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An Augmented Lagrangian Approach to
the Constrained Optimization Formulation
of Imaging Inverse Problems

Manya V. Afonso, José M. Bioucas-Dias, and Mdrio A. T. Figueiredo

Abstract—We propose a new fast algorithm for solving one of the
standard approaches to ill-posed linear inverse problems (IPLIP),
where a (possibly nonsmooth) regularizer is minimized under the
constraint that the solution explains the observations sufficiently
well. Although the regularizer and constraint are usually convex,
several particular features of these problems (huge dimensionality,
nonsmoothness) preclude the use of off-the-shelf optimization tools
and have stimulated a considerable amount of research. In this
paper, we propose a new efficient algorithm to handle one class
of constrained problems (often known as basis pursuit denoising)
tailored to image recovery applications. The proposed algorithm,
which belongs to the family of augmented Lagrangian methods,
can be used to deal with a variety of imaging IPLIP, including
deconvolution and reconstruction from compressive observations
(such as MRI), using either total-variation or wavelet-based (or,
more generally, frame-based) regularization. The proposed algo-
rithm is an instance of the so-called alternating direction method of
multipliers, for which convergence sufficient conditions are known;
we show that these conditions are satisfied by the proposed algo-
rithm. Experiments on a set of image restoration and reconstruc-
tion benchmark problems show that the proposed algorithm is a
strong contender for the state-of-the-art.

Index Terms—Convex optimization, frames, image reconstruc-
tion, image restoration, inpainting, total-variation.

I. INTRODUCTION

A. Problem Formulation

MAGE restoration/reconstruction is one of the earliest and

most classical linear inverse problems in imaging, dating
back to the 1960s [3]. In this class of problems, a noisy indirect
observation y, of an original image x, is modeled as

y=Bx+n
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where B is the matrix representation of the direct operator and n
is noise. As is common, we adopt the vector notation for images,
where the pixels on an M x N image are stacked into x an
(N M)-vector in, e.g., lexicographic order. In the sequel, we
denote by n = M N the number of elements of x, thus, x € R",
while y € R™ (m and n may be different).

In the particular case of image deconvolution, B is the matrix
representation of a convolution operator. This type of model de-
scribes well several physical mechanisms, such as relative mo-
tion between the camera and the subject (motion blur), bad fo-
cusing (defocusing blur), or a number of other mechanisms [7].

In more general image reconstruction problems, B represents
some linear direct operator, such as tomographic projections
(Radon transform), a partially observed (e.g., Fourier) trans-
form, or the loss of part of the image pixels.

The problem of estimating x from y is called a linear in-
verse problem (LIP); for most scenarios of practical interest,
this is an ill-posed LIP (IPLIP), i.e., matrix B is singular and/or
very ill-conditioned. Consequently, this IPLIP requires some
sort of regularization (or prior information, in Bayesian infer-
ence terms). One way to regularize the problem of estimating
X, given y, consists in a constrained optimization problem of
the form

mxin d(x) subject to IBx —yl|l2 <e (1
where ¢ : R® — R = R U {—00,+00} is the regularizer or
regularization function, and ¢ > 0 a parameter which depends
upon the noise variance. In the case where ¢(x) = ||x||1, the
previous problem is usually known as basis pursuit denoising
(BPD) [16]. The so-called basis pursuit (BP) problem is the par-
ticular case of (1) for e = 0.

In recent years, an explosion of interest in problems of the
form (1) was sparked by the emergence of compressive sensing
(CS) [13], [23]. The theory of CS provides conditions (on matrix
B and the degree of sparseness of the original x) under which a
solution of (1), for ¢(x) = ||x]|1, is an optimal (in some sense)
approximation to the “true” x.

In most signal/image recovery and CS problems, nonsmooth
regularizers such as the total variation (TV) [13], [48] and
£1(¢(x) = ||x]||1) norms are popular and powerful choices.

B. Analysis and Synthesis Formulations

In a frame-based representation, the unknown image x can
be represented as a linear combination of the elements of some
frame, i.e., x = WS, where 8 € R, and the columns of
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the n x d matrix W are the elements of a wavelet! frame (an
orthogonal basis or an overcomplete dictionary). The coeffi-
cients of this representation are then estimated from the noisy
image, under one of the well-known sparsity inducing regular-
izers, such as the ¢; norm (see [8], [21], [25], [27], [30], and
further references therein). Formally, this leads to the following
constrained optimization problem:

~

B =arg mgn o(B) subject to IBWB—yl|l2 <e. (2)
This formulation is referred to as the synthesis approach[26],
[50], since it is based on a synthesis equation: x is synthesized
from its representation coefficients (x = W) which are the
object of the estimation criterion. Naturally, the estimate of x is
x = WS. Of course, (2) has the form (1) with BW replacing
B.

An alternative formulation applies a regularizer directly to
the unknown image, leading to criteria of the form (1), usually
called analysis approaches, since they are based on a regularizer
that analyzes the image itself, rather than the coefficients of a
representation thereof. Arguably, the best known and most often
used regularizer in analysis approaches to image restoration is
the TV norm [15], [48].

Wavelet-based analysis approaches are also possible and have
the form

n;in »(Px) subject to IBx—-yl3<e (3
where P is a linear operator (a matrix) corresponding to a
wavelet transform [26]. In this paper, we always assume that
P is the analysis operator associated with 1-tight (Parseval)
frame, thus, PP = T [42].

If the regularizers are convex, problems (1)—(3) are convex,
but the very high dimensions (at least > 10?, often > 10°) of x
and possibly y precludes the direct application of off-the-shelf
optimization algorithms. This difficulty is further amplified by
the following fact: for any problem of nontrivial dimension, ma-
trices B, W, or P cannot be stored explicitly, and it is costly,
even impractical, to access portions (lines, columns, blocks) of
them. On the other hand, matrix-vector products involving these
matrices (or their conjugate transposes, denote by (-)#) can be
computed quite efficiently. For example, if the columns of W
contain a wavelet basis or a tight wavelet frame, any multipli-
cation of the form Wv or W¥v can be performed by a fast
transform algorithm [42]. Similarly, if B represents a convolu-
tion, products by B or B can be performed with the help of
the fast Fourier transform (FFT). These facts have stimulated
the development of special purpose methods, in which the only
operations involving matrices are matrix-vector products.

C. Previous Algorithms: Unconstrained Formulations

Most state-of-the-art methods for dealing with linear inverse
problems, under convex, nonsmooth regularizers (namely, TV
and /1), consider, rather than (1), the unconstrained problem

1
min & [[Bx — y[13 + 76(x) @

'We will use the generic term “wavelet” to mean any wavelet-like multiscale
representation, such as “curvelets,” “beamlets,” “ridgelets.”
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where 7 € R, is the so-called regularization parameter. Of
course, problems (1) and (4) are equivalent, in the following
sense: for any €>0 such that problem (1) is feasible, a solu-
tion of (1) is either the null vector, or else is a solution of (4),
for some 7>0 [31], [47]. For solving problems of the form
(4), some of the state-of-the-art algorithms belong to the iter-
ative shrinkage/thresholding (IST) family [18], [21], [30], [36],
and its two-step (TWIST [9] and FISTA [5]) and accelerated
(SpaRSA [54]) variants. These methods were shown to be con-
siderably faster than earlier methods, including /1_ls [38] and
the codes in the /;-magic 2 and the SparseLab 3 toolboxes.

A key ingredient of most of these algorithms is the so-called
shrinkage/thresholding/denoising function, which is the Moreau
proximal mapping of the regularizer ¢ [18]. Formally, this func-
tion ¥, : R" — R™ is defined as

1
Uory(y) = argmin o [x — y[l5 + 7(x). ®)

Notice that if ¢ is proper and convex, the function being mini-
mized is proper and strictly convex, thus, the minimizer exists
and is unique making the function well defined [18]. For some
choices of ¢, the corresponding ¥, have well known closed
forms. For example, if ¢p(x) = ||x||1, then ¥ 4(y) = soft(y, 1),
where soft(-, 7) denotes the component-wise application of the
soft-threshold function y — sign(y) max{|y| — 7,0}.

In [2] and [28], we proposed a new algorithm called split
augmented Lagrangian shrinkage algorithm (SALSA), to solve
unconstrained optimization problems of the form (4) based on
variable splitting [19], [53]. The idea is to transform the uncon-
strained problem (4) into a constrained one via a variable split-
ting “trick,” and then attack this constrained problem using an
augmented Lagrangian (AL) method [45], specifically the al-
ternating direction method of multipliers (ADMM) [24], [32],
[33]. Although AL is known to be equivalent to the Bregman it-
erations recently proposed to handle imaging inverse problems
(see [57] and references therein), we prefer the AL perspec-
tive, rather than the Bregman iterative view, as it is a more stan-
dard/elementary tool (covered in most optimization textbooks).
On several benchmark experiments (namely image deconvolu-
tion, recovery of missing pixels, and reconstruction from par-
tial Fourier observations) using either frame-based or TV-based
regularization, SALSA was found to be faster than the previous
state-of-the-art methods FISTA [5], TwIST [9], and SpaRSA
[54].

Variable splitting and ADMM were also recently used in
[53] to obtain a fast algorithm for TV-based image deblur-
ring; that work addresses a TV-/5 unconstrained formulation
(i.e., problem (4) with ¢ a TV norm) and is termed fast total
variation deconvolution (FTVd). Notice that the splitting un-
derlying FTVd is radically different from the one used in [2],
[28]. Finally, the reconstruction from partial Fourier (RecPF)
algorithm was designed for signal reconstruction from partial
Fourier observations and also uses ADMM; the optimization
problem addressed by RecPF also has the form (4), but with a
regularizer that is the sum of two terms: a TV norm and an ¢;

2Available at http://www.l1-magic.org.
3Available at http://sparselab.stanford.edu.
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norm [56]. Notice that neither FTVd nor RecPF can be used to
address the constrained form (1).

D. Previous Algorithms: Constrained Formulations

Although it is usually simpler to solve an unconstrained
problem than a constrained one, formulations (1)-(3) have
an important advantage: parameter ¢ has a clear meaning (it
is proportional to the noise standard deviation) and is much
easier to set than parameter 7 in (4). Of course, one may solve
(1) by solving (4) and searching for the “correct” value of 7
that makes (4) equivalent to (1). Clearly, this is not efficient,
as it involves solving many instances of (4). Consequently,
obtaining fast algorithms for directly solving (1) (or (2) or (3))
is, thus, an important research front.

There are few efficient algorithms to solve problems of the
form (1) in an image recovery context: x and y of high dimen-
sionality (>10%, often >10°), B representing an operator, and ¢
a convex, nonsmooth function. A notable exception is the recent
SPGL1 [52], which (as its name implies) is specifically designed
for /1 regularization. As shown in [52], the methods for solving
(1) available in the /;-magic package are quite inefficient for
large problems. General purpose methods, such as the SeDuMi
package?, are simply not applicable when B is not an explicitly
stored matrix, but an operator.

Another efficient algorithm for solving problems of the form
(1) is the very recently proposed NESTA [6], which is based
on Nesterov’s first-order methods wherein an optimal gradient
method is applied on a smooth approximation of the nonsmooth
objective function [43], [44]. NESTA allows for minimizing
either the #; or TV norm, and also allows using synthesis or
analysis formulations. Nesterov’s first-order method was also
recently adopted in [20] to perform TV-regularized image de-
noising, deblurring, and inpainting.

Your augmented Lagrangian for /; (YALLI) is another re-
cently proposed algorithm which addressed both unconstrained
and constrained /;-regularized formulations using variable
splitting and ADMM. In the splitting adopted in [55], one of
the steps of ADMM turns out to be of the form (4), which is
as difficult as the original problem. To sidestep that difficulty,
the authors replace the exact ADMM by an inexact version, in
which the nonseparable quadratic term is replaced by a sepa-
rable approximation (much as in an IST scheme). As shown
in the following, we exploit, in this paper, a different splitting
which will not lead to a problem of the form (4). Instead, the
(exact) ADMM resulting from our splitting involves a quadratic
problem (which can be solved exactly in closed form for a large
class of problems of interest), a shrinkage operation, and an
orthogonal projection on a ball.

Finally, we should mention the Bregman iterative algorithm
(BIA), recently proposed to solve (1) with ¢ = 0, that is, to
minimize ¢ under the equality constraint Bx = y (see [11],
[57] and references therein). To address problems of the form
(1) with >0 (inequality constraint), the following approach has
been proposed (citing verbatim from [11], changing the equa-
tion numbers and the notation to match the corresponding equa-
tions in this paper): “To solve(1), one can use the Bregman iter-

4Available at http://sedumi.ie.lehigh.edu.

ation for the equality constrained minimization problem> with
an early stopping criterion

[Bx —yl2<e

to find a good approximate solution of (1)” In other words, the
BIA may only be expected to approximately solve (1), not ex-
actly. Naturally, using an early stopping criterion (based upon
the feasible set of (1) with €>0) in an algorithm designed for
(and which converges to) the solution of the equality constrained
problem ((1) with ¢ = 0) is not guaranteed to yield an optimal
solution of the inequality constrained problem.

E. Proposed Approach

In this paper, we introduce an algorithm for solving opti-
mization problems of the form (1). The original constrained
problem (1) is transformed into an unconstrained one by adding
the indicator function of the feasible set, the ellipsoid {x :
IBx — y|| < e}, to the objective in (1). The resulting uncon-
strained problem is then transformed into a different constrained
problem, by the application of a variable splitting operation; fi-
nally, the obtained constrained problem is dealt with using the
ADMM [24],[32], [33], which belongs to the family of AL tech-
niques [45]. Since (as SALSA), the proposed method uses vari-
able splitting and AL optimization, we call it C-SALSA (for
constrained-SALSA).

The resulting algorithm is more general than SPGL1, in the
sense that it can be used with any convex regularizer ¢ for which
the corresponding Moreau proximity operator (see [18]), has
closed form or can be efficiently computed. In this paper, we will
show examples of C-SALSA where x is an image, ¢ is the TV
norm [48], and ¥, is computed using Chambolle’s algorithm
[14]. Another classical choice which we will demonstrate is the
£, norm, which leads to ¥, (y) = soft(y, 7).

C-SALSA is experimentally shown to efficiently solve image
recovery problems, such as MRI reconstruction from CS-type
partial Fourier observations using TV regularization, and image
deblurring using wavelet-based or TV regularization, faster than
SPGL1 and NESTA.

F. Organization of the Paper

The paper is organized as follows. Section II describes
the basic ingredients of C-SALSA: variable splitting, ALs,
and the ADMM. Section III contains the derivation leading
to C-SALSA. Section IV reports experimental results, and
Section V ends the paper with a few remarks and pointers to
future work.

II. BASIC INGREDIENTS

A. Variable Splitting

Consider an unconstrained optimization problem
nin fi(u) + f2(Gu) (6)

where G € R™", f; : R* — R, and f, : R — R. Variable
splitting (VS) is a simple procedure that consists in creating a

SThat is, problem (1) with & = 0.
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new variable, say v, to serve as the argument of f5, under the
constraints that v = Gu, i.e.,

fi(w) + fa(v),

min

) subjectto v=Gu. (7)
ueR”,veR

The rationale behind VS is that it may be easier to solve the
constrained problem (7) than it is to solve its equivalent uncon-
strained counterpart (6).

VS has been recently used in several image processing appli-
cations. A VS method was used in [53] to obtain a fast algorithm
for TV-based restoration. Variable splitting was also used in [10]
to handle problems involving compound regularizers. In [10],
[53], the constrained problem (7) is attacked using a quadratic
penalty approach, i.e., by solving

. (6% 2
o )+ () 4 SIGu-VE®)
by alternating minimization with respect to u and v, while
slowly taking « to very large values (a continuation process),
to force the solution of (8) to approach that of (7), which in turn
is equivalent to (6). The rationale of these methods is that each
step of this alternating minimization may be much easier than
the original unconstrained problem (6).

A similar VS approach underlies the recently proposed split-
Bregman methods [34]. Instead of using a quadratic penalty
technique, those methods attack the constrained problem di-
rectly using a Bregman iterative algorithm [57]. Moreover, the
split-Bregman method with a single inner iteration is known to
be equivalent to the AL method [35], [51], [57].

B. AL
Consider the constrained optimization problem with linear
equality constraints

min E(z)

subjectto Az—b =0 9)
zER™

where b € RP and A € RP*™, i.e., there are p linear equality
constraints. The so-called AL for this problem is defined as

La(z,Ap) = B(z) + AT (b= Az)+ £ Az =]} (10)

where A € RP is a vector of Lagrange multipliers and >0 is
called the AL penalty parameter [45]. The so-called augmented
Lagrangian method (ALM) [45], also known as the method
of multipliers (MM) [37], [46], iterates between minimizing
L 4(z, A, 1) with respect to z, keeping A fixed, and updating A,
until some convergence criterion is satisfied.

Algorithm ALM/MM

1. Set k = 0, choose >0 and Ag.
2. repeat

3. Zy1 € argmin, L4(z, A, 1)
4. Apy1 = A + p(Azgyr — b)
5k—Fk+1

6. until some stopping criterion is satisfied.
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It is also possible (and even recommended) to update the
value of y in each iteration [4], [45]. However, unlike in the
quadratic penalty approach, the ALM/MM does not require 1
to be taken to infinity to guarantee convergence to the solution
of the constrained problem (9).

After a straightforward complete-the-squares procedure, the
terms added to E(z) in the AL £ 4(z, A, i) can be written as
a single quadratic term (plus a constant independent of z, thus,
irrelevant to the ALM/MM), leading to the following alternative
form of the algorithm (which makes clear its equivalence with
the Bregman iterative method [57]):

Algorithm ALM/MM (version II)

1. Set k = 0, choose ;>0 and dg

2. repeat

3. Zp41 € argmin, F(z) + (1/2)||Az — di|3
4.dgs1 = dg — (Azgy1 — b)

5k—k+1

6. until some stopping criterion is satisfied.

C. ALM/MM for Variable Splitting and ADMM

The constrained problem (7) can be written as (9) by defining
E(z) = fi(u) + f2(v) and setting

Y

With these definitions in place, Steps 3 and 4 of the ALM/MM
(version II) become

(Upq1,Vit1) € argrlrlli‘? fi(u)

+ f2(v) + 5lGu - v - dul3

diy1 =dp — (Gupy1 — Vig1). (12)
The minimization problem yielding (w41, Vi+1) is not trivial
since, in general, it involves a nonseparable quadratic term and
possibly nonsmooth terms. A natural approach is to use a non-
linear block-Gauss-Seidel (NLBGS) technique which alternates
between minimizing with respect to u and v while keeping
the other fixed. Of course this raises several questions: for a
given d, how much computational effort should be spent in this
problem? Does the NLBGS procedure converge? The simplest
answer to these questions is given in the form of the so-called
ADMM [24], [32], [33], which is simply an ALM/MM in which
only one NLBGS step is performed in each outer iteration.



AFONSO et al.: AN AUGMENTED LAGRANGIAN APPROACH TO THE CONSTRAINED OPTIMIZATION FORMULATION 685

TABLE 1
DETAILS OF THE IMAGE DECONVOLUTION EXPERIMENTS
Experiment | blur kernel o?
1 9 x 9 uniform 0.562
2A Gaussian 2
2B Gaussian 8
3A hij =1/(1+142 +352) | 2
3B hij =1/(1+4%+352) | 8
Algorithm ADMM

1. Set k£ = 0, choose 11>0, vq, dg.

. repeat

T (1/2)[Gu = vie — il
+ (/2 Guegr — v — di3
cdig1 = di — (Gug41 — Vit1)

kE—EkE+1

.Up41 € argming fi(u)

. Viy1 € argming fo(Vv)

~N O AW

. until some stopping criterion is satisfied.

For later reference, we now recall the theorem by Eckstein
and Bertsekas [24, Theorem 8] in which convergence of (a gen-
eralized version of) ADMM is shown.

Theorem I (Eckstein-Bertsekas, [24]): Consider problem (6),
where G has full column rank, and f; and f, are closed, proper,
convex functions. Consider arbitrary 4 > 0 and ug, dg, vg €
RP. Let {nr, > 0,k =0,1,...} and {vy, > 0,k =0,1,...} be
two sequences such that

o0 o0
an < oo and Zyk < 00.
k=0 k=0

Consider three sequences {u, € R™ k = 0,1,...}, {vy €
R, k=0,1,...},and {d} € R:, k= 0,1,...} that satisfy

. 0
Huk_H — arg min fi(u) + §||Gu — Vg — dkH%H <

. I
[vicsr - argmin £2(v) + £l Guess — v — Al <

dig1 =di — (Gupy1 — Vig1).
Then, if (6) has a solution, say u*, then the sequence {uy} con-
verges to u*. If (6) does not have a solution, then at least one of
the sequences {u,} or {d;} diverges.

Notice that the ADMM as defined previously (if each step
is implemented exactly) generates sequences {uy}, {vy}, and
{ds} that satisfy the conditions in Theorem 1 in a strict sense
(i.e., with g, = v = 0). The remaining key condition for con-
vergence is then that G has full column rank. One of the im-
portant corollaries of this theorem is that it is not necessary to
exactly solve the minimizations in lines 3 and 4 of ADMM; as

long as the sequence of errors are absolutely summable, conver-
gence is not compromised.

The proof of Theorem 1 is based upon the equivalence be-
tween ADMM and the Douglas—Rachford splitting (DRS) ap-
plied to the dual of problem (6). The DRS was recently used
for image recovery problems in [17]. For recent and compre-
hensive reviews of ALM, ADMM, DRS, and their relationship
with Bregman and split-Bregman methods, see [35] and [51].

D. Variant of ADMM

Consider a generalization of problem (6), where instead of
two functions, there are J functions, that is

J
- (HD
min 3 g;(HY )
p=

(13)
where g; : RPi — R are closed, proper, convex functions,
and HU) € RPi*? are arbitrary matrices. The minimization
problem (13) can be written as (6) using the following corre-
spondences: f; = 0

HD
G = : € Rp>4 (14)
HY)
where p = p; + ...+ py, and fo : RP*? — R given by
Zg vid) (15)
where v() € RPs and v = [(vI)T, ... (v)T]T € RP. We

now simply apply ADMM (as given in the previous subsection),
with

d}(€1) v,(:)
d; = : , Vi = :
d](g]) VI(CJ)

Moreover, the fact that f; = 0 turns Step 3 of the algorithm into
a simple quadratic minimization problem, which has a unique
solution if G has full column rank

arg min ||Gu — (4|3
J

- [

1
J
O HH(J) Z H(] HC (16)

where {; = vj + dj, (and, naturally, ¢} (@) — ,(Cj) + dg)) and
the second equality results from the partlcular structure of G in
(14).

Furthermore, our particular way of mapping problem (13)
into problem (6) allows decoupling the minimization in Step 4
of ADMM into a set of .J independent ones. In fact
a7

Vi1 < argmin fo(v) + %HGUkH —v—dlf;
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TABLE II
IMAGE DEBLURRING USING WAVELETS (REDUNDANT)—COMPUTATIONAL LOAD
Expt. Avg. calls to B, BH (min/max) Iterations CPU time (seconds)
SPGL1 NESTA C-SALSA SPGL1 | NESTA | C-SALSA | SPGL1 | NESTA | C-SALSA
1 1029 (659/1290) | 3520 (3501/3541) | 398 (388/406) 340 880 134 441.16 | 590.79 100.72
2A 511 (279/663) 4897 (4777/4981) | 451 (442/460) 160 1224 136 202.67 | 798.81 98.85
2B 377 (141/532) 3397 (3345/3473) | 362 (355/370) 98 849 109 120.50 | 557.02 81.69
3A 675 (378/772) 2622 (2589/2661) | 172 (166/175) 235 656 58 26641 | 42341 42.56
3B 404 (300/475) 2446 (2401/2485) | 134 (130/136) 147 551 41 161.17 | 354.59 29.57
TABLE III

IMAGE DECONVOLUTION USING WAVELETS (REDUNDANT, ANALYSIS PRIOR)—COMPUTATIONAL LOAD

Expt. Avg. calls to B, BH (min/max) Iterations CPU time (seconds)
NESTA C-SALSA NESTA | C-SALSA | NESTA | C-SALSA
1 2881 (2861/2889) | 413 (404/419) 720 138 353.88 80.32
2A 2451 (2377/2505) | 362 (344/371) 613 109 291.14 62.65
2B 2139 (2065/2197) | 290 (278/299) 535 87 254.94 50.14
3A 2203 (2181/2217) | 137 (134/143) 551 42 261.89 23.83
3B 1967 (1949/1985) | 116 (113/119) 492 39 236.45 22.38

can be written as

1)

Vi+1
| e min (v O) 4o gy (v
n vil) v
Vit1
HO v(®) al”
+ g o= 2 o
H) v() a“
k 2
Clearly, the minimizations with respect tou® . ..., u() are de-
coupled, thus, can be solved separately, leading to
. 2
v,(fll — argvrélﬂiwrz}j gi(v) + 5 Hv - Sl(cl)H2 (18)

forj =1,...,.J, where

s,ij) = H(j)u,H_l — d,ij).

Since this algorithm is exactly an ADMM, and since all the
functions g;, for j = 1,...,J, are closed, proper, and convex,
convergence is guaranteed if G has full column rank. Actually,
this full column rank condition is also required for the inverse
in (16) to exist. Finally, notice that the update equations in (18)
can be written as

Vi+1 = \I’gj/#(sl(cj)) 19)

where the ¥, ,, are, by definition, the Moreau proximal map-
pings of g1/, ..., 95/ 1.

In summary, the variant of ADMM (herein referred to as
ADMM-2) that results from the formulation just presented is
described in the following algorithmic framework.

Algorithm ADMM-2

. Set k = 0, choose 1>0, v(()l)7 . ,v((]J), dgl). ey d((]‘]).

’

[N

. repeat
3.fori=1,....J
4.do ¢ = v +a?
-1
S = | S (HO)HO| T (1))

6.forv=1,...,J

7. do v,(:’j_l =V, /u (H(i)uk+1 - d,(:)>
a0, = 4P - HOugsy 4L,
9.k —k+1

10. until some stopping criterion is satisfied.

III. PROPOSED METHOD
We now apply the algorithmic framework described in the

previous section to the basic problem (1) [which includes (2) as
a special case], as well as the analysis formulation (3).

A. Problem (1)
For the constrained optimization problem (1), the feasible set
is the ellipsoid

E(e,B,y)={x€R":|Bx—yl]» < ¢} (20)
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Fig. 1. Image deblurring with wavelets (synthesis prior, redundant Haar wavelets), 9 X 9 uniform blur, o = 0.56. (a) Evolution of the objective function ||x||;

over time. (b) Quadratic constraint || AWx — y/||» over time.

TABLE IV
IMAGE DEBLURRING USING WAVELETS (ORTHOGONAL)—COMPUTATIONAL LOAD
Expt. Avg. calls to B, BH (min/max) Iterations CPU time (seconds)
SPGL1 NESTA C-SALSA SPGL1 | NESTA | C-SALSA | SPGL1 | NESTA | C-SALSA
1 730 (382/922) | 13901 (13871/13931) | 494 (424/748) 298 3475 166 46.64 622.09 2391
2A 352 (191/480) 1322 (1301/1329) 205 (202/205) 128 331 69 19.21 58.29 10.07
2B 207 (128/254) 1218 (1193/1261) 123 (115/133) 87 305 42 12.23 52.92 6.35
3A 248 (161/320) 1421 (1413/1433) 118 (115/121) 104 355 40 14.98 58.693 5.57
3B 170 (114/220) 4408 (4345/4545) 258 (94/328) 72 1102 87 9.51 181.83 11.93
TABLE V
IMAGE DEBLURRING USING WAVELETS (ORTHOGONAL, ANALYSIS PRIOR)—COMPUTATIONAL LOAD
Expt. Avg. calls to B, B¥H (min/max) Iterations CPU time (seconds)
NESTA C-SALSA NESTA | C-SALSA | NESTA | C-SALSA
1 8471 (8413/8553) | 387 (380/395) 2118 117 300.60 16.51
2A 2463 (2445/2489) | 377 (371/383) 616 126 311.49 71.75
2B 2159 (2097/2253) | 300 (290/317) 540 101 280.35 59.75
3A 2203 (2165/2229) | 153 (149/155) 551 52 282.12 32.02
3B 4710 (4577/4829) | 212 (104/374) 1178 59 167.73 7.89
which is possibly infinite in some directions (since B may 92 = LB Ly) 24)
be singular). Problem (1) can be written as an unconstrained HD =1 (25)
roblem, with a discontinuous objective
P ) H® =B. (26)

Ir;in P(X) + tE(e1,y)(Bx) (21)
where s : R™ — R denotes the indicator function of set S C
Rm

ifse S

ifs ¢ S. 22)

Ls(s) = {3_’007

Notice that E(e,1,y) is simply a closed e-radius Euclidean ball
centered at y.
Problem (21) has the form (13) with J = 2 and

(23)

Instantiating ADMM-2 to this particular case requires the
definition of the Moreau proximal maps associated with g1 = ¢
and g2 = tp(c1,y)- Concerning ¢, the regularizer, we assume
that ¥, 4(-) (see (5)) can be computed efficiently. This is of
course the case of ¢(x) = ||x||1, for which ¥ is simply a soft
threshold. If ¢ is the TV norm, we may use one the fast algo-
rithms available to compute the corresponding denoising func-
tion [14], [20]. The Moreau proximal map of g = tp(. 1,y) is
defined as

LE(EsLY) (X)

; 1
¥istcann(®) = argmin s @
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Fig. 2. Image deblurring (uniform blur) with TV regularization. (a) Evolution of the objective function over time. (b) Evolution of the constraint || Bx — y|| over

time.

TABLE VI
IMAGE DEBLURRING USING TV-COMPUTATIONAL LOAD

Expt. Avg. calls to B, BH (min/max) Iterations CPU time (seconds)
NESTA C-SALSA NESTA | C-SALSA | NESTA | C-SALSA
1 7783 (7767/7795) | 695 (680/710) 1945 232 311.98 62.56
2A 7323 (7291/7351) | 559 (536/578) 1830 150 279.36 38.63
2B 6828 (6775/6883) | 299 (269/329) 1707 100 265.35 25.47
3A 6594 (6513/6661) 176 (98/209) 1649 59 250.37 15.08
3B 5514 (5417/5585) | 108 (104/110) 1379 37 210.94 9.23

which is obviously independent of x and is simply the orthog-
onal projection of s on the closed e-radius ball centered at y

if ||s — y|l2>e
if|ls—yll2 <e.

Sy
e SY
ls=yll2"

5—-Y,

‘IILF)(S,I,y) (S) =Yy + { (28)

We are now in a position to instantiate ADMM-2 for solving
(21) [equivalently (1)]. The resulting algorithm, which we call
C-SALSA-1, is as follows.

Algorithm C-SALSA-1

1. Set k£ = 0, choose 1>0, vél), v((]z), d(()Q), d((f).

2. repeat
3o = vV +dfV + BF (v +a?)
~1
4. Upt1 = <I + BHB> Tk
1 1
5. Vl(c—zl = \Ilf/’/li (uk+1 — dgc ))
2 2
6. Vl(c-£1 = ‘IILE(S,I,y) (Buk_H — d,(C ))

7. d561421 = d,(:) — Ugy1 + v,(“l_gl
8. d,ggl = d,iz) — Bugy: + V1(21
9.k — k+1

10. until some stopping criterion is satisfied.

The issue of how to efficiently solve the linear system of equa-
tions in line 4 of C-SALSA-1 will be addressed in Section III-C.

Convergence of C-SALSA-1 is guaranteed by Theorem 1
since it is an instance of ADMM with

I
B
which is a full column rank matrix, and both ¢ and 1 (. 1,y) are

closed, proper, convex functions.

Finally, notice that to apply C-SALSA-1 to problem (2) we
simply have to replace B with BW.

G= (29)

B. Problem (3)

Problem (3) can also be written as an unconstrained problem

mxin P(Px) + tg(o1,y)(Bx) (30)
which has the form (13) with J = 2 and
=P (31
g2 = LE(E,I,y) (32)
HOV =p (33)
H® =B. (34)

The resulting ADMM algorithm, called C-SALSA-2, is sim-
ilar to C-SALSA-1, with only a few minor differences.
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Algorithm C-SALSA-2

1. Set k£ = 0, choose 1>0, v(()l), v(()2), d((]2), dgz).
2. repeat

1 =P (viV +al) + B (v +af?)
w1 = (PEP + BEIB) Iy,

Vi = Yo (Puk“ B d21)>

6. v,(f_gl = ‘I'LE<S,1,y> (Buk+1 — d,(f))

1 1 1
7. dl, = all  Pugs + i)

wn A~ W

8.d0), = d{” — Bujy1 + v,
9.k —k+1

10. until some stopping criterion is satisfied.

In this paper, we assume that P is the analysis operator
of a 1-tight (Parseval) frame, thus, PFP = I and line 4 of
C-SALSA-2 is similar to line 4 of C-SALSA-1

w1 = (I+BPB)7Ir,. (35)
The issue of how to efficiently solve this linear system will be
addressed in Section III-C.

Since both ¢ and ¢p(. 1,y are closed, proper, convex func-
tions, convergence of C-SALSA-2 holds (by Theorem 1) if

o- 1

is a full column rank matrix. This is of course true if P is itself
a full column rank matrix, which is the case if P is the analysis
operator of a tight frame [42].

(36)

C. Solving (35)

As mentioned in Section I-C, in most imaging problems of
interest, it may not be feasible to explicitly form matrix B. This
might suggest that it is not easy, or even feasible, to compute the
inverse of (I-+ B*B). However, as shown next, in a number
of problems of interest, this inverse can be computed very effi-
ciently with O(n logn) cost, or even O(n) cost in some formu-
lations of inpainting.

1) Deconvolution With Analysis Formulation: Let us first
consider analysis formulations of the form (1) or (3) to image
deconvolution problems. If matrix B represents a 2-D cyclic
convolution (periodic boundary conditions), it is a block cir-
culant matrix with circulant blocks that can be factorized as
B = U”DU, where U is the unitary matrix (U? = U~1)
representing the discrete Fourier transform (DFT) and D is di-
agonal. Thus

BB+ ' =U"(D*+1)"'U (37)
where |D|? is the matrix with squared absolute values of the
entries of D. Since |D|? + I is diagonal, its inversion cost is

©

Fig. 3. MRI reconstruction. (a) 128 x 128 Shepp-Logan phantom. (b) Mask
with 22 radial lines. (c) Image estimated using C-SALSA.

O(n). Products by U and U have O(nlogn) cost, using the
FFT algorithm.

If the convolution represented by B is not cyclic, then B is a
(non-circulant) Toeplitz matrix and it cannot be factorized as
B = UYDU. In this case, solving the linear system in (35)
is not as simple as applying (37). However, there are very fast
preconditioned conjugate gradient (PCG) methods for Topelitz
matrices, which use the FFT to perform the required matrix-
vector products, thus, having O(n log n) cost (see [22] for very
recent work on this topic and pointers to a vast literature).

2) Deconvolution With Synthesis Formulation: In this case,
as seen in Section I-B, we have BW instead of B, and even if B
is a cyclic convolution, BW is not diagonalizable by the DFT.
To sidestep this difficulty, we assume that W contains a 1-tight
(Parseval) frame (i.e., WW*H = I). Using the Sherman—Mor-
rison—Woodbury (SMW) matrix inversion lemma

(WHBEBW +1) ! =1-WHEBH(BB” + 1) 'BW

~~

(38)
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Fig. 4. MRI reconstruction with TV regularization. (a) Evolution of the objective function over time. (b) Evolution of the constraint ||Bx — y|| over time.

thus, line 4 of C-SALSA-1 and C-SALSA-2 can be written as

1 = (rp — WHFWry). (39)

If B represents a cyclic convolution, then, as shown previously,
it can be factorized as B = U¥ DU, thus, multiplication by F
corresponds to applying an image filter in the Fourier domain

F = UYD*(D*+1I)"'DU

which has O(nlogn) cost, since all the matrices in
D* (|D|? +1) D are diagonal and the products by U
and U¥ are carried out via the FFT. The cost of (38) will, thus,
be either O(nlogn) or the cost of the products by W# and
W. In the case of a noncyclic convolution, B is Toeplitz and
cannot be inverted directly as in (37); in this case, we would
have to resort, as mentioned previously, to a PCG algorithm.

For most tight frames used in image processing, there are
fast O(nlogn) algorithms to compute the products by W#
and W [42]. For example, in the case of translation-invariant
wavelet transforms, these products can be computed using
the undecimated wavelet transform with O(nlogn) total cost
[40]. Curvelets also constitute a Parseval frame for which
fast O(nlogn) implementations of the forward and inverse
transform exist [12]. Yet another example of a redundant Par-
seval frame is the complex wavelet transform, which has O(n)
computational cost [39], [49]. In conclusion, for a large class
of choices of W, each iteration of the C-SALSA algorithm has
O(nlogn) cost.

3) Missing Pixels: Image Inpainting: In the analysis prior
formulation of this problem, the observation matrix B models
the loss of some image pixels. It is, thus, an m X n binary matrix,
with mm < n, which can be obtained by taking a subset of rows
of an identity matrix. Due to its particular structure, this matrix
satisfies BBY = I. Using this fact together with the SMW
formula leads to

BB +1)"! =1-B#(1+BB)"'B
=I- %BHB.

(40)
(41)

Since BB is equal to an identity matrix with some zeros in
the diagonal (corresponding to the positions of the missing ob-
servations), the matrix in (41) is diagonal with elements ei-
ther equal to 1 or 1/2. Consequently, line 4 of C-SALSA-1 and

(a)

Fig. 5. TV based image reconstruction. (a) Original image with dynamic range
= 40 dB. (b) Estimate using C-SALSA.

C-SALSA-2 corresponds to multiplying this diagonal matrix by
ry, obviously with O(n) cost.

In the frame-based synthesis formulation, we have BW in-
stead of B. Using the SMW formula yet again, and the facts that
BBE = Tand WW# = I, we have

(WEBHBW + 1)1 =1— %WHBHBW. (42)
As noted in the previous paragraph, A A is equal to an identity
matrix with zeros in the diagonal, i.e., a binary mask. Thus, the
multiplication by W# A# AW corresponds to synthesizing the
image, multiplying it by this mask, and computing the represen-
tation coefficients of the result. In conclusion, the cost of line 4
of C-SALSA-1 and C-SALSA-2 is again that of the products by
W and W usually O(nlogn).

4) Partial Fourier Observations (MRI Reconstruction):
Finally, we consider the case of partial Fourier observations,
which is used to model MRI acquisition and has been the focus
of recent interest due to its connection to compressed sensing
[13], [41]. In the analysis formulation, B = MU, where M
is an m X n binary matrix (m<n) again, formed by a subset
of rows of the identity, and U is the DFT matrix. Due to its
particular structure, matrix M satisfies MM = I; this fact
together with the matrix inversion lemma leads to

BB+t =1- %UHMHMU (43)
where MM is equal to an identity with some zeros in the
diagonal. Consequently, the cost of line 4 of C-SALSA-1 and
C-SALSA-2 is again that of the products by U and U¥, i.e.,
O(nlogn) using the FFT.
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Fig. 6. TV based image reconstruction (dynamic range = 40 dB). (a) Evolution of the objective function over time. (b) Evolution of the constraint || Bx — y/||

over time.
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Fig. 7. Image inpainting with TV regularization. (a) Original cameraman image. (b) Image with 40% pixels missing. (c) Estimated using C-SALSA.

TABLE VII
MRI RECONSTRUCTION—COMPARISON
Algorithm Calls to B, BH Iterations | time (seconds) MSE
NESTA 1228 (1161/1261) 307 15.50 9.335e-6
C-SALSA 366 (365/368) 122 12.89 2.440e-6

In the synthesis case, the observation matrix has the form
MUW. Clearly, the case is again similar to (42), but with UW
and WH U instead of W and W respectively. Again, the
cost of line 4 of C-SALSA-1 and C-SALSA-2 is O(nlogn), if
the FFT is used to compute the products by U and U¥ and fast
frame transforms are used for the products by W and W¥ .

D. Computational Complexity

As shown in the previous section, the cost of line 4 of
C-SALSA-1 and C-SALSA-2 is O(nlogn). The other lines
of the algorithms simply involve: 1) matrix-vector products
involving B, W, P, or their conjugate transposes, which have
O(nlogn) cost; 2) vector additions, which have O(n) cost; and
3) the computation of the Moreau proximal maps (lines 5 and 6
of C-SALSA-1 and C-SALSA-2). In the case of the projections
on a ball (line 6), it is clear from (28) that the cost is O(n).

Finally, we consider the computational cost of the Moreau
proximal map of the regularizer ¢ (line 5 of C-SALSA-1 and

C-SALSA-2). In some cases, this map can be computed ex-
actly in closed form; for example, if ¢(x) = ||x]||1, then ¥,
is simply a soft threshold and the cost is O(n). In other cases,
the Moreau proximal map does not have a closed form solu-
tion; for example, if ¢(x) = TV(x), the corresponding ¥,
has to be computed using one of several available iterative al-
gorithms [14], [20]. Most of these iterative algorithms can be
implemented with O(n) cost, although with a factor that de-
pends upon the number of iterations. In our implementation of
C-SALSA we use Chambolle’s algorithm [14].

In summary, for a wide choice of regularizers and frame rep-
resentations, the C-SALSA algorithms have O(n log n) compu-
tational complexity.

IV. EXPERIMENTS

In this section, we report results of experiments aimed at com-
paring the speed of C-SALSA® with that of the current state of
the art methods (that are freely available online): SPGL17[52],
and NESTAS [6].

We consider three standard and often studied imaging in-
verse problems: image deconvolution (using both wavelet and

6C-SALSA is available at http://cascais.lx.it.pt/~mafonso/salsa.html.
7Available at http://www.cs.ubc.ca/labs/scl/spgl1.
8 Available at http://www.acm.caltech.edu/~nesta.
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TABLE VIII
IMAGE RECONSTRUCTION (HIGH DYNAMIC RANGE) USING TV—COMPUTATIONAL LOAD

Dyn. range Avg. calls to B, BH¥ (min/max) Iterations CPU time (seconds) MSE
(dB) NESTA C-SALSA NESTA | C-SALSA | NESTA | C-SALSA NESTA C-SALSA
20 1213 (1169/1273) | 226 (224/227) 303 76 8.99 7.24 0.00241743 | 0.000543426
40 991 (961/1017) 227 (224/227) 248 76 7.34 7.002 0.00432206 | 0.000651107
60 731 (721/737) 282 (281/284) 183 95 4.92 8.35 0.005294 0.00072848
80 617 (613/617) 353 (350/353) 154 118 4.16 10.72 0.00702862 | 0.000664638
10’ 250
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Fig. 8. Image inpainting with TV regularization. (a) Evolution of the objective function over time. (b) Evolution of the constraint || Bx — y/|| over time.

TV-based regularization); image restoration from missing sam-
ples (inpainting); image reconstruction from partial Fourier ob-
servations, which (as mentioned previously) has been the focus
of much recent interest due to its connection with compressed
sensing and the fact that it models MRI acquisition [41].

All experiments were performed using MATLAB, on a Win-
dows XP desktop computer with an Intel Pentium-IV 3.0 GHz
processor and 1.5 GB of RAM. The number of calls to the oper-
ators B and B¥, the number of iterations, CPU times, and MSE
values presented are the averages values over 10 runs of each ex-
periment. The number of calls reported for each experiment is
the average over the 10 instances, with the minimum and max-
imum indicated in the parentheses. Since the stopping criteria of
the implementations of the available algorithms differ, to com-
pare the speed of the algorithms in a way that is as independent
as possible from these criteria, the experimental protocol that we
followed was the following: we first run one of the algorithms
with its stopping criterion, and then run C-SALSA until the con-
straint in (1) is satisfied and the MSE of the estimate is below
that obtained by the other algorithms.

The value of ¢ in (1) used in all cases was \/m + 8,/mo,
where m is the number of observations, and o is the noise
standard deviation. The parameter ;, was hand-tuned for fastest
convergence.

A. Image Deconvolution With Wavelets

We consider five benchmark cyclic deblurring problems
[30], summarized in Table I, all on the well-known Cameraman
image. The regularizer is ¢(B) = ||B]|1, thus, ¥ 4 is an
element-wise soft threshold. We compare C-SALSA against
SPGL1 and NESTA in the synthesis case, and against only

NESTA in the analysis case, since SPGLI is hardwired with
||x||1 as the regularizer, and not ||Px||;. Since the restored
images are visually indistinguishable from those obtained in
[30], and the SNR improvements are also very similar, we
simply compare the speed of the algorithms, that is, the number
of calls to the operators B and B the number of iterations,
and the computation time.

In the first set of experiments, W is a redundant Haar
wavelet frame with four levels. For the synthesis case, the CPU
times taken by each of the algorithms are presented in Table II.
Table III presents the corresponding results for the case with
the analysis prior. In the second set of experiments, W is an or-
thogonal Haar wavelet basis; the results are reported in Table IV
for the synthesis case, and in Table V for the analysis case. To
visually illustrate the relative speed of the algorithms, Fig. 1
plots the evolution of the constraint ||Buy, — y||, versus time,
in experiments 1, for the synthesis prior case, with redundant
wavelets.

B. Image Deblurring With TV

The same five image deconvolution problems listed in Table I
were also addressed using TV regularization (more specifically,
the isotropic discrete total variation, as defined in [14]). The cor-
responding Moreau proximal mapping is computed using five
iterations of Chambolle’s algorithm [14].

Table VI compares the performance of C-SALSA and
NESTA, in terms of speed. The evolutions of the objective
function and the constraint for experiment 1 are plotted in
Fig. 2.

We can conclude from Tables II-VI that, in image deconvolu-
tion problems, both with wavelet-based and TV-based regular-
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TABLE IX
IMAGE INPAINTING: COMPARISON

Calls to B, BH | Iterations | time (seconds) | MSE
NESTA 403 (401/405) 101 10.29 81.316
C-SALSA | 143 (143/143) 47 12.97 75.003

ization, C-SALSA is almost always clearly faster than the fastest
of the other competing algorithms.

C. MRI Image Reconstruction

‘We now consider the problem of reconstructing the 128 x 128
Shepp-Logan phantom [shown in Fig. 3(a)] from a limited
number of radial lines [22, in our experiments, as shown in
Fig. 3(b)] of its 2-D discrete Fourier transform. The projections
are also corrupted with circular complex Gaussian noise, with
variance 02 = 0.5 x 1075, We use TV regularization (as
described in Section IV-B), with the corresponding Moreau
proximal mapping implemented by 10 iterations of Cham-
bolle’s algorithm [14].

Table VII shows the number of calls, number of iterations,
and CPU times, while Fig. 4 plots the evolution of the objec-
tive function and constraint over time. Fig. 3(c) shows the esti-
mate obtained using C-SALSA (the estimate NESTA is, natu-
rally, visually indistinguishable). Again, we may conclude that
C-SALSA is faster than NESTA, while achieving comparable
values of mean squared error of the reconstructed image.

1) High Dynamic Range TV Reconstruction: A related ex-
ample that we will consider here is the reconstruction of images
composed of random squares, from their partial Fourier mea-
surements, with TV regularization (see [6, Sec. 6:4]). The dy-
namic range of the signals (the amplitude of the squares) varies
from 20 dB to 80 dB. The size of each image is 128 x 128,
the number of radial lines in the DFT measurement mask is 27
(corresponding to m /n = 0.2), and the Gaussian noise standard
deviation is ¢ = 0.1.

Fig. 4(c) shows the original image with a dynamic range
of 40 dB and the estimate obtained using C-SALSA. Fig. 6
shows the evolution over time of the objective and the error
constraint for C-SALSA and NESTA, while Table VIII com-
pares the two algorithms with respect to the number of calls to
A and A" number of iterations, CPU time, and MSE obtained,
over 10 random trials. It is clear from Table VIII that C-SALSA
uses considerably fewer calls to the operators A and A¥ than
NESTA.

D. Image Inpainting

Finally, we consider an image inpainting problem, as ex-
plained in Section III-C. The original image is again the
Cameraman, and the observation consists in losing 40% of its
pixels, as shown in Fig. 7. The observations are also corrupted
with Gaussian noise (with an SNR of 40 dB). The regularizer
is again TV, implemented by 10 iterations of Chambolle’s
algorithm.

The image estimate obtained by C-SALSA is shown in Fig. 7,
with the original also shown for comparison. The estimate ob-
tained using NESTA was visually very similar. Table IX com-
pares the performance of the two algorithms, and Fig. 8 shows
the evolution of the objective function for each of them.

V. CONCLUSION

We have presented a new algorithm for solving the con-
strained optimization formulation of regularized image recon-
struction/restoration. The approach, which can be used with
any type of convex regularizers (wavelet-based, TV), is based
upon a VS technique which yields an equivalent constrained
problem. This constrained problem is then addressed using an
ALM, more specifically, the ADMM. Our algorithm works for
any convex regularizer for which the Moreau proximal map-
ping can be efficiently computed, and is therefore more general
purpose than some of the available state-of-the-art methods
which are available only for either ¢; - and/or TV regularization.
Experiments on a set of standard image recovery problems (de-
convolution, MRI reconstruction, inpainting) have shown that
the proposed algorithm (termed C-SALSA, for constrained split
augmented Lagrangian shrinkage algorithm) is usually faster
than previous state-of-the-art methods. Automating the choice
of the value of the parameter ; remains an open question.
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