.16±12.02 53.59±5.69 58.33±23.25 62.12±2.40 50.44±15.80 44.10±13.02

Soybeans-Clean (614) 43.31±12.88 77.90±10.32 90.79±2.09 81.42±11.08 91.42±1.24 63.00±17.91 84.39±7.02 76.71±13.10 92.04±1.71 52.91±8.92 61.94±11.52

Wheat (212) 93.61±3.96 98.37±1.07 97.82±1.40 98.66±0.81 97.52±1.34 98.22±2.40 99.01±0.52 97.28±0.91 97.48±1.00 97.38±1.51 97.62±0.45

Woods (1294) 72.39±15.02 89.24±6.07 93.90±1.92 92.94±4.58 97.34±0.40 92.10±6.25 97.81±0.55 77.73±10.45 90.73±2.72 89.36±6.60 96.94±0.74

Bldg-Grass-Tree-Drives (380) 47.84±14.90 68.11±14.08 64.95±5.97 66.81±16.28 61.97±3.04 65.46±8.72 58.51±4.37 72.54±12.16 64.86±5.76 42.35±13.44 40.00±7.62

Stone-Steel-Towers (95) 86.35±10.26 96.35±4.72 93.53±3.65 93.18±5.62 90.82±3.79 88.35±9.87 83.18±2.29 94.47±5.82 87.41±4.11 90.35±4.95 84.35±2.54

OA 50.61±5.34 75.87±3.44 81.82±7.54 76.23±5.40 82.91±0.75 68.66±5.35 75.26±1.39 70.47±5.24 79.69±0.62 63.59±5.59 68.40±2.85

AA 65.93±2.99 82.53±2.03 86.40±4.47 83.36±2.15 87.68± 0.67 79.35±2.16 83.73±0.79 80.10±2.43 84.17±0.65 73.77±2.18 77.53±0.96

κ 45.14±5.35 72.76±3.76 79.49±8.26 73.18±5.81 80.71±0.83 64.90±5.75 72.39±1.49 66.79±5.65 77.14±0.67 59.13±5.68 64.73±2.99

only 5 labeled samples per class (in total 80 labeled samples) for the MLR classifier with BT sampling approach. In

the figure, we report the case in which all unlabeled samples are estimated by the proposed approach (i.e.,lr = 0)

and also the optimal case in which true labels are used whenever possible (i.e.,lr = ur). As can be seen in Fig.

5, the proposed approach achieved good performance when compared with the optimal case, with a difference of

about 5% in classification accuracy when 3500 training samples were used.

Finally, Fig. 6 shows some of the classification maps obtained by the MLR and probabilistic SVM classifiers for

the AVIRIS Indian Pines scene. These classification maps correspond to one of the 10 Monte-Carlo runs that were

averaged in order to generate the classification scores reported in Table I. The advantages obtained by adopting a
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Fig. 5. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the AVIRIS Indian Pines data set

using the MLR classifier with BT sampling by using 5 labeled samples per class (in total 80 samples). Two cases are displayed: the one in

which all unlabeled samples are estimated by the proposed approach (i.e.,lr = 0) and the optimal case, in which true labels are used whenever

possible (i.e.,lr = ur).

Supervised (60.12%) MS (80.00%) BT (80.04%) MBT (78.34%) nEQB (79.02%) RS (68.01%)

Supervised (50.61%) MS (75.87%) BT (76.23%) MBT (68.66%) nEQB (70.47%) RS (63.51%)

Fig. 6. Classification maps and overall classification accuracies (in the parentheses) obtained after applying the MLR (top) and probabilistic SVM

(bottom) classifiers to the AVIRIS Indian Pines data set by using 10 labeled training samples and 750 unlabeled samples,i.e., ln = 160, un = 750

and lr = 0.

semi-supervised learning approach with regards to the corresponding supervised case can be clearly appreciated in

the classification maps displayed in Fig. 6, which also report the classification OAs obtained for each method in

the parentheses.

C. Experiments with ROSIS Pavia University Data Set

In this subsection we perform a set o experiments to evaluatethe proposed approach using the ROSIS University

of Pavia dataset. This problem represents a very challenging classification scenario dominated by complex urban

classes and nested regions. First, Fig. 7 shows how the OA results increase as the number of unlabeled samples
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increases, indicating again clear advantages of using unlabeled samples for the proposed semi-supervised self

learning approach in comparison with the supervised case. In this experiment, the four considered sample selection

approaches (MS, BT, MBT and nEQB) perform similarly and slightly better than simple random selection. For

instance, whenln = 45 labeled samples were used, the performance increase observed after includingun = 700

unlabeled samples with regards to the supervised case was 13.93% (for the MS), 13.86% (for the BT), 10.27% (for

the MBT) and 9.56% (for the nEQB). These results confirm our introspection that the proposed semi-supervised

self learning approach can greatly assist in improving the results obtained by different supervised classifiers based

on limited training samples.

Furthermore, Table II shows the overall, average, individual classification accuracies (in percentage) and theκ

statistic using only 10 labeled samples per class, in total,ln = 90 samples andun = 700 unlabeled samples for

the semi-supervised cases in comparison with theoptimal case, in which true labels are used whenever available

in the ground-truth. In all cases, we provide the value oflr to provide an indication of the number of true versus

estimated labels used in the experiments. It can be observedfrom Table II that the proposed approach is quite

robust as it achieved classification results which are very similar to those found by the optimal case. For example,

by using the BT sampling algorithm the proposed aproach obtained an OA of 83.73% which is almost the same as

the one obtained the optimal case, which achieved an OA of 84.07% by using true labels whenever possible. This

observation is confirmed by Fig. 8, which plots the classification accuracy obtained (as a function of the number of

unlabeled samples) for a case in which 100 labeled training samples per class were used (a total 900 samples) for

the MLR classifier with BT sampling approach. In the figure, wereport the case in which all unlabeled samples

are estimated by the proposed approach (i.e.,lr = 0) and also the optimal case in which true labels are used

whenever possible (i.e.,lr = ur). Although in this experiment the number of initial labeledsamples is significant,

it is remarkable that the results obtained by the proposed approach using only estimated labels are almost the same

than those obtained with the optimal version using true labels, which means that the unlabeled training samples

estimated by the proposed approach are highly reliable in this experiment.

For illustrative purposes, Fig. 9 shows some of the classification maps obtained by the MLR (top) and probabilistic

SVM (bottom) classifiers for the ROSIS Pavia University dataset, which corresponds to one of the 10 Monte-Carlo

runs that were averaged in order to generate the classification scores reported in Table II.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we have developed a new approach for semi-supervised classification of hyperspectral images in

which unlabeled samples are intelligently selected using aself learning approach. Specifically, we automatically

select the most informative unlabeled training samples with the ultimate goal of improving classification results

obtained using randomly selected training samples. In our semi-supervised context, the labels of the selected training

samples are estimated by the classifier itself, with the advantage that no extra cost is required for labeling the selected

samples when compared to classic (supervised) active learning. Our experimental results, conducted using two

different classifiers: sparse multinomial logistic regression (MLR) and probabilistic support vector machine (SVM),
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(a) ln = 45 (b) ln = 90 (c) ln = 135

Fig. 7. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the ROSIS PaviaUniversity data set

using the MLR (top) and probabilistic SVM (bottom) classifier, respectively. Estimated labels were used in all the experiments, i.e.,lr = 0.

Fig. 8. Overall classification accuracies (as a function of the number of unlabeled samples) obtained for the ROSIS PaviaUniversity data set

using the MLR classifier with BT sampling by using 100 labeledsamples per class (in total 900 samples). Two cases are displayed: the one in

which all unlabeled samples are estimated by the proposed approach (i.e.,lr = 0) and the optimal case, in which true labels are used whenever

possible (i.e.,lr = ur).

indicate that the proposed approach can greatly increase the classification accuracies obtained in the supervised case

through the incorporation of unlabeled samples which can beobtained with very little cost and effort. The obtained

results have been compared to theoptimal case in which true labels are used, and the differences observed when

using estimated samples by our proposed approach were always quite small. This is a good quantitative indicator of

the good performance achieved by our proposed approach, which has been illustrated using two hyperspectral scenes

collected by different instruments. In future work, we are planning on combining the proposed approach with other
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TABLE II

OVERALL , AVERAGE, INDIVIDUAL CLASSIFICATION ACCURACIES [%], AND κ STATISTIC OBTAINED USING THEMLR AND PROBABILISTIC

SVM CLASSIFIERS WHEN APPLIED TO THEROSIS UNIVERSITY OF PAVIA HYPERSPECTRAL DATA SET BY USING10 LABELED SAMPLES

PER CLASS(IN TOTAL 90 SAMPLES) AND un = 700 UNLABELED TRAINING SAMPLES. lr DENOTES THE NUMBER OF TRUE LABELS

AVAILABLE IN Du (USED TO IMPLEMENT AN OPTIMAL VERSION OF EACH SAMPLING ALGORITHM ). THE STANDARD DEVIATIONS ARE

ALSO REPORTED FOR EACH TEST.

MLR classifier

Supervised
MS BT MBT nEQB RS

lr = 0 lr = 443 lr = 0 lr = 356 lr = 0 lr = 412 lr = 0 lr = 365 lr = 0 lr = 558

Asphalt (6631) 64.05±7.34 74.57±7.48 75.41±6.01 72.62±4.97 74.72±6.14 71.43±4.75 71.54±4.57 72.91±7.37 72.40±7.63 66.40±7.55 68.85±6.03

Meadows (18649) 63.15±7.27 80.71±5.71 83.92±2.84 83.33±4.49 84.62±2.24 77.35±3.56 80.57±4.67 74.08±6.95 81.18±4.75 76.23±6.93 81.01±4.62

Gravel (2099) 66.28±9.21 80.05±9.35 80.33±8.86 82.07±9.31 81.09±9.00 79.24±9.19 81.55±7.65 81.86±7.50 82.28±7.59 73.44±7.55 77.21±10.77

Trees (3064) 84.74±11.11 84.88±9.97 85.47±8.66 88.07±8.87 83.32±9.45 94.41±3.58 88.45±6.82 91.46±4.05 85.64±8.83 82.97±9.16 85.04±5.01

Metal Sheets (1345) 98.64±0.60 99.49±0.44 98.68±1.24 99.29±0.36 99.32±0.47 99.77±0.21 99.70±0.29 98.79±0.82 98.85±0.82 99.03±0.48 98.87±0.54

Bare Soil (5029) 69.54±8.79 89.61±3.22 89.74±4.15 89.59±3.86 88.93±4.62 82.45±6.58 86.31±4.13 71.29±6.26 82.99±5.29 76.84±11.58 82.57±8.73

Bitumen (1330) 87.70±3.31 95.29±1.66 93.93±2.18 96.17±0.99 95.39±2.02 96.53±1.18 96.52±1.17 85.39±7.60 90.26±5.56 92.07±3.52 93.27±3.79

Self-Blocking Bricks (3682) 73.22±7.57 82.19±7.02 81.38±5.06 80.99±7.09 80.48±4.46 82.87±6.76 77.83±7.48 79.29±9.17 80.16±8.40 76.08±7.85 75.74±10.34

Shadow (947) 98.44±1.91 98.90±2.56 97.88±3.33 99.12±1.79 98.60±1.86 98.98±1.88 99.30±0.49 99.88±0.15 99.55±0.72 98.85±2.28 99.52±0.32

OA 69.25±3.75 82.63±2.55 84.08±0.98 83.73±1.86 84.07±1.52 80.59±1.38 81.72±1.96 77.33±3.80 81.5±51.54 76.81±3.38 80.30±2.54

AA 78.42±1.75 87.30±1.28 87.41±0.76 87.92±1.13 87.39±1.25 87.00±0.77 86.86±0.73 83.88±2.30 85.92±0.96 82.43±1.60 84.68±1.39

κ 61.69±4.01 77.78±3.08 79.50±1.14 79.12±2.23 79.45±1.90 75.44±1.61 76.70±2.27 71.27±4.53 76.36±1.74 70.45±3.86 74.75±3.03

Probabilistic SVM classifier

Supervised
MS BT MBT nEQB RS

lr = 0 lr = 454 lr = 0 lr = 382 lr = 0 lr = 324 lr = 0 lr = 337 lr = 0 lr = 557

Asphalt (6631) 60.43± 8.23 75.71± 12.63 76.25±9.46 74.38± 7.89 72.82±8.00 72.27± 3.13 70.68±3.72 70.16±8.34 70.01±9.05 61.14± 7.06 61.52±5.37

Meadows (18649) 54.36± 9.43 68.35± 7.10 69.95±6.72 79.57± 8.28 78.96±9.21 63.53± 11.57 64.61±12.56 66.16±13.17 66.62±7.29 62.35± 12.01 65.95±12.93

Gravel (2099) 62.23± 10.33 75.72± 14.03 75.30±11.18 80.01± 9.72 80.25±8.33 72.58± 12.90 75.14±9.40 80.82±9.35 80.05±9.60 70.97± 12.39 70.61±10.49

Trees (3064) 90.75± 7.19 88.77± 9.31 88.94±5.97 85.14± 8.41 87.80±7.00 92.31± 7.43 92.01±5.25 89.52±7.01 89.43±7.24 89.90± 5.20 85.15±7.60

Metal Sheets (1345) 96.68± 5.68 99.91± 0.08 99.90±0.11 99.84± 0.10 99.83±0.12 99.55± 0.33 99.64±0.34 99.86±0.10 99.86±0.10 99.71± 0.12 99.69±0.19

Bare Soil (5029) 62.74± 19.59 87.47± 4.81 88.08±5.22 88.60± 3.92 90.26±2.66 77.89± 12.67 78.95±9.39 73.03±10.42 76.96±7.93 75.01± 14.21 73.05±23.65

Bitumen (1330) 89.90± 5.14 92.47± 4.12 93.21±3.22 94.38± 3.55 95.67±1.97 94.84± 1.39 95.56±1.67 90.33±3.92 90.79±3.22 92.93± 4.66 92.97±3.67

Self-Blocking Bricks (3682) 66.50± 8.44 71.64± 18.83 75.52±9.44 80.89± 8.04 80.39±8.07 74.95± 24.57 81.00±7.17 72.01±5.71 71.82±7.16 70.04± 12.33 72.23±13.42

Shadow (947) 99.26± 1.62 99.77± 0.19 99.73±0.52 97.98± 2.74 98.54±1.43 97.56± 2.68 99.11±2.16 99.90±0.01 99.88±0.14 99.31± 1.47 99.77±0.26

OA 63.68± 4.97 76.27± 4.68 77.47±3.26 81.85± 4.44 81.95±4.68 72.90± 5.42 73.93±4.95 73.61±3.89 77.02±5.87 69.63± 5.25 70.88±5.20

AA 75.76± 3.74 84.42± 2.22 85.21±1.47 86.75± 1.55 87.17±1.45 82.83± 2.43 84.08±1.46 82.42±1.98 82.82±2.03 80.15± 2.92 80.11±3.46

κ 55.48± 5.55 70.40± 5.26 71.79±3.71 76.89± 5.19 76.94±5.42 66.60± 5.85 67.86±5.40 66.44±6.26 67.08±4.40 62.46± 5.57 63.70±5.70

probabilistic classifiers. We are also considering the use of expectation-maximization as a form of self learning [15].

Although in this manuscript we focused our experiments on hyperspectral data, the proposed approach can also be

applied to other types of remote sensing data, such as multispectral data sets. In fact, since the dimensionality of

the considered hyperspectral data sets is quite high, the proposed approach could greatly benefit from the use of

feature extraction/selection methods prior to classification in order to make the proposed less sensitive to the Hughes

effect [48] and to the possibly very limited initial availability of training samples. This research topic also deserves

future attention. Another interesting future research line is to adapt our proposed sample selection strategy (which

is based on the selection of individual pixels) to the selection and labeling of spatial subregions or boxes within the

image, which could be beneficial in certain applications. Finally, another important research topic deserving future

attention is the inclusion of a cost associated to the labelsgenerated by the proposed algorithm. This may allow a

better evaluation of the training samples actively selected by our proposed approach.
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Supervised (69.25%) MS (82.63%) BT (83.73%) MBT (80.59%) nEQB (77.33%) RS (76.81%)

Supervised (63.68%) MS (76.27%) BT (81.85%) MBT (72.90%) nEQB (77.02%) RS (69.63%)

Fig. 9. Classification maps and overall classification accuracies (in the parentheses) obtained after applying the MLR (top) and probabilistic

SVM (bottom) classifier to the ROSIS Pavia University data set (in all cases,ln = 90 and lr = 0).
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