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Abstract—Augmented Lagrangian variational formulations
and alternating optimization have been adopted to solve dis-
tributed parameter estimation problems. The alternating di-
rection method of multipliers (ADMM) is one of such for-
mulations/optimization methods. Very recently the number of
applications of ADMM, or variants of it, to solve inverse problems
in image and signal processing has increased at an exponential
rate. The reason for this interest is that ADMM decomposes a
difficult optimization problem into a sequence of much simpler
problems.

In this work we use ADMM to reconstruct piece-wise smooth
distributed parameters of elliptic partial differential equations
from noisy and linear (blurred) observations of the underlying
field. The distributed parameters are estimated by solving an
inverse problem with total variation regularization.

The proposed instance of ADMM solves, in each iteration,
an `2 and a decoupled `2 − `1 optimization problems. An
operator splitting is used to simplify the treatment of the TV
regularizer avoiding its smooth approximation and yielding a
simple, yet effective, ADMM reconstruction method compared
with previously proposed approaches.

The competitiveness of the proposed method, with respect
to the state-of-the-art, is illustrated in simulated 1D and 2D
elliptic equation problems, which are representative of many real
applications.

I. INTRODUCTION

Recovering the constitutive parameters of a partial differen-
tial equation from field vectors or scalar potential observations
is usually known as distributed parameter estimation (DPE)
[1]. DPEs from elliptical differential equations are frequently
studied due to their wide applicability to real world problems.
These problems arise from many areas such as electrical
impedance tomography [2], magnetotelluric inversion [3], oil
reservoir simulation [4], water resources research [5], elastic
membrane behaviour [6], heat transfer problems [7], electro-
static problem [2], among others.

Consider the set of partial differential equations

−∇ · (σ∇ui) = yi, in Ω ⊂ R2

ui = 0, on ∂Ω,
(1)

where, for i = 1, . . . , nI , ui denotes the scalar field associated
to the source yi and σ(x), for x ∈ Ω, denotes the constitutive
parameters to be inferred. The above set of partial differential
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equations may have resulted, for example, from a series of nI

experiments where, in each one, the source yi is repositioned
and linear observations, di, of the field ui are carried out, i.e.,

di = Mui + ηi, i = 1, . . . , nI , (2)

where M is a linear operator and ηi, for i = 1, . . . , nI , models
additive perturbations.

Denoting the forward operator associated to the partial
differential equation (1) by A(σ), equipped with the respective
boundary condition, then the inverse problem in hand is

find σ ∈ S compatible with
{

d = Mu + η
s.t.: A(σ)u = y

}
, (3)

where S denotes a suitable parameter space, u ≡
[u1, . . . , unI ], d ≡ [d1, . . . , dnI ], and y ≡ [y1, . . . , ynI ].

The inverse problem (3) is known to be ill-posed [8]. A
popular approach to infer the image σ consists in solving the
regularized least squares minimization problem

(û, σ̂) ∈ arg min
u,σ∈S

(1/2)‖Mu− d‖2 + τφ(σ) (4)

s.t.: A(σ) u = y,

where ‖·‖ is a norm in an appropriate space, φ is a regular-
izer (or prior information, in Bayesian inference terms) that
promotes images of parameters σ with desirable properties,
and τ > 0 is the so-called regularization parameter setting the
relative weight between the regularizer φ(σ) and the data term
(1/2)‖Mu− d‖2. The formulation (4) is termed output least
squares.

Assuming that the inverse operators A−1
i (σ), for i =

1, . . . , nI , exist, then A−1 exists and, thus, the output least
approach (4) is equivalent to the unconstrained least squares
formulation

σ̂ ∈ arg min
σ∈S

(1/2)‖F(σ)− d‖2 + τφ(σ), (5)

where F(σ) ≡ MA−1(σ) y. Usually, this operator doesn’t
have a closed form expression and the computation of its
gradient and Hessian is complex from the computational point
of view.

The complexity involved in solving (4) or (5) and the
quality of reconstructed images depend crucially on the type
of regularizers used. The quadratic regularizer

φ2(σ) ≡
∫

Ω

(Lσ)2,

where L is a linear operator, has been widely used (see [9]
and references therein), namely because it leads to smooth
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objective functions which can be optimized with standard
optimization tools based on gradients and Hessians. However,
the quadratic regularizer yields poor performance in piece-wise
smooth images because the sharper transitions are removed.

The total variation (TV) regularizer [10]

φTV(σ) ≡
∫

Ω

|∇σ|

is arguably the best known and most often used regularizer
for piece-wise smooth images. The TV ability to preserve
discontinuities and “average” smooth areas is related with
its non-differentiability. Aiming at exploiting the TV discon-
tinuity preserving ability and simultaneously using smooth
optimization tools based on gradients and Hessians, smooth
approximations of TV have been adopted in DPE (see, e.g.,
[1],[11]).

The interest in TV based regularization and the fact that φTV

is convex, although not strictly, have fostered active research
in convex optimization to find efficient solution to these
problems. The well known `2−TV deblurring problem is such
an example for which effective solutions have been recently
introduced [12], [13], [14], [15], [16], [17], [18], [19].

Quadratic and TV regularization belong to the so-called
analysis approach [20], since they are based on a regularizer
that analyzes the image itself. In the synthesis approach [20],
the original image σ is represented as a linear combination
of the elements of some frame, i.e., σ = Wθ where W is a
wavelet frame, and the regularizer is defined on θ. The work
[21] on electric current density imaging is representative of
this strategy.

A. Related work

Several approaches to the optimization (4) compute saddle
points of the respective Lagrangian. Assuming smooth regu-
larizers, for example quadratic ones or smooth approximations
to TV, most of these approaches solve the optimality equations
by some variant of Newton method usually the Gauss-Newton
method. See [22], [23], [24], [25] and references therein.

Computing the saddle point of the Lagrangian of (4) is
usually complex because it involves a large number of non-
linear coupled equations on three classes of variables: the
sought image of parameters σ, the field u, and the Lagrange
multipliers which are herein denoted by λ. The availability of
parallel computing at accessible costs has fostered the interest
in this approach to solve large and complex inverse problems,
namely the one in hand. The work [9] addresses a class of
overlapping Newton–Krylov–Schwarz algorithms for solving
such coupled systems, obtained with a pointwise ordering of
the variables.

The augmented Lagrangian method, or method of multipli-
ers, is another direction used solve (4) [11], [26], [27], [28].
In this approach, the constraints in a constrained optimization
problem are replaced by penalty terms in the objective function
incorporating explicit estimates of the Lagrange multipliers to
improve the conditioning of the resulting optimization problem
[29, Ch. 17]. With respect to our setting, each iteration of the
method consists in minimizing the augmented Lagrangian with

respect to (u, σ) followed by an update of the Lagrange multi-
pliers. The former optimization is often replaced by decoupled
optimizations with respect to u and σ leading to Uzawa-
type schemes termed in [30], [31], [32] alternate direction
method of multipliers (ADMM). The decoupled problems are
usually smaller and much simpler to solve than original joint
optimization with respect to (u, σ).

The unconstrained optimization (5) has also been adopted
to infer the image of parameters σ, namely by using Gauss-
Newton type methods [33], [8]. However, due to the complex
structure of the operator F−1, a large number of forward prob-
lems per iteration should be solved to determine the Gauss-
Newton Hessian, which makes the method computationally too
demanding for 2D (or 3D) systems. When possible, reciprocal
methods based on adjoint fields are used to increase each Hes-
sian calculation speed (see, e.g. [33], [3] for examples on the
adjoint field use in Biomedical and Geophysical applications).

B. Proposed approach and contribution

In this paper, we adopt TV regularization to estimate piece-
wise smooth images of parameters, i.e., we assume that the
images of parameters are smooth by regions with abrupt transi-
tions between neighboring regions. We follow the constrained
formulation (4) and use an instance of ADMM to solve the
resulting optimization problem. In line with [14], we convert a
complex `2-TV optimization into two very simple decoupled
`2 − `1 optimization steps yielding a very simple and fast
algorithm. Furthermore, we use the exact TV definition in
contrast with most works on DPE that use a smooth TV
approximation.

The line of attack we follow, based on ADMM and related to
proximal splittings [34] and with split Bregman methods [14],
has been increasingly adopted to solve many inverse problems
in signal and image processing [16], [35], [17], [36], [18].

Although ADMM is not a new method, the way it has been
recently exploited is a novelty: the central idea is to convert
an unconstrained optimization problem into a constrained one
where the initial variables have been split into new ones. The
ADMM method runs an alternate optimization with respect to
the new variables. The effectiveness of the obtained algorithm
relies on the wisdom in the choice of the new variables.

The resulting algorithm is applied to the particular case
of a 2D elliptical equation inverse problem with discontin-
uous image of parameters, noisy observations, and relatively
small observation data compared with the parameter space.
In comparison with an ADMM approach using a smooth
approximation to TV and smooth optimization tools, we obtain
better and faster reconstructions.

The organization of this paper is as follows: Section II
formulates the DPE as a constrained optimization problem
in a finite dimensional setting. A characterization of the
optimization problem in hand is given. Section III presents
two instances of the ADMM to solve the optimization problem
formulated in Section II. In the first ADMM instance a TV-l2
subproblem is directly solved, whereas in the second instance
the TV regularizer is decoupled using a proper variable
splitting (proposed version). In Section IV-A a simple 1D
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case is implemented and studied. In IV-B a 2D electrical
tomographic problem is solved. The reconstruction results
are shown and the performance issues are analysed. Finally,
Section V presents final remarks and conclusions.

II. PROBLEM CHARACTERIZATION AND FORMULATION

We now formalize problem (4) in a finite dimensional
setting. We assume that all the involved entities have been
accurately discretized on the same grid with n elements. More
details of the discretization are given in Section IV.

The discretized images are arranged in column lexico-
graphic ordering. We address the DPE problem in terms of
the following entities, for i = 1, . . . , nI :

S ≡ [kmin, kmax]n, 0 < kmin < kmax
set of parameter images

σ ∈ S ≡ image of parameters
ui ∈ Rn ≡ fields ui

yi ∈ Rn ≡ sources yi

M ∈ Rp×n ≡ observation matrix
di ∈ Rp ≡ linear and noisy observations
B ∈ Rq×n ≡ boundary (for u) selecting matrix.
C ∈ Rr×n ≡ boundary (for σ) selecting matrix.
A(σ) ∈ Rn×n ≡ operator A for a given σ.
A(u) ∈ Rn×n ≡ operator A for a given u.

For compactness, we will denote matrices A(σ) ≡ Aσ

and A(u) ≡ Au. We may then write Aσ ui = Aui σ. As a
consequence we have

Aσ u = y ⇔ Au σ = y:, (6)

where y: ≡ vec(y), i.e., y: is the column-wise lexicographic
ordering of y, and Au ≡ [A

T

u1
, A

T

u2
, . . . , A

T

unI
]T .

The main source of difficulty in DPE problems is that the
operators Aσ and Aui are either ill-posed or ill-conditioned.
To give an idea of these difficulties, we built the matrices
Aσ and Aui corresponding to a 1D problem with n = 256,
nI = 1, and (y)i = 1 for i = 128 and (y)i = 0 for i 6= 128
(the notation (y)i stands for the ith component of vector y.
The derivatives were discretized using finite differences1 and
the boundary conditions (σ)1 = 1 and (σ)256 = 1 were
enforced. The plot on the top of Fig. 1 is the field obtained by
solving the linear system Aσu = y for the original piecewise
constant vector of parameters σ shown in the bottom of the
same figure. The original vector σ is exactly recovered by
solving the system Auσ = y using the field u obtained before
(with the boundary conditions above referred). However, if u
is perturbed, even very slightly, the obtained values of σ by
solving the same problem are of little use. The noisy estimate
of σ shown in the bottom of Fig. 1 is obtained by solving
Au+δuσ = y, where δu is a noise vector of independent and
identical distributed (i.i.d.) uniform samples in the interval
[−a, a] with

a ≡ ε
‖u‖F√

nI
, (7)

1We have dropped the index 1 in u1 because we have just one set of
observations in this example.
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Fig. 1. Illustration of the effect of a small perturbation in the estimation
of σ. Top: field u obtained by solving the system Aσu = y. Bottom: vector
of Paremeters σ obtained by solving A(u+δu)σ = y for δu = 0 and δu
corresponding to zero-mean iid uniformly distributed samples in the interval
[-a a] where a = 0.003 ‖u‖F /

√
n.

where ‖·‖F stands for Frobenious norm and ε > 0 controls
the relative power of noise with respect to the power of u, as
in [11]. In Fig. 1 we set ε = 0.003.

To further study the results plotted in Fig.1, we define
δσ ≡ σ̂−σ, where σ̂ and σ denote, respectively, the estimated
and the original vector of parameters, and δA ≡ Au+δu−Au.
Neglecting second order variations, we have Auδσ = −δAσ.
Therefore, the size of δσ is determined by the amplification
introduced by the inverse of the singular values of Au. For the
considered example, these singular values decay at an approxi-
mate linear rate from 1 to 10−3. We may then anticipate large
perturbations δσ even for small field perturbations δu. The
described ill-conditioning of the DPE inverse problem is, very
often, even worse because we have access to u only through
a low rank measurement matrix M .

As in many inverse problems, we use regularization to
promote solutions with desirable characteristics and, in this
way, mitigate the ill-posedness or ill-conditioning of the DPE
problem. As already referred to, we are particularly interested
in piece-wise smooth images of parameters to which the TV
regularizer is very well suited. Hence, we are interested in
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solving the optimization problem

(û, σ̂) ∈ arg min
u,σ∈S

(1/2)‖Mu− d‖2F + τφTV(σ) (8)

s.t.: Aσ u = y, B u = 0, C σ = σ0.

where u ≡ [u1, . . . , unI
], d ≡ [d1, . . . , dnI

], and y ≡
[y1, . . . , ynI

]. The constrains B u = 0 and Cσ = σ0 impose,
respectively, u = 0 and σ = σ0 at the boundary.

With respect to the discretization of the TV regularizer, we
adopt the discretized TV defined as [12]

φTV(σ) ≡
n∑

i=1

√
(D1 σ)2i + (D2 σ)2i , (9)

where D1 and D2 are first order finite difference matrices
operating on two orthogonal directions, which enforces piece-
wise constant solutions. We note, however, that higher order
differences may be used. For example, second order differ-
ences enforces piece-wise linear solutions.

Assuming that the inverse forward operator A−1 exists, then
the feasible set

{(σ, u) ∈ Sn × RnI |Aσ u = y, B u = 0, C σ = σ0}
in the DPE problem (8), is compact. This is consequence of
the compactness of S and of the continuity of A−1, thus
mapping closed and bounded sets into closed and bounded
sets. Therefore, Weierstrass’s theorem [37] guarantees the
existence of an optimum solution for the DPE problem (8).

III. PROPOSED ADMM METHOD

In this section, we present two instances of the ADMM
method to solve the DPE problem (8). The first, ADMM
(version 1), results naturally from the structure of problem
(8). This algorithm, here included for comparison purposes,
belongs to a family of state-of-the-art ADMM methods in-
troduced in [11], [26], [38]. The second, DIPESAL, besides
faster, is able to better enforce the regularization. It results
from rewriting the TV regularizer in an equivalent constrained
form.

The augmented Lagrangian plays a central role in the
ADMM method [30], [31], [32]. For the problem (8), the
augmented Lagrangian can be written as

L(u, σ, w, λ) ≡ ψ(u) + τφTV(σ) + ιS(w) (10)

−
4∑

i=1

λT
i ci(u, σ, w) + (µ/2)‖ci(u, σ,w)‖2,

where ψ(u) ≡ (1/2)‖Mu − d‖2F , ιS : Rn → {0,∞} is the
indicator function of set S defined as ιS(w) = 0 if w ∈ S and
ιS(w) = ∞ if w /∈ S , λi, for i = 1, . . . , 4, are the Lagrange
multiplier vectors for the equality constraints ci given by

c1(u, σ, w) ≡ Aσu− y ⇔ Auσ − y:
c2(u, σ, w) ≡ Bu
c3(u, σ, w) ≡ Cσ − σ0

c4(u, σ, w) ≡ σ − w,

(11)

and µ > 0 controls the weight of the quadratic penalty terms.
Notice that the constraint σ ∈ S is enforced by the inclusion of

the indicator function ιS(w) in (10) and the equality constraint
σ − w.

Completing the square in (10) allows to redefine this func-
tion as

L(u, σ, w, e) = ψ(u) + τφTV(σ) + ιS(w) (12)

+
4∑

i=1

(µ/2)‖ci(u, σ, w)− ei‖2 + a(ei),

where ei = λi/µ and a(ei) = −ei
2 are terms not depending

on (u, σ, w).

Algorithm 1 ADMM (version 1)
Require: k = 0, choose µ > 0, u0, w0, and e0

i , for i =
1, . . . , 4

1: Repeat
2: σk+1 ∈ arg min

σ
L(uk, σ, wk, ek)

3: uk+1 ∈ arg min
u
L(u, σk+1, wk, ek)

4: wk+1 ∈ arg min
w
L(uk+1, σk+1, w, ek)

5: ek+1
i ← ek

i − ci(uk+1, σk+1, wk+1), for i = 1, . . . , 4
6: k ← k + 1
7: Until some stopping criterion is satisfied.

Algorithm 1 shows the pseudo-code for an augmented
Lagrangian method with alternating direction minimization,
aimed at computing the solution of (8). Step 5 corresponds to
the Lagrange multipliers vector update. If all the constraints
were linear, this algorithm would belong to the ADMM class2

[30], [39], [40], [35].
However, the conbstraint Aσ u = y in 8 is bilinear and

thus, our problem does not belong the canonical ADMM class.
Anyway, given the strong similarity between the proposed and
the ADMM algorithms, we still term the former as ADMM, as
in the recent work [40], were the authors use the term ADMM
Bi-convex Problems.

Each iteration of Algorithm 1 implements alternating direc-
tion optimization with respect to u, σ, and w, and updates the
estimate of the Lagrange multipliers. The optimization with
respect to σ (line 2) amounts to solve the `2−TV regularization
problem

σk+1=arg min
σ

{
(1/2)σT F kσ − (νk

σ)T σ + (τ/µ)φTV(σ)
}

,

(13)
where

F k = A
T

ukAuk + CT C + I

νk
σ = A

T

uk(y + ek
1) + CT (σ0 + ek

3) + (wk + ek
4).

(14)
Problem (13), although convex, is non-smooth, preventing the
use of off-the-shelf gradient and Hessian based tools. Very

2ADMM algorithms solve the problem

(x̂, ẑ) ∈ arg min
x,z

f(x) + g(z)

s.t.: Ax + Bz = c.
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often, this difficulty has been circumvented by replacing the
TV regularizer with the smooth approximation

n∑

i=1

√
(D1 σ)2i + (D2 σ)2i + γ, (15)

where γ is a small positive number. This has been followed,
for example, in [11], [38], where an approximated solution of
(13) is computed by a one step lagged diffusivity fixed point
iteration [41]. In the ADMM version 1 algorithm, this was the
considered approach to minimize σ.

The optimization with respect to u (line 3) is a quadratic
problem, with solution given by

uk+1 =
(
MT M + µAT

σk+1Aσk+1 + µBT B
)−1

νk
u(16)

where

νk
u ≡ (

MT d + µAT
σk+1(y + ek

1) + µBT ek
2

)
. (17)

The optimization with respect to w (line 4) amounts to
compute

wk+1 = arg min
w

{
ιS(w) + (µ/2)‖w − νk

w‖2
}

, (18)

where
νk

w = σk+1 − ek
4 .

Problem (18) is the projection of νk
w on the convex set S ,

denoted by PS(νk
w), where PS : Rn → S is defined as

PS : x 7→ max{kmin,min{x, kmax}} (19)

and the max and min are componentwise.

A. Two more constraints. A simpler problem

In DPE problems, the `2−TV optimization (13) has been
frequently attacked by the lagged diffusivity fixed point itera-
tion. In recent years, large research efforts have been devoted
to the `2−TV problem and many other convex non-smooth
problems. We mention the seminal [12], which applies when
F k is the identity. The work [13], which elaborates on [12],
solves (13) for data terms ‖Kσ − ν‖2, where K is a generic
matrix. These iterative algorithms are closely related with the
so-called forward-backward splitting and Douglas-Rachford
splitting methods [34], which are known to have low speed
of convergence when the operator K is ill-posed or bad-
conditioned. This aspect have been actively researched leading
to faster `2−TV algorithms [15], [16], [14], [17], [18], [19].
We note, however, that solving exactly the sequence of sub-
problems (13) may not be a wise approach for two reasons:
firstly, it will make the algorithm too slow; secondly, these
problems vary from ADMM iteration to iteration.

In order to replace the `2 − TV with simple closed-form
subproblems, in each ADMM iteration, we now replace the
initial DPE problem (8) with the equivalent one

(û, σ̂, ẑ) ∈ arg min
u,σ∈S,z

(1/2)‖Mu− d‖2F + τ‖z‖1(20)

s.t.: Aσ u = y B u = 0, C σ = σ0

D1 σ = z1, D2 σ = z2

where z ≡ [z1z2] ∈ Rn×2 and

‖z‖1 ≡
n∑

i=1

|(z)i| =
n∑

i=1

√
z2
1,i + z2

2,i,

i.e., ‖z‖1 is the `1 norm of z. Comparing (20) with (8), the
TV regularizer applied to σ was replaced with the `1 norm of
z and two more constraints were introduced. The augmented
Lagrangian for the new problem (20) can be written as

L(u, σ,w, z, e) = ψ(u) + τ‖z‖1 + ιS(w) (21)

+
6∑

i=1

(µ/2)‖ci(u, σ, w, z)− ei‖2 + a(ei),

where the equality constraints ci are given by

c1(u, σ,w, z) ≡ Aσu− y ⇔ Auσ − y:
c2(u, σ,w, z) ≡ Bu
c3(u, σ,w, z) ≡ Cσ − σ0

c4(u, σ,w, z) ≡ σ − w
c5(u, σ,w, z) ≡ D1σ − z1

c6(u, σ,w, z) ≡ D2σ − z2.

(22)

Algorithm 2 DIPESAL
Require: k = 0, choose µ > 0, u0, w0, z0, and e0

i , for i =
1, . . . , 6

1: Repeat
2: σk+1 ∈ arg min

σ
L(uk, σ, wk, zk, ek)

3: uk+1 ∈ arg min
u
L(u, σk+1, wk, zk, ek)

4: wk+1 ∈ arg min
w
L(uk+1, σk+1, w, zk, ek)

5: zk+1 ∈ arg min
z
L(uk+1, σk+1, wk+1, z, ek)

6: ek+1
i ← ek

i − ci(uk+1, σk+1, wk+1, zk+1), for i =
1, . . . , 6

7: k ← k + 1
8: Until some stopping criterion is satisfied.

Algorithm 2 shows the pseudo code for the proposed
ADMM algorithm, called distributed parameter estimation via
splitting and augmented Lagrangian (DIPESAL) to solve (20).
Each iteration implements alternating direction optimization
with respect to σ, u, w, and z and updates the estimate of the
Lagrange multipliers ei, for i = 1, . . . , 6. The optimization
with respect to σ (line 2) is a quadratic problem with solution

σk+1 =
(
A

T

ukAuk + CT C + I + DT
1 D1 + DT

2 D2

)−1

νk
σ ,

(23)
with

νk
σ ≡

(
A

T

uk(y: + ek
1 :) + CT (σ0 + ek

3) + (wk + ek
4)

+DT
1 (zk

1 + ek
5) + DT

2 (zk
2 + ek

6)
)
.

The optimization with respect to u (line 3) is also a quadratic
problem, whose solution is (16).

The optimization with respect to w (line 4) is, as in ADMM
(version 1), the projection

wk+1 = PS(νk
w), (24)
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where PS is defined in (19) and

νk
w ≡ σk+1 − ek

4 .

The optimization with respect to z (line 5) amounts to solve
the `2 − `1 decoupled problem

zk+1 = arg min
z

{
(1/2)‖z − νk

z ‖2F + (τ/µ)‖z‖1
}

, (25)

where
νk

z ≡ [νk
z1

νk
z2

] ∈ Rn×2

and
νk

z1
≡ D1 σk+1 − ek

5

νk
z2

≡ D2 σk+1 − ek
6 .

(26)

The solution for (25) is [14]

zk+1 = soft(νk
z , τ/µ), (27)

where soft(νk
z , τ/µ) operates pixel-wise and, for x ∈ R2 and

δ > 0, we have

soft(x, δ) ≡ x
|x| max(|x| − δ, 0) ⇐ x 6= (0, 0)

soft(x, δ) ≡ 0 ⇐ x = (0, 0).
(28)

Each iteration of the DIPESAL algorithm implements two
quadratic optimizations, with respect to σ and to u, and two
very simple pixel-wise decoupled optimizations with respect
w and z . In conclusion, each iteration of the DIPESAL is
lighter than that of the original ADMM, version 1 and has a
closed description.

B. Over-Relaxation

It is known that it should be possible for over-relaxation
to accelerate convergence in split based algorithms for convex
programming scenarios. Such acceleration has been experi-
mentally confirmed in some applications of the method of
multipliers (see [30] and references therein). It consists on an
over-evaluation of the updated parameter in relation to what
was prescribed by each sub-problem. An over-relaxation of
the parameter σ is considered here, simply by imposing a new
update rule given by

σ∗k+1 = σk + ζ∆σk+1 (29)

where ζ > 1 and ∆σk+1 is the difference between the current
estimate σk and the resolved σk+1. The over-relaxation can
theoretically be applied to each sub-problem although the best
results were found for the σ sub-problem (see section IV).

C. Complexity

The computational complexity involved on each iteration of
DIPESAL id the following:

step 2: O(n2) complexity for computing and approximate
solution for linear system of size n;

step 3: O(n2) complexity for computing and approximate
solution for linear system of size n;

steps 4, 5, 6: O(n) complexity associated with the applica-
tion of the operators A, Au D1 and D2.

We have used a fixed number of PCG iterations to compute
the approximated solutions of the linear system in steps 2 and
3. The total complexity per iteration is thus O(n2).

D. ADMM convergence

For convex problems with linear constraints, the conver-
gence of the ADMM method was proved in [30], [39], [42].
In the presented problem, the constraint Aσu = y is not linear,
and therefore, those convergence results cannot be invoked.
For a while let us assume, however, that Aσu is linear. Note
that Aσu is indeed approximately linear for small variations of
u and σ because it is C∞. For small variations, with respect
to σ′ and u′, and considering the number of sources nI = 1,
just for keeping the notation light, we have then

Aσu ' a + A1σ + A2u,

where a = Aσ′u
′, A1 = Au′ , and A2 = Aσ′ . The set of

equality constraints (22) ci(u, σ,w, z) = 0, for i = 1, . . . , 6,
are then equivalent to

Gσ + Hv = b,

where v = [uT , wT , zT
1 , zT

2 ]T and

G ≡




A1

0
C
I
D1

D2




,H ≡




A2 0 0 0
B 0 0 0
0 0 0 0
0 −I 0 0
0 0 −I 0
0 0 0 −I




, b ≡




y − a
0
σ0

0
0
0




.

Matrix G has full column rank because it is block column
and the identity is one of its blocks. Matrix H is also
full column rank because the block [AT

2 BT ]T corresponding,
respectively, to the discretized differential equation (1) and
to the boundary conditions, uniquely defines the field u.
As a consequence, and considering that ψ, ‖·‖1 and ιS are
closed proper convex functions, Theorem 3.1 of [39] (a small
modification of Theorem 8 of [30]) ensures that, if there exists
a saddle point of the augmented Lagrangian L(u, σ,w, z, e)
(20), then uk → u∗, σk → z∗, wk → w∗, zk → z∗, and
ek → e∗, where (u∗, σ∗, w∗, z∗, e∗) is such a saddle point.
On the other hand, if no such saddle point exists, then at least
one of the sequences {uk}, {wk}, {zk}, or {ek} is unbounded.

The above convergence results are valid only in a small
neighborhood of a saddle point. A more general result, as-
suming that M = I i.e., all the field is observed, is stated in
[11]. The authors of [11] note that if a uniform finite element
mesh is used in the discretization, the TV-norm is equivalent
to Sobolev norms Hk(Ω), k = 1, 2, and then the techniques
used in [43] can be employed to show that the augmented
Lagrangians L (10) and (21) have unique saddle points, if the
observation error ‖u − d‖ is sufficiently small. Furthermore,
the ADMM iterates converge to the saddle point at a linear
rate. However, if the observation error ‖u−d‖ is large, only a
subsequence of the sequence generated by the ADMM method
converges to a saddle point.

In this paper, we are interested in DPE problems where
very few observations are available, i.e., where matrix M has
much less rows than columns. In this case, the convergence
results stated in [11] can not be invoked. However, we have
always observed convergence as long as the parameter µ,
weighting the augmented Lagrangian term, is larger than the
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minimum threshold. This behavior is in line with the Propo-
sition 4.2.3, [37], in the context of augmented Lagrangian
methods, which gives conditions under which there is a
minimizer of L(σ,w, u, λ) that lies close to a local solution
(σ∗, w∗, u∗) and gives error bounds on both (σk, wk, uk) and
the update multiplier λk+1. This proposition assumes however,
smoothness of the augmented Lagrangian such that the penalty
parameter can be chosen large enough to make its Hessian
positive definite.

IV. RESULTS

In this section, the effectiveness of the proposed ADMM
algorithm, DIPESAL, is illustrated by solving 1D and 2D
simulated DPE problems with piecewise smooth parameters.
Different levels of noise, number and type of observations
provided by the observation matrix M are considered.

A. 1D Experiments

Consider an 1D elliptic partial differential equation similar
to (1) but defined in Ω ≡ [0, 1]. We sample Ω using n = 256
uniformly spaced samples, thus with a sampling interval of
h = 1/(n − 1). The derivatives are approximated with finite
differences; The TV regularizer is given by (9) with D2 = 0,
i.e.,

φTV(σ) ≡
n∑

i=1

|(D1 σ)i| = ‖D1 σ‖1. (30)

All the steps of Algorithm 2 apply to 1D problems with minor
modifications, namely in the optimization with respect to z
(step 5) which is still given by (28) with νk

z1
in place of νk

z .
To evaluate the robustness of the proposed algorithm to

perturbations in the measurements, noise is added to the field
u, using the same setup as in [11]: the noise is independent
and identical distributed (i.i.d.) with uniform distribution in
the interval [−a, a] where (7) is used.

In all examples the regularization parameter is hand tuned
for optimal performance measured by the reconstruction error

Rerr ≡ ‖σ̂ − σ‖
‖σ‖ . (31)

1) Full measurements: In this subsection, we consider the
case where M = I , i.e., we have measurements of the field u
at every discretized coordinate.

Figure (2) left shows a piecewise smooth parameter function
with values ranging between 1 and 4. The right part of the
same figure shows three sources yi, for i = 1, 2, 3, scaled
by h for representation purposes, and the respective field ui

obtained by solving the system

Aσu = y, Bu = 0.

Figure (3) top shows the the original parameter function and
its estimate for ε = 0.001. The regularization parameter and
the reconstruction error are τ = 0.01 and Rerr = 0.02, respec-
tively. The bottom part of the same figure shows the norms,
as a function of the algorithm iterations, of the constraints c1

and c5 and of the ∇uL.
Figure 4 top is as Fig. 3 top for ε = 0.01 and for ε = 0.1.

As expected, the parameter estimates degrade as ε increases.
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Fig. 2. Top: Piecewise smooth parameter function with values ranging
between 1 and 4. Bottom: Scaled (for representation purposes) sources yi,
for i = 1, 2, 3 and the respective fields ui.

This degradation can be mitigated by increasing the number
of sources nI . This is illustrated with the parameter estimate
shown in the same figure for ε = 0.1 and nI = 9, which
yields Rerr = 0.130, whereas the estimate for ε = 0.1 and
nI = 3 yields Rerr = 0.173.

Figure 4 bottom plots the noisy measurements di, the
estimated fields ui, and the original fields ui for ε = 0.1
and nI = 3. In spite of the highly noisy measurements, the
estimated fields are quite accurate.

2) Partial measurements: In this section we take nI = 3,
ε = 0.001 but consider partial measurements. This is a
scenario of practical relevance because in most DPE problems
we have only access to very few field measurements. The
degree of sparsity in the measurements is controlled by the
number of rows, p, of matrix M ∈ Rp×n.

Figure (5) shows estimation results, using measurement ma-
trices using Gaussian shaped rows. The parameter function has
more discontinuities than in the previous examples and, there-
fore, it is difficult to reconstruct from partial measurements.
As expected, the quality of the parameter estimates degrades
as the number of observations decreases. Nevertheless, we
call attention to the quality of the estimation obtained with
just p = n/10 ' 25 measurements. For p = n/20, there a
clear loss of quality in the corresponding estimate. Notice,
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Fig. 3. Top: Original (solid line) and estimated (dashed line) parameters for
ε = 0.001 (noise controlling parameter), τ = 0.01 (regularization parameter),
leading to a reconstruction error of Rerr = 0.02. Bottom: Evolution of the norm
constraints c1 and c5 and the norm of ∇uL along the algorithm iterations.
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Fig. 4. Top: Original (solid line) and estimated (dashed lines) parameters
for (ε = 0.01, τ = 0.2, nI = 3), (ε = 0.1, τ = 8, nI = 3), and (ε = 0.1,
τ = 8, nI = 9). The reconstruction errors of this estimated parameters are,
respectively, 0.075, 0. 173, and 0.130. Bottom: For ε = 0.1 and nI = 3, and
for i = 1, 2, 3, the noisy measurements di, the estimated fields ui, and the
original fields ui.
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Fig. 5. Parameter estimates based on measurements obtained with measure-
ment matrices using Gaussian shaped rows. The reconstruction errors are Rerr
= 0.06 for p = n, nI = 3 (p denotes the number of measurements), Rerr =
0.17 for p = n/10, nI = 3, Rerr = 0.43 for p = n/20, nI = 3, and Rerr
= 0.23 for p = n/20, nI = 9; the parameters (τ , µ) are set to, respectively,
(τ = 0.1, µ = 100τ ), (τ = 0.01, µ = 100τ ), (τ = 0.01, µ = 100τ ),
(τ = 0.005, µ = 100τ ).

however, the large improvement obtained by increasing the
number of sources from nI = 3 to nI = 9, in the case we
have p = n/20; the reconstruction error increases from Rerr =
0.43 to Rerr = 0.23, illustrating that the lack of measurements
may be mitigated by increasing the number of sources, which
can be achieved carrying out more experiments.

3) Convergence: Concerning convergence, and in line with
convergence results stated in the previous Section, we have
observed that the proposed algorithm always converges, pro-
vided that the parameter µ controlling the weight of quadratic
terms ‖ci−ei‖2 in the augmented Lagrangian is large enough.
Furthermore, the speed with which the constraints ci approach
to zero increases with µ. However, if µ is too large, the
convergence speed of the algorithm is slow. We have verified
experimentally that µ should vary linearly with the regulariza-
tion parameters, i.e., µ = ατ , where α depends on h and on
the values of the fields on of the parameters. Lately, in [40]
it is proposed an adaptive updating of µ based on the primal
and dual residuals. Its application to this problem should be
subject of further research. For the 1D experiments we set
α ∈ [50, 500].

B. The 2D Scenario
In this section, a real world 2D elliptic DPE problem is

presented to assess Algorithms 1 with a fixed point iteration
to obtain an approximated solution of (13) and the presented
DIPESAL, following the knowledge obtained from the 1D
experiments.

We consider an electrostatic elliptic DPE problem with
homogeneous boundary conditions, where the underlying for-
ward problem is stated by,

∇ · σ∇ui = −ρ̇i in Ω ⊂ R2 i = 1, . . . , nI

ui = 0 on ∂Ω,
(32)

where ui is the (electric) scalar potential, ρ̇i are the nI source
currents and σ is the inhomogeneous conductivity map.
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Although boundary conditions and sources could be ar-
ranged in different manner depending on the application, the
forward problem is generically the same. Actually, the choice
of other boundary conditions and sources is straightforward.

In the 2D case, the discretization is done using a staggered
finite ”volume” formulation (see e.g. [44]). The involved fields
and parameters are defined in the cell centre and in the cell
edges, as presented in Fig. 6:

u,^
x x

gradrs su, ,

Fig. 6. The used 2D finite ”volume” stencil and the space definition of each
used variable.

The resulting discretized equation is given by

div (Pσgrad ui) = −ρ̇i, (33)

where σ is considered to be isotropic, represented by a
diagonal matrix. P is an average matrix such that Pσ = σ̃,
defined over the edges. The div matrix corresponds to a
discrete divergence matrix and gradk = divk

T where k is
the coordinates x and y. The following conditions define the
forward simulation context:

1) The problem is defined in a square with side length 100
points (10000 simulations points) with unitary length in
both x and y directions.

2) Dirichlet homogeneous boundary conditions for ui and
no boundary conditions for σ are used.

3) 36 Dirac ”sources” placed as described in Fig. 7, with
unitary values and switched on and off independently.

4) M , the observation matrix given again by M ∈ Rp×n,
has p = 80, acquired according to Fig. 7.

5) d = Mu + η, where η is defined as white noise with
40 dB to 26 dB SNR (between 1 % to 5 % of the mean
value of d).

6) σ is depicted in Fig. 7.
The reconstruction is obtained from p = 80 and nI = 36,

used to invert a parameter space (n) of 10000 points (p =
n/125 and nI = 36) with several noise levels from (ε = 0.01
to ε = 0.05). Moreover, none of the sensing points is placed
in the interior of the heterogeneous zone of the σ map, which
gives a tomographical flavour to the process. In practice, it
was seen that this makes the problem even more difficult to
invert.

The described DPE problem is indeed a complex scenario,
joining the ill-posedness of the underlying parameter estima-
tion problem with the sparseness of the retrieved information
from the fields. The algorithms ran during a fixed amount of
iterations (200). This was the stopping criterion used in both
cases.

In Fig. 8, the reconstruction with the ADMM (version 1)
to obtain an approximated solution of (13) is presented for
ε = 0.05. The following parameters were used:

1) µ (Constrains penalty parameters)=5× 10−11.

σ map
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square side ε = 0.05
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2) τ (Regularization parameter)=5× 10−4.
3) ui0 (field array initial estimation)= A(σ0)−1yi.
4) σ0 (initial σ map) constant and equal to 1 S/m.
5) λi (Lagrangian Multipliers) = 0.

In Fig. 9, the reconstruction with the DIPESAL method is
presented for the same noise variable value. The same list of
parameters is presented for this method:

1) µ (Constrains penalty parameters)=5× 10−11.
2) τ (Regularization parameter)=5× 10−4.
3) ui0 (field array initial estimation)= A(σ0)−1yi.
4) σ0 (initial σ map) constant and equal to 1 S/m.
5) λi (Lagrangian Multipliers) = 0.

In Fig. 10 a sequence of reconstruction images are shown
for three different levels of noise, where lower values were
also used.
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eee

DIPESAL Method
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Rerr = 0.30 Rerr = 0.33 Rerr = 0.36

Fig. 10. Comparison between ADMM version 1 with fixed point iteration
and DIPESAL for several noise levels (ε). The obtained relative error (Rerr)
for each reconstruction is shown, revealing the enhanced performance of the
DIPESAL method. The same grey scale shown in Fig. 9 is considered.

The relative error (Rerr) evolution with time for each
method is compared in Fig. 11 for the ε = 0.01 scenario.

Both methods work well given the inverse problem intrin-
sic ill-posedeness. It is however clear the advantage of the
DIPESAL method in the reconstruction figures compared with
the ADMM (version 1) in terms of final relative error and
analysing the obtained parameter map. In the example with
ε = 0.05, the DIPESAL method yields the better relative
performance. It leads to lower minimum value of relative
residual of σ (5%) and it is faster than the version 1 method
(In this problem approximately 7% faster).

1) Over-relaxation and Performance Assessment: In
Fig. 12 three levels of over-relaxation were applied to the
DIPESAL method.

For ζ too high the method does not converge, as seen for
ζ = 2.0. A fine tune ζ allows to increase convergence speed
without changing convergence process. Near its limit, a ringing
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Fig. 11. Relative error (Rerr) evolution vs. time comparison figure for
ADMM (version 1) and DIPESAL method for ε = 0.01 and 200 iterations.
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relaxation is excessive.

in the convergence can be seen (see Fig. 12, inside the dotted
circumference).

The best tuned method with over-relaxation was able to
reduce the time to achieve the same minimum relative residual
in approximately 18% of the time comparing with the same
method without over-relaxation.

C. The µ Parameter
As seen in the 1D case, the choice of µ, the parameter

that controls the weight of quadratic terms, influences the
performance and convergence stability. Again, it was seen that
large values of µ, corresponding to a higher imposition on
the forward problem, take more time to reach the vicinity of
the solution but its convergence is more stable to a reliable
solution. For low values, the convergence is faster, but the final
solution can be affected by numerical instabilities. In Fig. 13
a performance reconstruction example for 200 iterations of
the ADMM (version 1), for three values of µ illustrates this
behaviour:

V. CONCLUSIONS AND FURTHER WORK

A new ADMM method was proposed to solve distributed
parameter estimation problems with discontinuous parameter
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maps, in particular the case of elliptic PDEs.
The proposed algorithm implements an instance of ADMM,

DIPESAL, consisting of a decoupled optimization with respect
to u and σ leading to an Uzawa type scheme, to solve the
resulting optimization problem, implementing the exact TV
definition, in contrast with most works on DPE using TV. The
method was tested for 1D simple scenario and a 2D real-
world tomographical kind scenario, with partial measurements,
where the number of measurements is p = n/125 and the
number of independent sources is nI = 36.

The DIPESAL was compared with ADMM (version 1)
method, which is an ADMM method with an inexact TV
solver. Exact TV accelerated solvers such as TwIST [15] and
FISTA [45] yielded an overall slow scheme. So, although
aware of the unfairness of the comparison in terms of er-
ror since different optimization problems are solved, it was
decided to use a faster inexact TV solver. Furthermore this
solver has been used by state-of-the-art algorithms.

In the simple 1D scenario, the feasibility of the method
was shown. Its behaviour in noisy environments and for
partial measurements scenarios was studied. It was clear that
the number of field sources can clearly compensate partial
acquisition matrices.

The developed method, DIPESAL, was shown to be more
efficient in solving the proposed real-world scenario of 2D
elliptical DPE when compared with the ADMM (version 1)
method. The regularization was conveniently enforced and the
relative residual of σ reached a minimum value 5% smaller
and 7% faster. The resulting qualitative image was seen to be
more accurate than the simple ADMM (version 1).

An over-relaxation strategy was tested in the 2D scenario
with 18% performance improvements.

Finally the convergence dependence on the parameter that
controls the weight of quadratic terms (µ) was analysed in
both 1D and 2D cases, showing the importance of its balanced
choice.

If the parameter estimation problem was convex, we could
ensure that the DIPESAL would provide the exact solution
whereas ADMM (version 1) method would provide an ap-
proximate one. In our nonconvex scenario, we cannot take this
conclusion. Nevertheless, we have observed experimentally
that DIPESAL yields systematically better and faster results.

Comparing with the standard Gauss-Newton approach re-
ferred in the introduction and normally considered as a stan-
dard approach to solve this kind of problem [8], the ADMM
method, in particular the proposed one, is much faster, mainly
in contexts where the problem is large and sparse. This
constitutes an interesting area for further investigation since
the presented method could be a state of the art candidate for
this kind of inverse problem, for instance when the number of
measurements and sources is large.
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