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Abstract

Remotely sensed hyperspectral imaging allows for the leetainalysis of the surface of the Earth using advanced
imaging instruments which can produce high-dimensionalges with hundreds of spectral bands. Supervised hy-
perspectral image classification is a difficult task due ® uhbalance between the high dimensionality of the data
and the limited availability of labeled training samplesrarl analysis scenarios. While the collection of labeled
samples is generally difficult, expensive and time-consgmunlabeled samples can be generated in a much easier
way. This observation has fostered the idea of adopting-sepervised learning techniques in hyperspectral image
classification. The main assumption of such techniquesaisttte new (unlabeled) training samples can be obtained
from a (limited) set of available labeled samples withowngicant effort/cost. In this paper, we develop a new
approach for semi-supervised learning which adapts dlailactive learning methods (in which a trained expert
actively selects unlabeled samples) to a self-learninghdkaork in which the machine learning algorithm itself
selects the most useful and informative unlabeled samplesldssification purposes. In this way, the labels of the
selected pixels are estimated by the classifier itself, with advantage that no extra cost is required for labeling
the selected pixels using this machine-machine framewdrknacompared with traditional machine-human active
learning. The proposed approach is illustrated with twéedint classifiers: multinomial logistic regression (MLR)
and a probabilistic pixel-wise support vector machine (9VO®ur experimental results with real hyperspectral images
collected by the NASA Jet Propulsion Laboratory’s Airboiigible Infra-Red Imaging Spectrometer (AVIRIS) and
the Reflective Optics Spectrographic Imaging System (RQ3f8icate that the use of self learning represents an
effective and promising strategy in the context of hypectijaé image classification.
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bilistic support vector machine (SVM).
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|I. INTRODUCTION

Remotely sensed hyperspectral image classification [Mdstaldvantage of the detailed information contained
in each pixel (vector) of the hyperspectral image to geeetia¢matic maps from detailed spectral signatures. A
relevant challenge for supervised classification techesg{which assume prior knowledge in the form of class
labels for different spectral signatures) is the limitecilability of labeled training samples, since their cotlen
generally involves expensive ground campaigns [2]. WHike ¢ollection of labeled samples is generally difficult,
expensive and time-consuming, unlabeled samples can lerajed in a much easier way. This observation has
fostered the idea of adopting semi-supervised learninignigoes in hyperspectral image classification. The main
assumption of such techniques is that new (unlabeled)itigiisamples can be obtained from a (limited) set of
available labeled samples without significant effort/d8%t

The area of semi-supervised learning has experienced #icdgn evolution in terms of the adopted models,
which comprise complex generative models [4]—[7], selfhéag models [8], [9], multi-view learning models [10],
[11], transductive support vector machines (SVMs) [12B][land graph-based methods [14]. A survey of semi-
supervised learning algorithms is available in [15]. Moktheese algorithms use some type of regularization which
encourages the fact that “similar” features are associ@dtle same class. The effect of such regularization is to
push the boundaries between classes towards regions witddta density [16], where the usual strategy adopted
first associates the vertices of a graph to the complete ssaraples and then builds the regularizer depending
on variables defined on the vertices. This trend has beeressitdly adopted in several recent remote sensing
image classification studies. For instance, in [17] trantde SVMs (TSVMs) are used to gradually search a
reliable separating hyperplane (in the kernel space) wittamsductive process that incorporates both labeled and
unlabeled samples in the training phase. In [18], a sem@&stiged method is presented that exploits the wealth
of unlabeled samples in the image, and naturally givesivelatportance to the labeled ones through a graph-
based methodology. In [19], kernels combining spectratiap information are constructed by applying spatial
smoothing over the original hyperspectral data and themgusbmposite kernels in graph-based classifiers. In [20],
a semisupervised SVM is presented that exploits the weélthlabeled samples for regularizing the training kernel
representation locally by means of cluster kernels. In,[pA2], a new semi-supervised approach is presented that
exploits unlabeled training samples (selected by mean® afctive selection strategy based on the entropy of the
samples). Here, unlabeled samples are used to improve tingagsn of the class distributions, and the obtained
classification is refined by using a spatial multi-level Bigi prior. In [23], a novel context-sensitive semi-supsed
SVM is presented that exploits the contextual informatiénhe pixels belonging to the neighborhood system of
each training sample in the learning phase to improve thastoless to possible mislabeled training patterns. In
[24], two semi-supervised one-class (SVM-based) appremehne presented in which the information provided by
unlabeled samples present in the scene is used to improssifidation accuracy and alleviate the problem of
free-parameter selection. The first approach models datgima distribution with the graph Laplacian built with

both labeled and unlabeled samples. The second approachdasdification of the SVM cost function that penalizes
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more the errors made when classifying samples of the talgss.cin [25] a new method to combine labeled
and unlabeled pixels to increase classification religbaihd accuracy, thus addressing the sample selection bias
problem, is presented and discussed. In [26], an SVM is ddhiwith the linear combination of two kernels: a
base kernel working only with labeled examples is deformga liikelihood kernel encoding similarities between
labeled and unlabeled examples, and then applied in theexioaf urban hyperspectral image classification. In
[27], similar concepts to those addressed before are adlafgiég a neural network as the baseline classifier. In
[28], a semi-automatic procedure to generate land covessrfrag remote sensing images using active queries is
presented and discussed.

In contrast to supervised classification, the aforemeptiosemi-supervised algorithms generally assume that a
limited number of labeled samples are availadlpriori, and then enlarge the training set using unlabeled samples,
thus allowing these approaches to address ill-posed prablelowever, in order for this strategy to work, several
requirements need to be met. First and foremost, the newlfatdd) samples should be generated without significant
cost/effort. Second, the number of unlabeled samples redjin order for the semi-supervised classifier to perform
properly should not be too high in order to avoid increasingputational complexity in the classification stage.
In other words, as the number of unlabeled samples increiseay be unbearable for the classifier to properly
exploit all the available training samples due to compatwtl issues. Further, if the unlabeled samples are not
properly selected, these may confuse the classifier, thosdincing significant divergence or even reducing the
classification accuracy obtained with the initial set ofdkdal samples. In order to address these issues, it is very
important that the most highly informative unlabeled saspre identified in computationally efficient fashion, so
that significant improvements in classification perfornenan be observed without the need to use a very high
number of unlabeled samples.

In this work, we evaluate the feasibility of adapting avialiéa active learning techniques (in which a trained
expert actively selects unlabeled samples) to a selfdlearitamework in which the machine learning algorithm
itself selects the most useful unlabeled samples for ¢leason purposes, with the ultimate goal of systematically
achieving noticeable improvements in classification tissuith regards to those found by randomly selected training
sets of the same size. In the literature, active learningtigcies have been mainly exploited in a supervised context,
i.e. a given supervised classifier is trained with the most repmedive training samples selected after a (machine-
human) interaction process in which the samples are agtselected according to some criteria based on the
considered classifier, and then the labels of those samptesssigned by a trained expert in fully supervised
fashion [22], [29]-[33]. In this supervised context, saegplvith high uncertainty are generally preferred as they
are usually more informative. At the same time, since thepdasnare labeled by a human expert, high confidence
can be expected in the class label assignments. As a relsdsiac (supervised) active learning generally focuses
on samples with high confidence at the human level and higkrtainty at the machine level.

In turn, in this work we adapt standard active learning méshmto a self-learning scenario. The main idea
is to obtain new (unlabeled) samples using machine-madhieeaction instead of human supervision. Our first

(machine) level —similar to the human level in classic (sujged) active learning— is used to infer a set of candidate
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unlabeled samples with high confidence. In our second (magheével —similar to the machine level for supervised
active learning— the machine learning algorithm itselfoaustically selects the samples with highest uncertainty
from the obtained candidate set. As a result, in our propapgdoach the classifier replaces the human expert. In

other words, here we propose a novel two-step semi-supengslf learning approach:

« The first step infers a candidate set using a self learniladesty based on the available (labeled and unlabeled)
training samples. Here, a spatial neighborhood critesamsid to derive new candidate samples as those which
are spatially adjacent to the available (labeled) samples.

« The second step automatically selects (and labels) newIsamm the candidate pool by assuming that
those pixels which are spatially adjacent to a given classhealabeled with high confidence as belonging to

the same class.

As a result, our proposed strategy relies on two main assangptThe first assumption (global) is that training
samples having the same spectral structure likely belgnginhe same class. The second assumption (local) is that
spatially neighboring pixels likely belong to the same sla&s a result, our proposed approach naturally integrates
the spatial and the spectral information in the semi-supedvclassification process.

The remainder of the paper is organized as follows. Sectidedcribes proposed approach for semi-supervised
self learning. We illustrate the proposed approach with prababilistic classifiers: multinomial logistic regremsi
(MLR) and a probabilistic pixel-wise support vector ma@hifsVM), which are both shown to achieve significant
improvements in classification accuracy resulting fromadtsnbination with the proposed semi-supervised self
learning approach. Section Il reports classification itesusing two real hyperspectral images collected by the
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIBKY] and the Reflective Optics Spectrographic Imaging
System (ROSIS) [35] imaging spectrometers. Finally, sectV concludes the paper with some remarks and hints

at plausible future research lines.

Il. PROPOSEDAPPROACH
First, we briefly define the notations used in this paper. Ket {1,..., K} denote a set of{ class labels,
S = {1,...,n} a set of integers indexing the pixels of an imagex = (x1,...,x,) € R an image ofd-
dimensional feature vectorg,= (y1,-..,y») an image of labelsD; = {(y,,x1,),- -, (y1,, %1, )} @ set of labeled
samples/,, the number of labeled training samplé4,= {vi,, ..., u, } the set of labels iD;, X} = {x;,,...,x;,}
the set of feature vectors i®;, D, = {X,, ).} a set of unlabeled samples;,, = {x,,,...,%.,} the set of
unlabeled feature vectors B, Vi = {yu,,-- -, Yu, } the set of labels associated wiff),, andu,, the number of

unlabeled samples. With this notation in mind, the propasadi-supervised self learning approach consists of two

main ingredients: semi-supervised learning and self lagrrwhich are described next.

A. Semi-Supervised Learning

For the semi-supervised part of our approach, we use twerdiit probabilistic classifiers to model the class

posterior density. The first one is the MLR, which is formadiyen by [36]:
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exp(w®™ " h(x;))
it exp(w® h(xi)
whereh(x) = [hi(x),..., hi(x)]T is a vector ofl fixed functions of the input, often termed features;are the

p(yi = klxi,w) = (1)

regressors and = [w®" ..., w@) |7 Notice that, the functiom may be linearj.e., h(x;) = [1,z; 1, ..., zi.4)7,
where z; ; is the j-th component ofx;; or nonlinear,i.e, h(x;) = [1, Kx; x;, - Kx;.x) " » where Ky, x, =
K(x;,x;) and K (-,-) is some symmetric kernel function. Kernels have been Igrgséd because they tend to
improve the data separability in the transformed spacehis japer, we use a Gaussian Radial Basis Function
(RBF) K (x;,x;) = exp(—|/x; — x;]|>/20?) kernel, which is widely used in hyperspectral image clasaiion
[37]. We selected this kernel (after extensive experint@nausing other kernels, including linear and polynomial
kernels) because we empirically observed that it provitledoest results. From now od denotes the dimension of
h(x). Under the present setup, learning the class densitiesrmtuestimating the logistic regressors. Following

the work in [38], [39], we can compute by obtaining the maximum a posteriori (MAP) estimate:
w = arg max (w) + log p(w), 2

wherep(w) x exp(—Al|w||1) is a Laplacian prior to promote sparsity akds a regularization parameter controlling
the degree of sparseness®fin [38], [39]. In our previous work [39], it was shown that pameter) is rather
insensitive to the use of different datasets, and that theranany suboptimal values for this parameter which lead
to very accurate estimation of paramederIn our experiments, we set = 0.001 as we have empirically found
that this parameter setting provides very good perform§h@E Finally, /(w) is the log-likelihood function over

the training sample®, ., = D, + D,, given by:

In+un
lw) = > logplyi = kfxi,w). ®)

1=1

As shown by Eq. (3), labeled and unlabeled samples are attmjto learn the regressass The considered semi-
supervised approach belongs to the family of self learnpgr@aches, where the training €t,, is incremented
under the following criterion. LeD ;) = {(¥i,,%i,), - - -, (Ui, Xi,, ) } be the set of neighboring samples(of, x;)
foric {l1,...,ln,u1,...,u,}, wherei, is the number of samples iRy ;) andy;; is the maximum a posteriori
(MAP) estimate from the MLR classifier, witt) € {i1,...,4,}. If 7;, = y;, we increment the unlabeled training set
by adding(¥;,,x;, ), i.e., Dy = {Du, (¥i;,%s,)}. This increment is reasonable due to the following consitiens.
First, from a global viewpoint, samples which have the sapextal structure likely belong to the same class.
Second, from a local viewpoint, it is very likely that two gbhboring pixels also belong to the same class. Therefore,
the newly included samples are reliable for learning thessifeer. In this work, we run an iterative scheme to
increment the training set as this strategy can refine thimatgts and enlarge the neighborhood set such that the
set of potential unlabeled training samples is increased.

It is important to mention that problem (2), although conviexvery difficult to compute because the tef(w)
is non-quadratic and the tertog p(w) is non-smooth. The sparse MLR (SMLR) algorithm presentd@&j solves
this problem withO((d(K — 1))3) complexity. However, most hyperspectral data sets arerzktte reach of this
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algorithm as their analysis becomes unbearable when théewof classes increases. In order to address this issue,
we take advantage of the logistic regression via variablitieg and augmented Lagrangian (LORSAL) algorithm
[41] which allows replacing a difficult non-smooth convexblem with a sequence of quadratic plus diagdpdl
problems with practical complexity ab(d?(K — 1)). Compared with the figur®((d(K — 1))3) of the SMLR
algorithm, the complexity reduction ef( K — 1)? is quite significant [39], [41].

Finally, we have also used an alternative probabilisticsifeer for the semi-supervised learning part of our
methodology. This is the probabilistic SVM in [12], [42]. i@t probabilistic classifiers could be used, but we
have selected the SVM as a possible alternative to MLR sihiedassifier is already widely used to analyze
hyperspectral data [17], [18], while the MLR has only retgrimerged as a feasible technique for this purpose. It
should be noted that the standard SVMs do not provide prétyabstimates for the individual classes. In order to
get these estimates, pairwise coupling of binary prokstlilestimates is applied [42], [43], which has been applied

for hyperspectral classifications [44].

B. Self learning

The proposed semi-supervised self learning approach isdbas two steps. In the first step, a candidate set
(based on labeled and unlabeled samples) is inferred ussalf dearning strategy based on spatial information,
so that high confidence can be expected in the class label® aflitained candidate set. This is similar to human
interaction in classic (supervised) active learning, inchithe class labels are known and given by an expert. In
a second step, we run standard active learning algorithmbepreviously derived candidate set, so that they are
adapted to a self learning scenario to automatically (atelligently) select the most informative samples from the
candidate set. Here, the goal is to find the samples with higheertainty.

As a result, in the proposed semi-supervised self learniigree our aim is to select the most informative
samples without the need for human supervision. The clésddaf the newly selected unlabeled training samples
are predicted by the considered semi-supervised algorhimentioned in subsection 1I-A. L&, be the newly
generated unlabeled training set at each iteration, whieletsnthe criteria of the considered semi-supervised
algorithm. Notice that the self learning step in the projlogeproach leads to high confidence in the class labels of
the newly generated s&t.. Now we can run standard active learning algorithms @¥eto find the most informative
setD,, i.e, samples with high uncertainty, such tiat C D.. Due to the fact that we use discriminative classifiers
and a self learning strategy for the semi-supervised atyarialgorithms which focus on the boundaries between
the classes are preferred. In our study, we use four difféemmniques to evaluate the proposed approach [26]: 1)
margin sampling (MS), 2) breaking ties (BT), 3) modified lkieg ties (MBT) [39], and 4) normalized entropy
querying by bagging (nEQB) [30], in addition to random sétat (RS) in which the new samples are randomly
selected from the candidate set. In the following we brieflflioe each method (for a more detailed description

of these approaches, we refer to [22], [45]):

o The MS technique [45] samples the candidates lying within riargin by computing their distance to the

hyperplane separating the classes. In other words, the M8nizies the distance of the sample to the optimal
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separating hyperplane defined for class in a one-againséttihg for multiclass problems.

« The BT algorithm [46] relies on the smallest difference @& gosterior probabilities for each sample. In a multi-
class setting, the algorithm can be applied (independeritthe number of classes available) by calculating
the difference between the two highest probabilities. Assult, the algorithm finds the samples minimizing
the distance between the first two most probable classesieliops work [39], it has been shown that the
BT criterion generally focuses on the boundaries compgisirany samples, possibly disregarding boundaries
with fewer samples.

« The MBT scheme [39] was originally proposed to include mdveity in the sampling process as compared
to the BT approach. It finds the samples maximizing the pritibalbf the largest class for each individual
class. This method takes into account all the class bousléy conducting the sampling in cyclic fashion,
making sure that the MBT does not get trapped in any classealséBT could be trapped in a single (complex)
boundary.

« The nEQB approach [30] is a form of committee-based samglggrithm that quantifies the uncertainty of
a pixel by considering a committee of learners. Each memb#teocommittee exploits different hypotheses
about the classification problem and consequently labelgittels in the pool of candidates. The algorithm then
selects the samples showing maximal disagreement betweelifterent classification models in the committee.
Specifically, the nEQB approach uses bagging [47] to buitddbmmittee and Entropy maximization as the
multiclass heuristic, which provides a measure that is themmalized in order to bound it with respect to the
number of classes predicted by the committee and avoid loi$ i the value of uncertainty in regions where
several classes overlap. The version of nEQB used in thik igathe one implemented in

At this point, it is important to emphasize that the aforetimred sampling algorithms have been used in this

work for intelligently selecting the most useful candidatemples based on the available probabilistic information.
As a result, spatial information is not directly addressgdhese methods, but by the strategy adopted to generate
the pool of candidate samples. Since spatial informaticghésmain criterion adopted in this stage, there is a risk
that the initial pool of candidate samples may smooth ouath&reas in the scene. However, we emphasize that our
proposed method for generating the pool of initial candidas not exclusively spatial as we use the probabilistic
information provided by spectral-based classifiers (sueHM@R or probabilistic SVM) in order to assess the
similarity between the previously selected samples andnthe candidates. Hence, as we have experimentally
observed, no significant smoothing effects happen in broaalsaand good initial candidates are generally selected.
It is also worth noting that, in this work, we use two classfiaith probabilistic output that are well-suited for
the aforementioned algorithms (MLR and probabilistic SVMpwever, the proposed approach can be adapted to
any other probabilistic classifiers.

For illustrative purposes, Fig. 1 illustrates how spatigbimation can be adopted as a reasonable criterion to

select unlabeled samples and prevent labeling errors imasepervised classification process using a probalailisti

Ihttp://code.google.com/p/altoolbox
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Hyperspectral image
(and labeled samples)

Sl T Y ey

Classification map
(probabilistic classifier)

A comparison between the
original classification map
and the refined map
indicates that spatial
information can be used as
a criterion to select
unlabeled samples and
prevent labeling errors

Neighbors of
labeled samples
are used to
generate new
candidate
samples

Refined classification map
with updated probabilities

Active (self)

learning

N
| I A T A
New candidate set Labeled + unlabeled samples

Fig. 1. A graphical example illustrating how spatial infation can be used as a criterion for semi-supervised setfitenin hyperspectral
image classification.

classifier. As Fig. 1 shows, we use an iterative process teeeehhe final classification results. First, we use a
probabilistic classifier (in this work, the MLR or the proliiigiic SVM) to produce a global classification map
which contains the probability of each pixel to belong toteatass in the considered hyperspectral image. Based
on a local similarity assumption, we identify the neighbofshe labeled training samples (using first-order spatial
connectivity) and then compute the candidateBetby analyzing the spectral similarity of the spatial neigtsbo
with regards to the original labeled samples. This is donauglyzing the probabilistic output associated to each
neighboring sample. In this way, the candidate Betis obtained based on spectral and spatial information and
its samples are highly reliable. At the same time, it is ekpe:¢hat there may be redundant informatiorfipn In
other words, some of the samples in the candidate set mayenosdful for training the classifier as they may be
too similar to the original labeled samples. This couldadtice difficulties from the viewpoint of computational
complexity. Therefore, afteD. is obtained, we run active learning algorithms on the caatdicet in order to
automatically select the most informative unlabeled trejrsamples. Since the active learning algorithms are based
on the available probabilistic information, they are addpto a self-learning scenario and used to intelligently

reduce possibly existing redundancies in the candidatetise$ obtaining a highly informative pool of training
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samples which ultimately contain only the most relevant @amfor classification purposes. The newly obtained
labeled and unlabeled training samples are finally usedttainghe classifier. The procedure is repeated in iterative
fashion until a convergence criterion is met, for exampljlwa certain number of unlabeled training samples is

obtained.

Ill. EXPERIMENTAL RESULTS

In this section, two real hyperspectral images are used atuate the proposed approach for semi-supervised
self learning. In our experiments with the MLR and SVM cléisss, we apply the Gaussian RBF kernel to a
normalized version of the considered hyperspectral dath ¥ée reiterate that the Gaussian RBF kernel was
selected after extensive experimentation with other Kerra all cases, the reported figures of overall accuracy
(OA), average accuracy (AA) statistic, and class individual accuracies are obtainedmraging the results
obtained after conducting 10 independent Monte Carlo ruitls kespect to the labeled training sB{ from the
ground truth image, where the remaining samples are usedhfidlation purposes. Finally, the optimal parameters
C (parameter that controls the amount of penalty during thM®¥timization [12]) ands (spread of the Gaussian
RBF kernel) were chosen by 10-fold cross validation. Them@upeters are updated at each iteration.

In order to illustrate the good performance of the propoggot@ach, we use very small labeled training sets
on purpose. As a result, the main difficulties that our pregospproach should circumvent can be summarized as
follows. First and foremost, it is very difficult for supesed algorithms to provide good classification results ag ver
little information is generally available about the clagstribution. Poor generalization is also a risk when estingga
class boundaries in scenarios dominated by limited trgis@mples. Since our approach is semi-supervised, we
take advantage of unlabeled samples in order to improvsifitzion accuracy. However, if the number of labeled
sampled is very small, increasing the number of unlabeled samplesuld bias the learning process.

In order to analyze the aforementioned issues and provideaatiative evaluation of our proposed approach
with regards to the optimal case in whittue active learning methods (i.e. those relying on the knowdedthe
true labels of the selected samples) were used, we haverimepted the following validation framework. L&,
be a set of unlabeled samples for which true labels are &ail@hese samples are included in the ground-truth
associated to the hyperspectral image but are not used isethef labeled samples used initially by the classifier.
In order to evaluate the effectiveness of the proposed apprave can effectively label these sample®ip). using
their true (ground-truth) labels instead of estimatinglttiels by our proposed approach. Clearly, these samples wil
be favored over those selected by our proposed method whiglesruse of estimated labels. But it is interesting to
qguantify such an advantage (the lower it is, the better farrethod). Following this rationale, the optimal case is
that most samples i®,, have true labels available, which means tha{ contains most of the unlabeled samples
in D,. In our experiments, we denote by the number of unlabeled samples for which a true label islavai

in the ground-truth associated to the considered hypetrspamage. If/, = 0, this means that the labels of all

2The normalization is simply given by; := ,fori=1,...,n, wherex; is a spectral vector.

(V2 l1%il1?)
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unlabeled samples are estimated by our proposed apprdd¢h= lu,., this means that true labels are available for
all the samples irD,,,.. Using this strategy, we can substantiate the deviatioruofpooposed approach with regards
to the optimal case in which true labels for the selected samples are biail@ypically, true labels will be only
available for part of the samples as the considered hypetrspelata sets do not contain ground-truth information
for all pixels. In this scenario, theptimal case comprises both true (whenever available) and estintetels (the
value ofl, is given in all experiments).

The remainder of this section is organized as follows. Irssation IlI-A we introduce the two datasets used for
evaluation purposes in this work. In subsection IlI-B, wedae the experiments conducted using the first data
set: AVIRIS Indian Pines. Finally, subsection IlI-C conthiexperiments using a second data set: ROSIS Pavia
University. In all cases, the results obtained by the suipedwersions of the considered classifiers are also raporte

for comparative purposes.

A. Hyperspectral data sets

Two hyperspectral data sets collected by different ins&ni® are used in our experiments:

« The first hyperspectral image used in experiments was tetlday the AVIRIS sensor over the Indian Pines
region in Northwestern Indiana in 1992. This scene, withza sif 145 lines by 145 samples, was acquired
over a mixed agricultural/forest area, early in the growsegson. The scene comprises 220 spectral channels
in the wavelength range from 0.4 to 2/, nominal spectral resolution of 10 nm, moderate spat&dltgion
of 20 meters by pixel, and 16-bit radiometric resolutionteAfan initial screening, several spectral bands were
removed from the data set due to noise and water absorptienophena, leaving a total of 200 radiance
channels to be used in the experiments. For illustrativpgses, Fig. 2(a) shows a false color composition of
the AVIRIS Indian Pines scene, while Fig. 2(b) shows the gbtruth map available for the scene, displayed
in the form of a class assignment for each labeled pixel, ihmutually exclusive ground-truth classes,
in total, 10366 samples. These data, including groundhtinformation, are available onlifea fact which
has made this scene a widely used benchmark for testing theamy of hyperspectral data classification
algorithms. This scene constitutes a challenging claasidic problem due to the presence of mixed pixels in
all available classes, and because of the unbalanced nwhbegailable labeled pixels per class.

o The second hyperspectral data set was collected by the RO&I&Il sensor over the urban area of the
University of Pavia, Italy. The flight was operated by the Behen Zentrum for Luftund Raumfahrt (DLR,
the German Aerospace Agency) in the framework of the HySengegq, managed and sponsored by the
European Union. The image size in pixels6is) x 340, with very high spatial resolution of 1.3 meters per
pixel. The number of data channels in the acquired image 3s(Mth spectral range from 0.43 to 0.86n).

Fig. 3(a) shows a false color composite of the image, whilg Bib) shows nine ground-truth classes of

interest, which comprise urban features, as well as soilvaggtation features.
SAvailable online: http://dynamo.ecn.purdue.edu/bighitiSpec
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Fig. 2. (a) False color composition of the AVIRIS Indian Fingcene. (b) Ground truth-map containing 16 mutually eksutand-cover
classes (right).
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Fig. 3. (a) False color composition of the ROSIS Pavia scéiieGround truth-map containing 9 mutually exclusive laer classes.

B. Experiments with AVIRIS Indian Pines Data Set

In the first experiment we evaluated the impact of the numbeurdabeled samples on the classification
performance achieved by the two considered probabiligisstfiers using the AVIRIS Indian Pines data set in Fig.
2(a). Fig. 4 shows the OAs in classification accuracy as atimmof the number of unlabeled samples obtained by
the MLR (top) and probabilistic SVM (bottom) classifiersspectively. The plots in Fig. 4, which were generated
using estimated labels only, reveal clear advantages ofjusilabeled samples for the proposed semi-supervised
self learning approach when compared with the supervisgdritim alone. In all cases, the proposed strategy
outperforms the corresponding supervised algorithm Baamitly, and the increase in performance is more relevant
as the number of unlabeled samples increases. These wiaahples are automatically selected by the proposed

approach, and represent no cost in terms of data collectidruman supervision which are key aspects for self
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Fig. 4. Overall classification accuracies (as a functionhaf humber of unlabeled samples) obtained for the AVIRISandrines data set

using the MLR (top) and probabilistic SVM (bottom) classifieespectively. Estimated labels were used in all the exmats, i.e.l, = 0.

learning. In Fig. 4 it can also be seen that using intelliggaining sample selection algorithms such as MS,
BT, MBT or nEQB greatly improved the obtained accuracies amparison with simple random selection (RS).

The results in Fig. 4 also reveal that BT outperformed otliextegies in most cases, with MBT providing lower

classification accuracies than BT. This is expected, asdhdidate seD, is more relevant when the samples are
obtained from the class boundaries. Finally, it can alsolimeored that the MLR always performed better than the
probabilistic SVM in terms of classification accuracies.

In order to show the classification results in more detagdld | shows the overall, average, individual classifica-
tion accuracies (in percentage) and thetatistic obtained by the supervised MLR and probabiliSM —trained
using only 10 labeled samples per class— and by the propggwdach (based on the same classifier) using the
four considered sample selection algorithms (executetgu30 iterations) in comparison with ttogtimal case for
the same algorithms, in which true labels are used wheneradiable in the ground-truth. In all cases, we report
the value ofl,. to provide an indication of the number of true versus estahdabels used in the experiments. It
is noticeable that, by including unlabeled samples, thesdiaation results are significantly improved in all cases.
Furthermore, it can be observed that the MLR classifier issmabust than the probabilistic SVM in our framework.
For example, withu,, = 750 and BT sampling, only 2.24% difference in classification t&nobserved between
the implementation using only estimated labels anddp&mal case in which both true and estimated labels are
considered. However, for the probabilistic SVM classiftee tlifference is 6.67%. Similar observation can be made
for the other sampling algorithms considered in our expernits.

For illustrative purposes, Fig. 5 analyzes the convergeriosur proposed approach by plotting the obtained

classification accuracies for the AVIRIS Indian Pines saana function of the number of unlabeled samples, using

October 14, 2012 DRAFT



13

TABLE |
OVERALL, AVERAGE, INDIVIDUAL CLASSIFICATION ACCURACIES [%], AND K STATISTIC OBTAINED USING THEMLR AND PROBABILISTIC
CLASSIFIERS WHEN APPLIED TO THEAVIRIS INDIAN PINES HYPERSPECTRAL DATA SETWITH 10 LABELED SAMPLES PER CLASY160
SAMPLES IN TOTAL) AND %, = 750 UNLABELED TRAINING SAMPLES. [, DENOTES THE NUMBER OF TRUE LABELS AVAILABLE IND,,
(USED TO IMPLEMENT AN OPTIMAL VERSION OF EACH SAMPLING ALGORTHM). THE STANDARD DEVIATIONS ARE ALSO REPORTED FOR
EACH TEST.

MLR classifier

Supervised MS BT MBT NEQB RS

lr =0 I = 683 lr =0 Iy = 668 lr =0 Iy = 646 lp =0 Iy = 603 lr =0 Iy = 747

Alfalfa (54) 83.64+5.12 84.5546.10 86.8245.00 85.0046.43 84.7745.87 87.27+4292 | 89.09+3.18 | 82.50+3.40 81.14+4.92 79.55+4.48 80.23+5.87
Corn-Notill (1434) 48.38+6.54 71.64+6.05 75.23+6.07 72.88+4.58 74.23+4.32 72.23+386 | 72.16£500 | 77.96+4.56 73.62+3.16 60.2547.97 61.84+9.02
Corn-Min (834) 47.65£7.33 | 663641263 | 72.73£1255 | 64.60412.79 | 7228+11.97 | 63.86+10.46 | 68504856 | 64.82+1164 | 69.14£1011 | 53.39£8.47 53.18+6.63
Corn (234) 70.63+9.43 85.7648.13 85.4945.74 87.54+5.86 88.04+4.53 9223245 | 90674648 | 86.38:6.30 | 80.40+13.18 | 66.29+16.34 | 71.74+12.94
Grass-Pasture (497) 75.4247.35 85.504-4.93 87.3747.43 85.48+5.32 88.674+5.57 87.08:6.30 | 89.45+596 | 79.49+8.35 83.78+7.28 81.794+5.15 83.504+6.71
Grass-Trees (747) 86.01+4.61 96.54+1.17 96.65+1.21 95.97+2.02 97.064+1.17 9653123 | 97.08£177 | 91.37+5.16 93.3142.93 94.02+2.75 94.1242.96
Grass-Pasture-Mowed (26) | 88.12+6.88 93.7546.62 87.5045.89 93.75+5.47 86.88+8.56 80.38+7.25 | 90.63:531 | 90.63+4.42 88.1249.97 85.004-6.72 86.25+5.74
Hay-Windrowed (489) 88.80+-5.41 97.45+0.82 97.43+0.89 98.2740.55 98.164-0.64 98.77+0.39 | 98.60+0.61 | 99.16+0.33 96.43+1.75 96.74+1.33 96.35+1.38
Oats (20) 98.00+4.22 | 96.00+11.35 | 95.00+10.80 | 97.00411.35 | 96.0046.99 99.00+3.16 | 99.00+3.16 | 97.00+6.75 96.0046.99 99.0044.22 98.0044.22
Soybeans-Notill (968) 58.68+9.18 80.87+7.17 83.3047.99 83.36+7.39 86.03+5.47 79.84:7.40 | 83.25+537 | 82.00+8.82 81.86+6.29 67.47411.43 | 65.50+11.99
Soybeans-Min (2468) 4485+10.85 | 72.51£4.70 74.494+7.29 70.14+5.28 72.76+5.72 6258820 | 6536596 | 68.04+5.60 69.2045.43 50.81+12.98 | 54.02+8.23
Soybeans-Clean (614) 525049.91 | 80.88£10.40 | 85.02£7.99 82.04+9.54 86.6146.53 85454862 | 85124942 | 83.77£10.90 | 87.28+6.05 61.79+12.36 | 65.71+11.30
Wheat (212) 98.76+1.57 99.214-0.33 99.2640.42 99.1640.41 99.3140.71 99.60+0.31 | 99.31+035 | 98.96+0.28 97.77+0.85 99.55+0.28 99.504-0.33
Woods (1294) 75.63+9.38 92.4043.41 93.23+3.76 94.2145.14 94.0742.80 94814374 | 93781395 | 86.45£10.15 | 82.32+7.40 88.8616.18 89.55+6.78

Bldg-Grass-Tree-Drives (380)| 50.844-7.65 66.70+7.56 65.62+6.12 67.38+11.11 68.86+7.84 66.89+7.02 67.51+£7.20 78.30+12.87 72.73+7.75 55.38+8.20 54.161+9.98
Stone-Steel-Towers (95) 79.88+8.22 82.94+7.91 84.124+10.90 80.94+7.75 83.29+9.79 91.06+3.19 90.82+3.91 79.53+5.74 85.06+10.23 77.53£8.55 78.00+7.73

OA 60.12+ 3.08 80.00+ 1.09 82.14+5.88 80.04+ 1.28 82.28+6.12 78.34+ 2.11 79.68+5.28 79.02+1.53 79.641+4.88 68.01+ 3.04 69.28+2.63
AA 7174+ 1.54 84.57+ 1.03 85.58+3.60 84.861+ 1.53 86.06+3.86 85.41+ 1.12 86.27+3.84 84.15+1.24 83.64+3.05 76.09+ 1.76 76.98+1.46
K 55.43+ 3.20 77.31+ 1.26 79.74+£6.50 77.39+ 1.45 79.93+6.79 75.59+ 2.29 77.08+5.85 76.311+1.66 76.851+5.40 64.01+ 3.30 65.39+-2.86

Probabilistic SVM classifier

Suporvised MS BT MBT nEQB RS
Ir=0 1 = 695 lr=0 1y =717 lr=0 Ip = 649 Ir=0 Iy =701 Ir=0 1 = 740
Alfalfa (54) 79.77412.70 | 7523867 | 6523E11.19 | 84.32£3.78 84.774+3.72 80.774308 | 85914096 | 80.00+1221 | 55.45+7.74 82.05+7.68 66.14+7.98
Corn-Notill (1434) 323241421 | 63.90+1367 | 77.46+1.89 | 629741549 | 7654316 | 51331049 | 59.70+2.85 | 60.72£17.53 | 7567212 | 4456+1839 | 5532£3.61
Corn-Min (834) 37.17419.56 | 56.70+25.76 | 80.24+3.09 | 58.12424.62 | 76.58+4.23 | 5598+2221 | 72.34k215 | 5542£2233 | 77.97£164 | 43.28£2534 | 6177£6.22
Corn (234) 68.62-10.32 | 87.95+3.29 89.24+1.73 | 821041380 | 86381352 | 81.03+1328 | 84.06+2.72 | 86.38+4.02 86.34+4.26 7250+13.19 | 85.49+2.64
Grass-Pasture (497) 77.1947.29 87.54+7.09 91.2143.01 89.16+6.02 93.37+1.35 88.17+6.40 | 93.24+123 | 82.40+6.03 90.6042.99 85.73+5.77 89.45+2.47
Grass-Trees (747) 65.36114.50 | 93.96+2.75 91.904-2.82 95.2042.62 94.02+2.53 90.39+4.96 | 88.66-222 | 87.72+7.29 92.2042.42 88.361:5.99 82.63+4.95
Grass-Pasture-Mowed (26) | 90.63+6.75 90.0047.34 93.754+2.95 92.5044.93 95.0043.95 90.00+4.37 | 93.75£295 | 89.38+6.62 93.13+1.98 87.50+8.33 93.13+1.98
Hay-Windrowed (489) 78.0648.12 95.8041.75 97.704:0.60 97.8940.89 98.104-0.46 98524119 | 98274043 | 93.26+3.95 97.93+1.38 93.49+4.39 97.24+0.67
Oats (20) 97.00+6.75 93.0049.49 100.00 93.0046.75 99.00+316 | 95.004+12.69 100.00 98.0044.22 97.0044.83 95.0047.07 100.00
Soybeans-Notill (968) 49.42+18.23 | 80.96+7.68 88.68+3.02 82.03+8.88 91.30+214 | 721342441 | 87.214260 | 71.34£27.13 | 85.75£2.73 65.10+18.05 | 84.38+3.66
Soybeans-Min (2468) 33.90+12.83 | 65.50+1251 | 65.98+2.15 | 633641550 | 68604236 | 50.16+12.02 | 53.59+569 | 58.33£2325 | 62.12+2.40 50.44+15.80 | 44.10+13.02
Soybeans-Clean (614) 433141288 | 77.90410.32 | 90.79£2.09 | 8142£11.08 | 91.42£1.24 | 63.00£17.91 | 84.39+7.02 | 76.71:13.10 | 92.04+1.71 52,9892 | 6194+1152
Wheat (212) 93.614+3.96 98.374+1.07 97.8241.40 98.6640.81 97.52+1.34 98.22+240 | 99.01-052 | 97.28+0.91 97.48+1.00 97.38+1.51 97.6240.45
Woods (1294) 72.39+15.02 | 89.24+6.07 93.9041.92 92.94+4.58 97.34+0.40 92.10+6.25 | 97.814055 | 77.73£1045 [ 90.73+2.72 89.361-6.60 96.9440.74

Bldg-Grass-Tree-Drives (380) 47.84+14.90 68.11+14.08 64.95+5.97 66.81+16.28 61.97+3.04 65.46+8.72 58.511+4.37 72.54+12.16 64.86+5.76 42.35+13.44 40.00+7.62
Stone-Steel-Towers (95) 86.35+10.26 96.35+4.72 93.53+3.65 93.18+5.62 90.82+3.79 88.35+9.87 83.18+2.29 94.47+5.82 87.41+4.11 90.35+4.95 84.35+2.54

OA 50.614-5.34 75.87+3.44 81.82+7.54 76.23+5.40 82.91+0.75 68.66+5.35 75.26+1.39 70.47+5.24 79.69+0.62 63.59+5.59 68.401+-2.85
AA 65.93+2.99 82.53+2.03 86.40+-4.47 83.36+2.15 87.68+ 0.67 79.35+2.16 83.73+0.79 80.10+-2.43 84.174+0.65 73.77+2.18 77.53+0.96
3 45.14+5.35 72.76+3.76 79.49+8.26 73.18+5.81 80.71£0.83 64.90+5.75 72.39+1.49 66.79+5.65 77.14+0.67 59.13+5.68 64.73+2.99

only 5 labeled samples per class (in total 80 labeled samfdethe MLR classifier with BT sampling approach. In
the figure, we report the case in which all unlabeled sample®stimated by the proposed approach (i,e= 0)
and also the optimal case in which true labels are used wkem®ssible (i.e.l, = u,.). As can be seen in Fig.
5, the proposed approach achieved good performance whepatethwith the optimal case, with a difference of
about 5% in classification accuracy when 3500 training semplere used.

Finally, Fig. 6 shows some of the classification maps obthimethe MLR and probabilistic SVM classifiers for
the AVIRIS Indian Pines scene. These classification mapgspond to one of the 10 Monte-Carlo runs that were

averaged in order to generate the classification scorestegbim Table |. The advantages obtained by adopting a

October 14, 2012 DRAFT



14

90 . : . . , . .

Overall Accuracy (%)
~ (-]
B___ &

[+2]
o
e

- @ = Optimal case: true & estimated labels (/.= #,)

# ~ m ~ Estimated labels only ( case in which /,=0)

500 1000 1500 2000 2500 3000 3500
The number of unlabeled samples

Fig. 5. Overall classification accuracies (as a functionhef humber of unlabeled samples) obtained for the AVIRISandrines data set
using the MLR classifier with BT sampling by using 5 labelednples per class (in total 80 samples). Two cases are displdlye one in

which all unlabeled samples are estimated by the proposgdagh (i.e./,, = 0) and the optimal case, in which true labels are used whenever
possible (i.e./, = uy).
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Fig. 6. Classification maps and overall classification aacies (in the parentheses) obtained after applying the MR &nd probabilistic SVM

(bottom) classifiers to the AVIRIS Indian Pines data set bygi40 labeled training samples and 750 unlabeled sampes,, = 160, u,, = 750
andl, = 0.

semi-supervised learning approach with regards to theesponding supervised case can be clearly appreciated in

the classification maps displayed in Fig. 6, which also repe classification OAs obtained for each method in
the parentheses.

C. Experiments with ROSIS Pavia University Data Set

In this subsection we perform a set o experiments to evathatproposed approach using the ROSIS University
of Pavia dataset. This problem represents a very challgngassification scenario dominated by complex urban

classes and nested regions. First, Fig. 7 shows how the QAtgencrease as the number of unlabeled samples
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increases, indicating again clear advantages of usingbeldd samples for the proposed semi-supervised self
learning approach in comparison with the supervised casthi$ experiment, the four considered sample selection
approaches (MS, BT, MBT and nEQB) perform similarly and Hslig better than simple random selection. For
instance, wheri,, = 45 labeled samples were used, the performance increase elsaifter includingu,, = 700
unlabeled samples with regards to the supervised case wal%3for the MS), 13.86% (for the BT), 10.27% (for
the MBT) and 9.56% (for the nEQB). These results confirm otnospection that the proposed semi-supervised
self learning approach can greatly assist in improving #wilts obtained by different supervised classifiers based
on limited training samples.

Furthermore, Table Il shows the overall, average, indiadtiassification accuracies (in percentage) andsthe
statistic using only 10 labeled samples per class, in tdétak 90 samples and.,, = 700 unlabeled samples for
the semi-supervised cases in comparison withapgmal case, in which true labels are used whenever available
in the ground-truth. In all cases, we provide the valué,ofo provide an indication of the number of true versus
estimated labels used in the experiments. It can be obsdread Table Il that the proposed approach is quite
robust as it achieved classification results which are venjlar to those found by the optimal case. For example,
by using the BT sampling algorithm the proposed aproachitdxdaan OA of 83.73% which is almost the same as
the one obtained the optimal case, which achieved an OA @784.by using true labels whenever possible. This
observation is confirmed by Fig. 8, which plots the classificaaccuracy obtained (as a function of the number of
unlabeled samples) for a case in which 100 labeled trairamgpges per class were used (a total 900 samples) for
the MLR classifier with BT sampling approach. In the figure, se@port the case in which all unlabeled samples
are estimated by the proposed approach (i,e5~ 0) and also the optimal case in which true labels are used
whenever possible (i.el, = u,). Although in this experiment the number of initial labelsaimples is significant,
it is remarkable that the results obtained by the proposedoagh using only estimated labels are almost the same
than those obtained with the optimal version using trueltabghich means that the unlabeled training samples
estimated by the proposed approach are highly reliableisetkperiment.

For illustrative purposes, Fig. 9 shows some of the clasdifin maps obtained by the MLR (top) and probabilistic
SVM (bottom) classifiers for the ROSIS Pavia University datawhich corresponds to one of the 10 Monte-Carlo

runs that were averaged in order to generate the clasdgificatiores reported in Table II.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we have developed a new approach for semingapd classification of hyperspectral images in
which unlabeled samples are intelligently selected usirsglflearning approach. Specifically, we automatically
select the most informative unlabeled training sample# whe ultimate goal of improving classification results
obtained using randomly selected training samples. In @mi-supervised context, the labels of the selected trginin
samples are estimated by the classifier itself, with the atégge that no extra cost is required for labeling the sedecte
samples when compared to classic (supervised) activeitgar@ur experimental results, conducted using two

different classifiers: sparse multinomial logistic regiea (MLR) and probabilistic support vector machine (SVM),
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Fig. 7. Overall classification accuracies (as a functionhef ntumber of unlabeled samples) obtained for the ROSIS Rhvigersity data set

using the MLR (top) and probabilistic SVM (bottom) classifieespectively. Estimated labels were used in all the exmats, i.e.l, = 0.
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Fig. 8. Overall classification accuracies (as a functionhef tumber of unlabeled samples) obtained for the ROSIS Rhvizersity data set
using the MLR classifier with BT sampling by using 100 labeszinples per class (in total 900 samples). Two cases aregksplthe one in
which all unlabeled samples are estimated by the proposgdagh (i.e./,, = 0) and the optimal case, in which true labels are used whenever
possible (i.e./, = u,).

indicate that the proposed approach can greatly increasgldhsification accuracies obtained in the supervised case
through the incorporation of unlabeled samples which caaliained with very little cost and effort. The obtained
results have been compared to thgimal case in which true labels are used, and the differences adaserhen
using estimated samples by our proposed approach weresatyate small. This is a good quantitative indicator of
the good performance achieved by our proposed approacbhvbs been illustrated using two hyperspectral scenes

collected by different instruments. In future work, we atenming on combining the proposed approach with other
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TABLE Il
OVERALL, AVERAGE, INDIVIDUAL CLASSIFICATION ACCURACIES [%], AND K STATISTIC OBTAINED USING THEMLR AND PROBABILISTIC
SVM CLASSIFIERS WHEN APPLIED TO THEROSIS INIVERSITY OF PAVIA HYPERSPECTRAL DATA SET BY USING10 LABELED SAMPLES
PER CLASS(IN TOTAL 90 SAMPLES) AND uy, = 700 UNLABELED TRAINING SAMPLES. [, DENOTES THE NUMBER OF TRUE LABELS
AVAILABLE IN D,, (USED TO IMPLEMENT AN OPTIMAL VERSION OF EACH SAMPLING ALGORTHM). THE STANDARD DEVIATIONS ARE
ALSO REPORTED FOR EACH TEST

MLR classifier

MS BT MBT nEQB RS
Supervised
=0 Iy =443 =0 Iy = 356 =0 Iy =412 I, =0 lr = 365 =0 L = 558
Asphalt (6631) 64.05+7.34 74.5M17.48 75.414+6.01 72.62+4.97 | 74.72:6.14 71.43+4.75 71.54+4.57 72.91£7.37 | 72.40+7.63 66.40+7.55 68.85+6.03
Meadows (18649) 63.15+7.27 80.715.71 83.92+2.84 | 83.33t4.49 | 84.62+2.24 | 77.35:3.56 80.574.67 | 74.08:6.95 | 81.18t4.75 | 76.23:6.93 81.01+4.62
Gravel (2099) 66.28+9.21 80.05+9.35 80.33+8.86 82.0749.31 | 81.09+9.00 79.24+9.19 81.55+7.65 81.86+7.50 | 82.28+7.59 73.44+7.55 77.2H10.77
Trees (3064) 84.74t11.11 84.88+9.97 85.474+8.66 88.07:8.87 | 83.32+:9.45 94.41-3.58 88.45+6.82 91.46+4.05 | 85.64+-8.83 82.97-9.16 85.04+5.01

Metal Sheets (1345) 98.64+0.60 99.49+0.44 98.68£1.24 | 99.29+0.36 | 99.32£0.47 | 99.77:0.21 99.70£0.29 | 98.79:0.82 | 98.85:0.82 | 99.03:0.48 98.87£0.54
Bare Soil (5029) 69.54+8.79 89.61+£3.22 89.74£4.15 | 89.59+3.86 | 88.93:4.62 | 82.45:6.58 86.31+4.13 | 71.29+6.26 | 82.99:5.29 | 76.84:-11.58 | 82.57%8.73
Bitumen (1330) 87.70+£3.31 95.29+1.66 93.93+2.18 | 96.17£0.99 | 95.39:2.02 | 96.53+1.18 96.52+1.17 | 85.39:7.60 | 90.26£5.56 | 92.07:3.52 93.27:3.79

Self-Blocking Bricks (3682)| 73.22+7.57 82.19+7.02 81.38+5.06 | 80.99t7.09 | 80.48+4.46 | 82.87+6.76 77.83:7.48 | 79.29+9.17 | 80.16+8.40 | 76.08:7.85 | 75.74:10.34

Shadow (947) 98.44:1.91 98.90+2.56 97.88£3.33 | 99.12£1.79 | 98.60:1.86 | 98.98:1.88 99.30:0.49 | 99.88:0.15 | 99.55£0.72 | 98.85+2.28 99.52+0.32
OA 69.25+3.75 82.63£2.55 84.08:0.98 | 83.73£1.86 | 84.0741.52 | 80.59+1.38 81.72£1.96 | 77.33:3.80 | 81.5+51.54 | 76.81+3.38 80.30+2.54

AA 78.42£1.75 87.30£1.28 87.41£0.76 | 87.92:1.13 | 87.39£1.25 | 87.00:0.77 86.86:0.73 | 83.88:2.30 | 85.92:0.96 | 82.43:1.60 84.68£1.39

K 61.69:4.01 77.78£3.08 79.50£1.14 | 79.12£2.23 | 79.45:1.90 | 75.44£1.61 76.70£2.27 | 71.2H4.53 | 76.36£1.74 | 70.45:3.86 74.75£3.03

Probabilistic SVM classifier

MS BT MBT nEQB RS
Supervised
=0 I =454 =0 I = 382 =0 1. =324 lr=0 I =337 =0 I =557
Asphalt (6631) 60.43+ 8.23 | 75.7H 12.63 | 76.25:9.46 | 74.38t 7.89 | 72.82+8.00 | 72.2A 3.13 70.68+3.72 70.16+8.34 | 70.0149.05 | 61.14t 7.06 61.52+5.37
Meadows (18649) 54.36+ 9.43 68.35+ 7.10 69.95+6.72 | 79.57 8.28 | 78.96+9.21 | 63.53+ 11.57 | 64.61-12.56 | 66.16+-13.17 | 66.62+7.29 | 62.35+ 12.01 | 65.95-12.93
Gravel (2099) 62.23+ 10.33 | 75.72t 14.03 | 75.30£11.18 | 80.01 9.72 | 80.25+8.33 | 72.58+ 12.90 | 75.14+9.40 | 80.82+9.35 | 80.05:9.60 | 70.97 12.39 | 70.61-10.49
Trees (3064) 90.75+ 7.19 | 88.7A 9.31 88.94+5.97 | 85.14+ 8.41 | 87.80+7.00 | 92.3k 7.43 92.015.25 | 89.52+7.01 | 89.43t7.24 | 89.90+ 5.20 85.15+7.60

Metal Sheets (1345) 96.68+ 5.68 | 99.91 0.08 | 99.90+0.11 | 99.84+ 0.10 | 99.83:0.12 | 99.55+ 0.33 | 99.64:-0.34 | 99.86t0.10 | 99.86+0.10 | 99.7H 0.12 | 99.69:0.19
Bare Soil (5029) 62.74+ 19.59 | 87.47+ 4.81 | 88.08:5.22 | 88.60+ 3.92 | 90.26+2.66 | 77.89+ 12.67 | 78.95:9.39 | 73.03:10.42 | 76.96+7.93 | 75.04 14.21 | 73.05-23.65
Bitumen (1330) 89.90f 5.14 | 92.47+ 4.12 | 93.24:3.22 | 94.38t 3.55 | 95.674:1.97 | 94.84- 1.39 | 95.56£1.67 | 90.33:3.92 | 90.79t3.22 | 92.93+ 4.66 | 92.97%:3.67

Self-Blocking Bricks (3682)| 66.50+ 8.44 | 71.64- 18.83 | 75.52:9.44 | 80.89t 8.04 | 80.39+8.07 | 74.95+ 24.57 | 81.00£7.17 | 72.0k5.71 | 71.82£7.16 | 70.04k 12.33 | 72.23:13.42

Shadow (947) 99.26+ 1.62 | 99.77 0.19 99.73:0.52 | 97.98+ 2.74 | 98.54+1.43 | 97.56+ 2.68 99.112.16 | 99.90+0.01 | 99.88+0.14 | 99.34 1.47 99.77:0.26
OA 63.68+ 4.97 | 76.27+ 4.68 77.47£3.26 | 81.85- 4.44 | 81.95+4.68 | 72.90k 5.42 73.93t4.95 | 73.61:3.89 | 77.02:5.87 | 69.63t 5.25 70.88£5.20
AA 75.76f 3.74 | 84.42+ 2.22 85.21+1.47 | 86.75: 1.55 | 87.17:1.45 | 82.83k 2.43 84.08£1.46 | 82.42:1.98 | 82.82:2.03 | 80.15+ 2.92 80.11£3.46
K 55.48+ 5.55 | 70.40f 5.26 71.79£3.71 | 76.89k 5.19 | 76.94+:5.42 | 66.60t 5.85 67.86+5.40 | 66.44-6.26 | 67.08:4.40 | 62.46+ 5.57 63.70£5.70

probabilistic classifiers. We are also considering the digxpectation-maximization as a form of self learning [15].
Although in this manuscript we focused our experiments opehgpectral data, the proposed approach can also be
applied to other types of remote sensing data, such as prdtiml data sets. In fact, since the dimensionality of
the considered hyperspectral data sets is quite high, tygoped approach could greatly benefit from the use of
feature extraction/selection methods prior to classificain order to make the proposed less sensitive to the Hughes
effect [48] and to the possibly very limited initial avaiility of training samples. This research topic also deserve
future attention. Another interesting future researck lis to adapt our proposed sample selection strategy (which
is based on the selection of individual pixels) to the s@acand labeling of spatial subregions or boxes within the
image, which could be beneficial in certain applicationsahlly, another important research topic deserving future
attention is the inclusion of a cost associated to the lapetserated by the proposed algorithm. This may allow a

better evaluation of the training samples actively setéttg our proposed approach.
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Supervised (63.68%) MS (76.27%) BT (81.85%) MBT (72.90%) QEE(77.02%) RS (69.63%)

Fig. 9. Classification maps and overall classification aacies (in the parentheses) obtained after applying the MbR) @nd probabilistic
SVM (bottom) classifier to the ROSIS Pavia University data(seall cases/,, = 90 andl, = 0).
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