
4118 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 8, AUGUST 2018

Fusing Hyperspectral and Multispectral Images via
Coupled Sparse Tensor Factorization

Shutao Li , Senior Member, IEEE, Renwei Dian , Student Member, IEEE,
Leyuan Fang , Senior Member, IEEE, and José M. Bioucas-Dias , Fellow, IEEE

Abstract— Fusing a low spatial resolution hyperspectral
image (LR-HSI) with a high spatial resolution multispectral
image (HR-MSI) to obtain a high spatial resolution hyperspectral
image (HR-HSI) has attracted increasing interest in recent years.
In this paper, we propose a coupled sparse tensor factorization
(CSTF)-based approach for fusing such images. In the proposed
CSTF method, we consider an HR-HSI as a 3D tensor and
redefine the fusion problem as the estimation of a core tensor
and dictionaries of the three modes. The high spatial-spectral
correlations in the HR-HSI are modeled by incorporating a
regularizer, which promotes sparse core tensors. The estima-
tion of the dictionaries and the core tensor are formulated
as a coupled tensor factorization of the LR-HSI and of the
HR-MSI. Experiments on two remotely sensed HSIs demonstrate
the superiority of the proposed CSTF algorithm over the current
state-of-the-art HSI-MSI fusion approaches.

Index Terms— Super-resolution, fusion, hyperspectral imaging,
coupled sparse tensor factorization.

I. INTRODUCTION

HYPERSPECTRAL imaging is an emerging modality
where a camera acquires images from a scene across

a number of different wavelengths. The very high spec-
tral resolution and coverage of hyperspectral images (HSIs)
enable a precise identification of the materials present in the
scene, which underlies a large number of remote sensing
[1]–[4] and computer vision applications [5], [6]. However,
since the photons emitted by the sun are spread over many
spectral bands, the spatial resolution has to be decreased
in order to maintain the number of photons in each band
above a minimum value. In this way, the signal-to-noise-
ratio (SNR) due to the Poisson noise is kept above a mini-
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mum acceptable value [7]. As a result, the spatial resolution
of HSIs is often poor. Compared with hyperspectral imag-
ing sensors, the existing multispectral imaging sensors
capture MSIs with much higher spatial resolution and
SNR [8]. Therefore, the low spatial resolution hyperspectral
images (LR-HSIs) are often fused with high spatial resolution
multispectral images (HR-MSIs) to reconstruct hyperspectral
images with high spatial resolution (HR-HSIs). This procedure
is referred to as HSI super-resolution or HSI-MSI fusion.

Pan-sharpening [9] is a class of seminal fusion meth-
ods which infer a high spatial resolution multispectral
image from a low spatial resolution version and a panchro-
matic (PAN) image (gray image). Representative pan-
sharpening approaches include the sparse representation based
methods [10], [11], the variational methods [12], [13], and the
morphological methods [14], etc. These methods can often
be extended to the fusion of LR-HSIs and HR-MSIs. For
example, Chen et al. [15] divide the spectrum of the LR-HSI
into several regions and then fuse the LR-HSI with HR-MSI in
each region using a pan-sharpening algorithm. For an extensive
comparison of hyperspectral pan-sharpening, see [16].

In spatial-spectral image fusion, a class of methods exploits
the Bayesian framework [17]–[19] to fuse a LR-HSI with a
HR-MSI. Based on prior knowledge and on the observation
model, these Bayesian fusion methods build the posterior
distribution, which is the Bayesian inference engine. In [17],
a maximum a posteriori (MAP) based method is proposed for
the fusion of an LR-HSI and an HR-MSI. The work [18] fully
exploits the observations model and introduces a Sylvester-
based solver, which computes the fused image very efficiently.
In [19], a Bayesian sparse representation based spectral linear
mixing model is introduced to solve the fusion problem.

Recently, matrix factorization has been actively investigated
to fuse pairs of LR-HSIs and HR-MSIs [20]–[28]. Assuming
that the HR-HSI only contains a small number of pure spectral
signatures [29], these approaches first unfold the HR-HSI as a
matrix and then factor it into a basis matrix and a coefficient
matrix. The work [20] learns the spectral basis from the
LR-HSI with a sparse prior and then conducts sparse coding
on the HR-MSI to estimate the coefficient matrix. Instead of
estimating spectral basis in advance and keeping them fixed,
works [21]–[23] alternately update the spectral basis and the
coefficients, with non-negative constraints, which yields more
accurate reconstructions. Aiming at better inferences works
[24]–[28] also exploit the spatial similarities typical of
HR-HSIs to solve the fusion problem. For example, the
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Fig. 1. Illustration of tensor decomposition of the HR-HSI.

work [24] adopts a simultaneous greedy pursuit algorithm to
compute the coefficient matrix for each local patch. In this
way, the local HR-HSI similarities (i.e., nearby pixels are
likely to represent the same materials) are exploited. The
work [27] proposes a nonnegative dictionary-learning algo-
rithm to learn the spectral basis and uses a structured
sparse coding approach to estimate the coefficient matrix.
In this way, the HR-HSI non-local spatial similarities are
exploited yielding state-of-the-art performance. In general, all
the above matrix factorization based methods need to unfold
the three-dimensional data structures into matrices. Although
the unfolding operation does not change information of three-
dimensional data, the fully exploitation of the spatial-spectral
correlations of the HSIs is not easily accomplished by the
matrix factorization based methods.

More recently, the work [30] proposes a tensor factoriza-
tion based method. Different from the matrix factorization
approaches, the unknown HR-HSI is approximated by a tensor
with four factors: a core tensor multiplied (n-mode products)
by dictionaries (factor matrices) of the three modes. The pro-
posed method starts by clustering similar HSI cubes together;
then, the dictionaries are learned for each mode and the core
tensor for each HR-HSI cube is estimated by conducting sparse
coding on the learned dictionaries. Although this method
produces good results, the LR-HSI is only used for learning
the spectral dictionary, and it is not used in the estimation of
core tensor.

Since HSIs can be naturally represented as a three-
dimensional tensor, it may be better to deal with them from
the viewpoint of tensors. Recently, tensor-based methods
have been successfully applied to multi-frame data restoration
[31]–[34], recognition [35], [36], and unmixing [37], etc.

As one of the most effective tensor decomposition methods,
Tucker decomposition [38] factors a tensor as a core tensor
multiplied by the factor matrix along each mode. Inspired by
the above works, a novel coupled sparse tensor factorization
(CSTF) based approach is herein proposed for the fusion of an
LR-HSI and an HR-MSI. Based on the Tucker decomposition,
we consider the HR-HSI as the three-dimensional tensor,
which can be approximated by a core tensor multiplied by
dictionaries of three modes, as shown in Fig. 1. In this way,
the problem of HSI-MSI fusion is formulated as the estimation
of the core tensor and dictionaries of three modes from a
LR-HSI and an HR-MSI. In such a problem, the dictionaries
of the width and of the height modes represent the spa-
tial information of the HR-HSI, and the dictionary of the
spectral mode represents the spectral information. The core

tensor models the relations among the dictionaries of three
modes.

HSIs are low-rank and self-similar [26], [28]. These charac-
teristics are strong forms of prior knowledge that we model by
imposing a sparse prior on the core tensor. The spectral and
spatial information of the HR-HSI exists mainly in the LR-HSI
and the HR-MSI, respectively. Therefore, we formulate the
estimation of three dictionaries and core tensor as a coupled
sparse tensor factorization of the LR-HSI and HR-MSI. The
factorization steps are iterated until convergence. In this way,
dictionaries and core tensor are all updated in each iteration
yielding accurate estimates.

The remainder of this paper is organized as follows. In
Section II, we give a basic overview on tensors. Section III
formulates the HSI-MSI fusion. The proposed CSTF approach
for HSI-MSI fusion is introduced in Section IV. In Section V,
experimental results on two remote sensing HSIs are pre-
sented. Conclusions and future research directions are given
in Section VI.

II. PRELIMINARIES ON TENSORS

A N-dimensional tensor is denoted as M ∈ R
I1×I2,...,×IN .

The elements of M are denoted as mi1i2,...,iN , where
1 ≤ in ≤ In . The n-mode unfolding vectors of tensor M
are the In-dimensional vectors obtained from M by changing
index in , while keeping the other indices fixed. The n-mode
unfolding matrix M(n) ∈ R

In×I1 I2,...,In−1 In+1,...,IN is defined
by arranging all the n-mode vectors as the columns of the
matrix [39].

The product of two matrices can be generalized to the mul-
tiplication of a tensor and a matrix. The n-mode product of the
tensor M ∈ R

I1×I2 ...×IN with the matrix B ∈ R
Jn×In , denoted

by M× nB, is an N-dimensional tensor C ∈ R
I1×I2 ...×Jn ...×IN ,

whose elements are computed by

ci1 ...in−1 jn in+1...iN =
∑

in

mi1...in−1 in in+1 ...iN b jnin . (1)

The n-mode product M× nB can also be computed by matrix
multiplication C(n) = BM(n). For distinct modes in a series of
multiplications, the order of the multiplications is irrelevant,
which is

M× mA× nB =M× nB× mA(n �= m). (2)

If the modes of multiplications are the same, (2) can be
transformed into

M× nA× nB =M× n(BA). (3)

Given the collection of matrices Dn ∈ R
Jn×In

(n = 1, 2, . . . , N), we define the tensor G ∈ R
J1×J2...×JN

as

G =M× 1D1 × 2D2 . . .× N DN . (4)

Then, we have

g = (DN ⊗ DN−1⊗, . . . ,⊗D1)m, (5)

where g = vec(G) ∈ R
J (J = ∏N

n=1 Jn), and m = vec(M) ∈
R

I (I = ∏N
n=1 In) are vectors obtained by stacking all the

1-mode vectors of the tensors C and M, respectively, and the
symbol ⊗ denotes Kronecker product.
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Given the tensor M, ||M||0 denotes the �0 norm
(i.e., the number of non-zero elements of M),
||M||1 = ∑

i1,...,iN
|mi1...iN | is the �1 norm, and ||M||F =√∑

i1,...,iN
|mi1...iN |2 is Frobenius norm.

III. PROBLEM FORMULATION

In this paper, both HSIs and MSIs are denoted as three-
dimensional tensors indexed by three exploratory variables
(w, h, s), where w, h, and s are the indexes of the width,
height, and spectral modes, respectively.

The target HR-HSI is denoted by a three-dimensional tensor
X ∈ R

W×H×S , where W , H and S are the dimensions of
the width (first) mode, height (second) mode and spectral
(third) mode, respectively. The tensor Y ∈ R

w×h×S denotes
the acquired LR-HSI, which is spatially downsampled with
respect to (w.r.t.) X , that is, W > w and H > h. The tensor
Z ∈ R

W×H×s denotes the HR-MSI of the same scene, which
is spectrally downsampled w.r.t. X , that is, S > s. The goal
of fusion is to estimate X from the observations Y and Z .

A. Matrix Factorization Based Fusion

The matrix factorization based fusion methods assume that
each spectral vector of the target HR-HSI can be written as
a linear combination of a small number of distinct spectral
signatures [29]. Formaly, we have

X(3) = DA, (6)

where X(3) ∈ R
S×W H is the 3-mode (spectral-mode) unfold-

ing matrix of the tensor X , and the matrices D ∈ R
S×L

and A ∈ R
L×W H denote, respectively, a spectral basis and

the corresponding coefficient matrix. Both the LR-HSI and
HR-MSI can be modeled as downsampled versions of the
HR-HSI [26], [28], i.e.,

Y(3) = X(3)M, Z(3) = P3X(3), (7)

where Y(3) ∈ R
S×wh and Z(3) ∈ R

s×W H are the spectral
mode (3-mode) unfolding matrices of Y and Z , respectively.
M ∈ R

W H×wh is a matrix modelling the point spread
function (PSF) and the spatial subsampling process in the
hyperspectral sensor. P3 ∈ R

s×S is a matrix modelling
spectral downsampling in the multispectral sensor, whose rows
contain the spectral response of the multispectral sensor. In
the matrix factorization based fusion approaches, the goal is
to estimate the spectral basis D and coefficient matrix A from
Y(3) and Z(3).

B. Tensor Factorization Based Fusion

In contrast with the matrix factorization based methods,
the proposed approach assumes that the HR-HSI can be
represented as a core tensor multiplied by the dictionaries of
the width, height, and spectral modes. This tensor model is
illustrated in Fig. 1. Formally, we represent the HR-HSI as

X = C × 1W× 2H× 3S, (8)

where the matrices W ∈ R
W×nw , H ∈ R

H×nh , and S ∈ R
S×ns

denote the dictionaries of the width mode with nw atoms,

height mode with nh atoms, and spectral mode with ns atoms,
respectively. The tensor C ∈ R

nw×nh×ns holds the coefficient
of X over the three dictionaries. In this formulation, the
information of three modes is incorporated into an unified
model. HR-HSIs of the real world have two important char-
acteristics (see, [40]): 1) HR-HSI spectral vectors are known
to live, with very good approximation, in a low dimensional
subspaces, and 2) HR-HSIs are spatially self-similar. The low
dimensionality in the spectral domain means the it possible to
find a spectral dictionary S having a small number of atoms ns ;
the spatial self-similarities means the it possible to find a
spatial dictionaries W and H, with nw and nh atoms, allowing
a sparse representations of the respective spatial modes. The
low dimensionality in the spectral domain and sparse spatial
representations may be jointly pursued by promoting low
dimensional core tensors.

The acquired LR-HSI Y is a spatially downsampled version
of the LR-HSI X . Assuming that the point spread func-
tion (PSF) of the hyperspectral sensor and the downsampling
matrices of the width mode and height modes are separable,
then we may write

Y = X × 1P1 × 2P2, (9)

where P1 ∈ R
w×W and P2 ∈ R

h×H are the downsampling
matrices along the width and height modes, respectively, which
describe the spatial response of the imaging sensors. Under
the separability assumption and substituting (8) into (9), the
LR-HSI Y can be written as

Y = C × 1(P1W)× 2(P2H)× 3S

= C × 1W∗ × 2H∗ × 3S, (10)

where W∗ = P1W ∈ R
w×nw and H∗ = P2H ∈ R

h×nh are
the downsampled dictionaries of the width and height modes,
respectively. Regarding the PSF, the separability assumption
is valid, for example, for boxcar and Gaussian convolution
kernels with major axis aligned with the spatial unit vectors.
The assumption of separable sensing operators brings great
advantages in tensorial calculus, as discussed in [41]. Regard-
ing subsampling, the separability assumption means that the
action of the spatial subsampling matrix M is decoupled with
respect to the two spatial modes of X , and therefore we have

M = (P2 ⊗ P1)
T . (11)

In this way, the spatial downsamping processes in (2) and (7)
are equivalent.

The HR-MSI Z is a spectrally downsampled version of X ,
i.e.,

Z = X × 3P3, (12)

where P3 ∈ R
s×S is the downsampling matrix of the spectral

mode. Substituting (8) into (12), the HR-MSI Z can also be
represented as

Z = C × 1W × 2H× 3(P3S)

= C × 1W × 2H× 3S∗, (13)

where S∗ = P3S ∈ R
s×ns is the downsampled spectral

dictionary.
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To reconstruct the HR-HSI, we need to estimate the dictio-
naries W, H, S and corresponding core tensor C, as illustrated
in Fig. 1.

IV. PROPOSED CSTF APPROACH

Since LR-HSI and HR-MSI are spatially and spectrally
downsampled, respectively, the fusion problem is severely ill-
posed. Therefore, we need to use some form prior information
of the unknown HR-HSI to regularize the fusion problem.
Spectral sparsity has been widely used to regularize various
ill-posed inverse problems in the context of HSI processing
[42]–[45]. This form of regularization assumes each spectral
vector of the HSI (i.e., the 3-mode unfolding vectors of X )
can be represented as the linear combinations of a small
number of distinct spectral signatures. These methods only
take the sparsity of the spectral mode into consideration. In
this paper, we extend the sparsity regularization to the spatial
domain, linked with the HSI self-similarity, by exploiting the
tensor factorization (8). Specifically, we do not only consider
the sparsity in the spectral mode but also in the width and
height modes. In the tensor factorization, we claim that the
HR-HSI admits a sparse representation over the three dictio-
naries, i.e., the core tensor C is sparse.

Taking (10) and (13) into account, we formulate the fusion
problem as the following constrained least-squares optimiza-
tion problem:

min
W,H,S,C

||Y − C × 1W∗ × 2H∗ × 3S||2F
+ ||Z − C × 1W × 2H× 3S∗||2F ,

s.t. ||C||0 ≤ N, (14)

where ||·||F denotes the the Frobenius norm, and N is the max-
imum number of non-zero elements in C. Optimization (14) is
nonconvex due to the constraint expressed in terms of the �0
norm. In order to obtain a treatable optimization, we replace
the �0 norm with the �1 norm and formulate the unconstrained
version

min
W,H,S,C

||Y − C × 1W∗ × 2H∗ × 3S||2F
+ ||Z − C × 1W× 2H× 3S∗||2F + λ||C||1, (15)

where λ is a sparsity regularization parameter. Problem (15) is
still non-convex, and the solutions for W, H, S, and C are not
unique. However, the objective function in (15) is convex for
each block of variables, keeping with other variables fixed. We
use the proximal alternating optimization (PAO) scheme (see,
[46], [47]) to solve (15), which can be guaranteed to converge
to a critical point under certain conditions. Specifically, W, H,
S, and C, are iteratively updated as follows:

W = argmin
W

f (W, H, S, C)+ β||W−Wpre||2F
H = argmin

H
f (W, H, S, C)+ β||H−Hpre||2F

S = argmin
S

f (W, H, S, C)+ β||S− Spre||2F
C = argmin

C
f (W, H, S, C)+ β||C − Cpre||2F , (16)

where objective function f (W, H, S, C) is implicitly defined
in (15), β is a positive number, and (·)pre represents the
estimated blocks of variables in the previous iteration. Next,
we present the optimizations for W, H, S, and C in detail.

A. Optimization With Respect to W

With H, S, and C fixed, the optimization with respect
to (w.r.t.) W in (16) can be written as

min
W
||Y − C × 1W∗ × 2H∗ × 3S||2F

+ ||Z − C × 1W× 2H× 3S∗||2F + β||W−Wpre||2F , (17)

where Wpre represents the estimated dictionary of width mode
in the previous iteration. Using the properties of n-mode
matrix unfolding, problem (17) may be rewritten as

min
W
||Y(1) − P1WAw||2F + ||Z(1)

−WBw||2F + β||W−Wpre||2F , (18)

where Y(1) and Z(1) are the width-mode (1-mode) unfolding
matrix of tensors Y and Z , respectively, Aw = (C ×
2H∗ × 3S)(1), and Bw = (C × 2H × 3S∗)(1). Problem (18) is
quadratic and its unique solution (we are assuming that β > 0)
amounts to compute the general Sylvester matrix equation

PT
1 P1WAwAT

w +W(BwBT
w + βI)

= PT
1 Y(1)AT

w + Z(1)BT
w + βWpre. (19)

We use conjugate gradient (CG) [48] to solve (19). Regarding
the application of CG, we make three remarks: a) the system
matrix associated with (19) is symmetric and positive definite,
which is a necessary and sufficient condition to directly apply
CG; b) the step of the heaviest computation in applying CG is
the multiplication of the system matrix times a vector, which
can be carried out very efficiently in the matrix representation,
and finally, c) CG converges in only a few iterations. In fact,
the convergence of CG is linear and depends on the ratio
between the largest and the smallest eigenvalues of the system
matrix associated with (19) [49]. In our experiments, we have
systematically observed that 30 iterations yield a very good
approximation of the solution of (19).

B. Optimization With Respect to H

With W, S, and C fixed, the optimization w.r.t H in (16)
can be written as

min
H
||Y − C × 1W∗ × 2H∗ × 3S||2F + ||Z − C

× 1W × 2H× 3S∗||2F + β||H−Hpre||2F , (20)

where Hpre represents the estimated dictionary of height mode
in the previous iteration. Similarly to the estimation of W,
problem (20) may be rewritten as

min
W
||Y(2) − P2HAh||2F + ||Z(2) −HBh ||2F

+ β||H−Hpre||2F , (21)

where Y(2) and Z(2) are the width-mode (2-mode)
unfolding matrix of tensors Y and Z , respectively,
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Ah = (C × 1W∗ × 3S)(2), and Bh = (C × 1W × 3S∗)(2).
Problem (21) is quadratic and its unique solution (we are
assuming that β > 0) amounts to compute the general
Sylvester matrix equation

PT
2 P2WAhAT

h +W(BhBT
h + βI)

= PT
2 Y(2)AT

h + Z(2)BT
h + βHpre. (22)

We use conjugate gradient (CG) to solve (22); the convergence
is linear and achieved just in a few iterations. The justification
is as in the optimization w.r.t. W.

C. Optimization With Respect to S

With W, H, and C fixed, the optimization w.r.t S in (16)
can be written as

min
S
||Y − C × 1W∗ × 2H∗ × 3S||2F + ||Z − C

×1W× 2H× 3S∗||2F + β||S− Spre||2F , (23)

where Spre represents the estimated spectral dictionary in
the previous iteration. Proceeding as in the two previous
subsections, we may write

min
S
||Y(3) − SAs ||2F + ||Z(3) − P3SBs ||2F + β||S− Spre||2F ,

(24)

where Y(3) and Z(3) are the spectral-mode (3-mode) unfolding
matrix of tensors Y and Z , respectively, As = (C × 1W∗ ×
2H∗)(3), and Bs = (C×1W×2H)(3). Problem (24) is quadratic
and its unique solution (we are assuming that β > 0) amounts
to compute the general Sylvester matrix equation

S(AsAT
s + βI)+ PT

3 P3WBsBT
s = Y(3)A

T
s

+PT
3 Z(3)B

T
s + βSpre. (25)

We use conjugate gradient (CG) to solve (25); the convergence
is linear and achieved just in a few iterations. The justification
is as in the optimization w.r.t. W.

D. Optimization With Respect to C
With the dictionaries W, H, and S fixed, the optimization

w.r.t. the core tensor C can be formulated as

min
C
||Y − C × 1W∗ × 2H∗ × 3S||2F + λ||C||1
+ ||Z − C × 1W× 2H× 3S∗||2F + β||C − Cpre||2F , (26)

where Cpre represents the estimated core tensor in the previous
iteration. Problem (26) is convex and can be solved efficiently
by the alternating direction method of multipliers (ADMM)
[50], [51]. By introducing the splitting variables C1 = C and
C2 = C, we may write the unconstrained optimization (26) as
the equivalent constrained form

min
C,C1,C2

g(C)+ g1(C1)+ g2(C2) (27)

s.t.: C1 = C, C2 = C
where

g(C) = λ||C||1 + β||C − Cpre||2F (28)

g1(C1) = ||Y − C1 × 1W∗ × 2H∗ × 3S||2F (29)

g2(C2) = ||Z − C2 × 1W × 2H× 3S∗||2F . (30)

The optimization template (27) corresponds to the standard
ADMM, provided that the optimization variables C1 and C2
are considered as only one block. The augmented Lagrangian
function for (27) is

L(C, C1, C2,V1,V2) = λ||C||1 + β||C − Cpre||2F
+ ||Y − C1 × 1W∗ × 2H∗ × 3S||2F
+μ||C − C1 − V1||2F
+ ||Z − C2 × 1W× 2H× 3S∗||2F
+μ||C − C2 − V2||2F , (31)

where V1 and V2 are the scaled Lagrangian multipliers, and μ
is a penalty parameter. ADMM iterations are as follows:

for t = 1, . . .

C ← arg min
C

L(C, C1, C2,V1,V2) (32)

C1 ← arg min
C1

L(C, C1, C2,V1,V2) (33)

C2 ← arg min
C2

L(C, C1, C2,V1,V2) (34)

V1 ← V1 − (C − C1) (35)

V2 ← V2 − (C − C2) (36)

end

We remark that the optimizations w.r.t C1 and C2 are indepen-
dent because L is decoupled w.r.t. these variables. Below, we
detail the optimizations (32), (33), and (34).

1) Update C: From (31), we have

C ∈ argmin
C

λ||C||1 + β||C − Cpre||2F (37)

+μ||C − C1 − V1||2F + μ||C − C2 − V2||2F , (38)

which yields the closed-form solution

C = soft

[
μ(C1 + V1 + C2 + V2)+ βCpre

2μ+ β
,

λ

4μ+ 2β

]
, (39)

where soft(a,b) = sign(a) ∗max(|a| − b, 0).
2) Update C1: From (31), we have

C1 ∈ argmin
C1

μ||C1 − C + V1||2F
+ ||Y − C1 × 1W∗ × 2H∗ × 3S||2F . (40)

Based on (4) and (5), problem (40) is equivalent to

argmin
c1

μ||c1 − c+ v1||2F + ||y− D1c1||2F, (41)

where the vectors c1 = vec(C1), v1 = vec(V1), c = vec(C),
and y = vec(Y) are obtained by vectorizing the tensors C1,
V1, C, and Y , respectively, and

D1 = S⊗H∗ ⊗W∗. (42)

Problem (41) has the closed-form solution

c1 = (DT
1 D1 + μI)−1

(
DT

1 y+ μc− μv1

)
. (43)

Dictionary D1 ∈ R
whS×nwnh ns is very large making it very

hard to solve the system defined by (43). We note however
that

(DT
1 D1 + μI)−1 = (P3 ⊗ P2 ⊗ P1)(�3 ⊗ �2 ⊗ �1 + μI)−1

×(PT
3 ⊗ PT

2 ⊗ PT
1 ), (44)
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where Pi and �i , for i = 1, 2, 3, are unitary matrices
and non-negative diagonal matrices holding the eigenvectors
and eigenvalues of, respectively, W∗T W∗, H∗T H∗, and ST S.
Therefore, (�3⊗�2⊗�1 +μI)−1 is diagonal and very easy
to compute. Finally, to compute c1, we note that the actions
of PT

i and of Pi are just i -mode products and the action
of multiplication (�3 ⊗ �2 ⊗ �1 + μI)−1 is elementwise
multiplication. Besides, the term DT

1 y in (43) can be computed
via the following equation

DT
1 y = vec

(
Y × 1W∗T × 2H∗T × 3ST

)
, (45)

where vec(·) is the vectorization operation.
3) Update C2: From (31), we have

C2 = argmin
C2

μ||C2 − C + V2||2F
+ ||Z − C2 × 1W× 2H× 3S∗||2F . (46)

Based on the equivalence between (4) and (5), problem (46)
is equivalent to

argmin
c2

μ||c2 − c+ v2||2F + ||z− D2c2||2F, (47)

where vectors c2 = vec(C2), v2 = vec(V2), c = vec(C), and
z = vec(Z) are obtained vectorizing the tensors C2, V2, C,
and Z , respectively, and

D2 = S∗ ⊗H⊗W. (48)

Problem (47) has the closed-form solution

c2 = (DT
2 D2 + μI)−1(DT

2 y + μc − μv2). (49)

Dictionary D2 ∈ R
W Hs×nwnh ns is vary large making it very

hard to solve the system defined in (49). We note however
that

(DT
2 D2 + μI)−1 = (P̃3 ⊗ P̃2 ⊗ P̃1)(�̃3 ⊗ �̃2 ⊗ �̃1 + μI)−1

× (P̃T
3 ⊗ P̃T

2 ⊗ P̃T
1 ), (50)

where P̃i and �̃i , for i = 1, 2, 3, are unitary matrices
and non-negative diagonal matrices holding the eigenvectors
and eigenvalues of, respectively, WT W, HT H, and S∗T S∗.
Therefore, (�̃3⊗ �̃2⊗ �̃1 +μI)−1 is diagonal and very easy
to compute. Finally, to compute c2, we note that the actions
of P̃T

i and of P̃i are just i -mode products and the action
(�̃3 ⊗ �̃2 ⊗ �̃1 + μI)−1 is elementwise multiplication.

4) Update of the Lagrangian Multipliers V1 and V2: From
(35)-(36), we have

V1← V1 − (C − C1)

V2 ← V2 − (C − C2). (51)

E. Convergence of the ADMM Algorithm to C
Algorithm 1 summarizes the estimation of core tensor C.

The ADMM steps (39), (43), (49), and (51) are iterated until
convergence.

The following proposition states the convergence of the
ADMM Algorithm 1.

Algorithm 1 Solve Optimization (26) With Regard to Core
Tensor C via the ADMM

Proposition 1: The ADMM Algorithm 1 converges to a
solution of (26) for any μ > 0, λ ≥ 0, and β ≥ 0. If β > 0,
the solution is unique.

Proof: The four terms in (26) are closed, proper, and
convex functions with domain R

nwnh ns . Therefore, the func-
tions g, defined in (28), and g1+ g2, defined in (29) and (30),
are also closed, proper, and convex. The null space of the
linear mapping

G : Rnwnh ns → R
2 nwnh ns

C 
→ (C, C)

is just the zero vector. If β = λ = 0, the optimization (26)
has solutions as it is the sum of semi-positive quadratic
terms; if λ > 0, the objective function is coercive and
then the optimization has solutions; if β > 0, the objective
function is strictly convex and then then the solution is
unique. Therefore, if μ > 0, we may invoke the theorem
by Eckstein and Bertsekas [50, Th. 8], which, asserts that the
sequence of tensors C obtained by (39) converges to a solution
of (26).

As stopping criterion for Algorithm 1, and following
[51, Ch. 3], we use the termination criterion ||rk ||F ≤ tol1 and
||sk||F ≤ tol1, where rk and sk are the so-called primal and
dual residuals, respectively. We set tol1 = 0.04 in the experi-
ments reported in Section V. In practice, we have observed that
40 iterations are enough to satisfy the termination criterion.

F. CSTF Based Fusion

Optimization problem (15) is non-convex. Therefore, the
initialization should be carefully designed to avoid poor local
minima. Since the spectral information is mostly in the
LR-HSI and the spatial information is mostly in the HR-MSI,
we initialize the spectral dictionary S based on the for-
mer and the dictionaries of the width mode W and height
mode H based on the latter. The spectral dictionary S
is initialized via simplex identification split augmented
Lagrangian (SISAL) [52] method, which efficiently identifies
a minimum volume simplex containing the LR-HSI spectral
vectors. The dictionaries W and H are initialized from the
HR-MSI unfolding matrices (Z(1) for the width-mode and
Z(2) for the height-mode) via dictionary-updates-cycles KSVD
(DUC-KSVD) [53], which promotes sparse representations.

Algorithm 2 summarizes the proposed CSTF method for
the HSI-MSI fusion, which aims at solving problem (15);
it implements the PAO scheme shown in (16). To set the stage
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Algorithm 2 CSTF-Based HSI-MSI Fusion

for proving the convergence of Algorithm 2, it is convenient
to rewrite the function f as

f (W, H, S, C) = Q(W, H, S, C)+ fC (C), (52)

where

Q(W, H, S, C) = ||Y − C × 1W∗ × 2H∗ × 3S||2F (53)

+ ||Z − C × 1W× 2H× 3S∗||2F
fC (C) = λ||C||1. (54)

Proposition 2: Assume that (Sk, Wk, Hk, Ck)k∈N, i.e., the
sequence generated by Algorithm 2, is bounded. Then, it
converges to some critical point of f .

Proof: Function Q is C1 with Lipschitz continuous gradi-
ent (consequence of the boundedness of (Sk, Wk , Hk, Ck)k∈N),
fC is proper and lower semicontinuous, and f : R

W nw ×
R

Hnh × R
Sns × R

nwnh ns → R is Kurdyka-Łojasiewicz (see
[46, Sec. 2.2]) and bounded below. Under these conditions,
the proof is a direct application of [46, Th. 6.2] by noting that
Algorithm 2 is an instance of algorithm (61)-(62)-(63) shown
in [46] with Bi = βI with β > 0 (see [46, Remark 6.1]).

As stopping criterion for Algorithm 1, we use the changes
of W, H, S, and C in two successive iterations: ||C

k+1−Ck ||F
||Ck ||F +

||Wk+1−Wk ||F
||Wk ||F + ||Hk+1−Hk ||F

||Hk ||F + ||Sk+1−Sk ||F
||Sk ||F <= tol2. We set

tol2 = 0.04 in the experiments reported in Section V.

G. Computational Complexity of CSTF

In the CSTF, we optimize W, H, S, and C, respectively.
The optimization of dictionaries W, H, and S amounts to
solve the linear system of equation with symmetric and
positive definite system matrices, which are solved by the
CG algorithm. In each iteration of CG, the heaviest step is
the multiplication of the system matrix times a vector, whose
time complexities are O(n2

wW 2), O(n2
h H 2), and O(n2

s S2)
for the optimizations w.r.t. W, H, and S, respectively. These
operations may be carried out very efficiently in the matrix
representation, reducing the complexity to O(n2

wW + nwW 2),
O(n2

h H + nh H 2), O(n2
s S + ns S2), for the optimizations of

W, H, and S, respectively. The core tensor is optimized via
the ADMM. In each iteration of ADMM, the two heaviest
computation steps, shown in (43) and (49), have time com-
plexity of O(n3

wn3
hn3

s ). If we use (44), (50) to carry out those

Fig. 2. The RMSE results as functions of the number of iterations K for
the proposed CSTF method.

computations and tensor i-mode products, the time complexity
is reduced to O(n2

wnhns + nwn2
hns + nwnhn2

s ). Therefore,
the time complexity of each CSTF iteration is

O(NCG (n2
wW + nwW 2))+ O(NCG (n2

h H + nh H 2))

+ O(NCG n2
s S + ns S2))

+ O(NADM M (n2
wnhns + nwn2

hns + nwnhn2
s )),

where NCG and NADM M denote, respectively, the number of
CG and of ADMM iterations.

V. EXPERIMENTS

A. Experimental Data Sets

In this section, two data sets are employed to test the perfor-
mance of the proposed method. The first dataset is University
of Pavia image [54] acquired by the reflective optics system
imaging spectrometer (ROSIS) optical sensor over the urban
area of the University of Pavia, Italy. The image is of size
610×340×115 with a spatial resolution of 1.3m and a spectral
coverage ranging from 0.43μm to 0.86μm. The number of
bands is meanwhile reduced to 93 bands after removing the
water vapor absorption bands. For reasons linked with the
downsampling process, only the top left 256 × 256 pixels
are used in the experiment. We remark however that CSTF
does not impose any constraint on the size of HSIs. The
Pavia University of size 256× 256× 93 image is used as the
reference image. To generate the LR-HSI of size 32×32×93,
the HR-HSI is downsampled by averaging the 8 × 8 disjoint
spatial blocks. A IKONOS-like spectral reflectance response
filter [18] is used to generate the four-band HR-MSI with the
size of 256× 256× 4.

The second data set is Cuprite Mine in Nevada, which
was taken by the NASA’s Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS) [55]. The image is of
size 256 × 256 × 224 covering the wavelength range
400nm - 2500nm with 10nm sampling interval. Follow-
ing [24], we have removed the bands 1-2, 105-115,
150-170 and 223-224 of the image because of extremely
low SNR and water absorptions in those bands. The
LR-HSI of size 32× 32 × 188 is produced by averaging the
8 × 8 disjoint spatial blocks. The HR-MSI with six bands
is simulated by directly selecting the 256 × 256 spectral
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Fig. 3. The RMSE as functions of logβ for the proposed CSTF method.

images from the ground truth image, corresponding to the
wavelengths 480, 560, 660, 830, 1650 and 2220nm. These
wavelengths correspond to the visible and mid-infrared range
spectral channels of USGS/NASA Landsat7 satellite [24].

B. Compared Methods

We compare the proposed method with the following four
current state-of-the-art HSI-MSI fusion methods: GSOMP
(generalization of simultaneous orthogonal matching pur-
suit), [24], HySure (subspace regularization) [26], BSR
(Bayesian sparse representation) [19], and NLSTF (non-local
sparse tensor factorization) [30].

C. Quantitative Metrics

To evaluate the quality of reconstructed HSIs, six indexes
are used in our study. The first index is the root mean square
error (RMSE) defined as

RMSE(X , X̂ ) =
√
||X − X̂ ||2F

W H S
, (55)

where X ∈ R
W×H×S and X̂ ∈ R

W×H×S are ground truth
and estimated HSIs respectively, both of them scaled to the
range [0, 255]. RMSE is a measure of the estimation error.
The smaller the RMSE, the better the fusion quality.

The second index is the spectral angle mapper (SAM),
which is defined as the angle between the estimated pixel x̂ j

and the ground truth pixel x j , averaged over the whole spatial
domain, i.e.

SAM(X , X̂ ) = 1

W H

W H∑

j=1

arcos
x̂T

j x j

||̂x j ||2||x j ||2 . (56)

SAM is given in degrees. The smaller SAM, the less spectral
distortions.

The third index is the degree of distortion (DD), which is
defined as

DD(X , X̂ ) = 1

W H S
||vec(X )− vec(X̂ )||1, (57)

where vec(X ) and vec(X̂ ) denote the vectorizations of tensors
X and X̂ , respectively, scaled to the range [0, 255]. DD is an
indicator of the spectral quality of the estimated image. The
smaller the DD, the better the spectral quality.

Fig. 4. The RMSE as functions of the sparsity regularization parameter logλ
for the proposed CSTF method.

The fourth index is the relative dimensionless global error
in synthesis (ERGAS), proposed in [56] and defined as

ERGAS(X , X̂ ) = 100

c

√√√√ 1

S

S∑

i=1

MSE(Xi , X̂i )

μ2
X̂i

, (58)

where c is spatial downsampling factor, Xi and X̂i denote the
i th band images of X and X̂ , respectively, MSE(Xi , X̂i ) is the
mean square error between Xi and X̂i , and μX̂i is the mean
value of X̂i . ERGAS reflects the overall quality of the fused
image. The smaller ERGAS, the better the fusion results.

The fifth index is based on the Universal Image Quality
Index (UIQI), proposed by Wang et al. [57]. It is computed
on a sliding window of size 32× 32 pixels and averaged over
the spatial domain. Let Xi

j and X̂i
j denote the j th window of

i th band ground truth image and estimated image, respectively.
The UIQI between i th band images Xi and X̂i is given by

UIQI(Xi , X̂i ) = 1

M

M∑

j=1

σXi
j X̂i

j

σXi
j
σX̂i

j

2μXi
j
μX̂i

j

μXi
j
+ μX̂i

j

2σXi
j
σX̂i

j

σXi
j
+ σX̂i

j

, (59)

where M is the number of window positions, σXi
j X̂i

j
is the

sample covariance between Xi
j and Xi

j , and μXi
j

and σXi
j

are

the mean value and standard deviation of Xi
j , respectively. The

definition of the UIQI index is extended to a HSI by averaging
over all bands, i.e.

UIQI(X , X̂ ) = 1

S

S∑

i=1

UIQI(X̂i , Xi ). (60)

The UIQI combines the loss of correlation, luminance distor-
tion, and contrast distortion. This index has a range of [−1, 1],
being equal to 1 when X = X̂ . The larger the value, the better
the fusion results.

The sixth index is the computational time in seconds,
which is used as the measure of computational efficiency. All
the algorithms under test are implemented using Mathworks
MATLAB R2016a, and the computer facility is equipped with
Core-i5-6400 CPU with 2.7-GHz speed and 16-GB random
access memory.
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Fig. 5. The RMSE as functions of the number of atoms nw , nh , and ns for the proposed CSTF method. (a) nw . (b) nh . (c) ns .

D. Parameters Discussions

To evaluate the CSTF sensitivity w.r.t. its key parameters,
we run it for different values of the number iterations K ,
the weight of proximal term β, sparsity regularization para-
meter λ, and the number of atoms of dictionary of three
modes nw, nh , ns .

As summarized in Algorithm 2, we take the proximal
alternative optimization scheme to solve the problem (15),
and the estimation of all block is iterated. To evaluate the
influence of the number of iterations K , we run CSTF for the
different number of iterations K . Fig. 2 shows the RMSE of
the reconstructed HSIs of Pavia University and Cuprite Mine
as functions of K . As can be seen from the Fig. 2, the RMSE
for Pavia University decreases when K varies from 1 to 6 and
remains stable for K > 6. For Cuprite Mine, the RMSE has a
sharp drop when K varies from 1 to 16, and then it decreases
slowly. The maximum number of iterations is thus set as 20 for
the CSTF.

Parameter β is the weight of proximal term in (16). Fig. 3
shows the RMSE as a function of log(β) for the Pavia
University and Cuprite Mine. The values in the x-axis are
given by log(β) (log) is base 10. As can be seen from Fig. 3,
the RMSE for Pavia University keeps relatively stable, when
log(β) varies from −5 to −3, and then it rises when log(β)
varies from −3 to 1. The RMSE for Cuprite Mine keeps
relatively stable when log(β) varies from -5 to -2, and then it
drops to minimum value as log(β) = −1. Therefore, we set
logβ = −3 and logβ = −1, that is, β = 0.001 and β = 0.1,
for Pavia University and Cuprite Mine, respectively.

Parameter λ controls the sparsity of the core tensor C and,
therefore, affects the estimation of HR-HSI. Higher values of
λ yields sparser core tensors C. Fig. 4 shows the RMSE as
functions of log(λ). The values in the x-axis are given by
log(λ) (log is base 10). As can be seen from Fig. 4, the RMSE
for Pavia University and Cuprite Mine keeps constant for
log(λ) ∈ [−6,−4], and increases sharply for log(λ) > −4.
Therefore, we set set λ = 10−5 for both Pavia University and
Cuprite Mine.

Fig. 5 (a), Fig. 5 (b), and Fig. 5 (c) show the RMSE
of the reconstructed Pavia University and Cuprite Mine as
functions of the number of dictionary atoms nw, nh and ns ,

TABLE I

QUANTITATIVE RESULTS (RMSE, SAM, DD, ERGAS, UIQI, TIME)
OF THE TEST METHODS ON THE PAVIA UNIVERSITY [54]

respectively. As can be seen from Fig. 5 (a) and (b), the RMSE
for Pavia University and Cuprite Mine has a sharp drop
when nw and nh vary from 40 to 240. However, when nw

and nh grow higher, the RMSE does not change obviously.
Therefore, we set nw = 240, nh = 240 in the Pavia
University and Cuprite Mine. As Fig. 5 (c) shows, the RMSE
for Pavia University decreases as ns varies form 3 to 12, and
then it will rise as ns increases further. For Cuprite Mine,
the RMSE curve decreases as ns varies form 3 to 12, and
then it does not change obviously as ns increases further.
Therefore, we set ns = 12 for both Paiva University and
Cuprite Mine. The CSTF for Pavia university and Cuprite
Mine needs larger dictionaries of width and height modes,
and smaller dictionaries of spectral mode. The reason is that
the spectral signatures of both HSIs live on low dimensional
subspaces [40].

E. Experimental Results

In this section, we show the fusion result of the five test
methods on the Pavia University and Cuprite Mine.

Table I shows the RMSE, SAM, DD, ERGAS, UIQI, and
running time of the recovered HSIs for the Pavia University.
The best results are marked in bold for clarity. As can
be seen from Table I, CSTF method performs better among
the compared methods in terms of reconstruction accuracy,
and NLSTF and HySure are the fastest methods. CSTF and
NLSTF methods are very effective in reconstructing the Pavia
University, with the CSTF method outperforming NLSTF. In
order to further compare the performance of the proposed
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Fig. 6. Reconstructed images and corresponding error images of Pavia University for the 40th and 60th bands with a downsampling factor 8. The first
and second rows show the reconstructed images for the 40th band corresponding error images, respectively; The third and forth rows show the reconstructed
images for the 60th band and corresponding error images, respectively; (a) LR-HSI; (b) the NLSTF method [30]; (c) the proposed CSTF method; (d) Ground
truth.

CSTF method, the reconstructed 40th and 60th bands and
corresponding error images yielded by NLSTF and CSTF at
the are shown in Fig. 6. The error images reflect the differences
between the fusion results and ground truths. For visual
comparison, a meaningful region for each of the resulting
image is magnified. As can be seen from the magnified image
region, the NLSTF and CSTF methods provide clear and sharp
spatial details compared with the LR-HSI. NLSTF produces
a few spectral distortions at 40th band, and CSTF performs
slightly better than the NLSTF.

Table II shows the average objective results for the
Cuprite Mine in terms of RMSE, SAM, DD, ERGAS,
and UIQI. As it can be seen from Table II, CSTF and
HySure perform consistently better than the other compared
methods. The NLSTF performance is relatively low in this
dataset.

TABLE II

QUANTITATIVE RESULTS (RMSE, SAM, DD, ERGAS, UIQI,TIME) OF

THE TEST METHODS ON THE CUPRITE MINE [55]

F. Experimental Results of Noisy Case

In practice, there is additive noise in the hyperspectral and
multispectral imaging process, and the noise level in LR-HSI
is often higher than that of HR-MSI. To test the robustness of
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TABLE III

QUANTITATIVE RESULTS OF NOISY CASES ON THE PAVIA UNIVERSITY [54]

the proposed CSTF method to the noise, we firstly simulate
the Y and Z in the same way as the previous experiments
for the Pavia University and then add Gaussian noise to the
LR-HSI and HR-MSI. The noisy LR-HSI and HR-MSI are
fused to produce the HR-HSI. The SNR of noisy LR-HSI and
HR-MSI are denoted as SNRh and SNRm, respectively.
Table III shows the quality metric values of the noisy cases on
the Pavia University. We can see that the CSTF method still
outperforms the other testing methods in the noisy case.

VI. CONCLUSIONS

In this paper, we present a novel coupled sparse tensor
factorization based framework, termed as CSTF, to estimate
an HR-HSI, by fusing an LR-HSI with an HR-MSI coun-
terpart. Unlike recent matrix factorization based HSI-MSI
fusion methods, the proposed CSTF method considers the HSI
as a tensor with three modes and factorizes it as a sparse
core tensor multiplication by dictionaries of three modes.
The proposed CSTF is compared with the state-of-the-art
methods on two semi-real remote sensing HSIs. The obtained
results systematically outperform the competitors, providing
experimental evidence of the effectiveness of the proposed
CSTF method.

In our future works, we aim to extend the method in two
directions. On one hand, the intensities of the HSI are naturally
non-negative. Thus, by adding non-negative constraints to the
tensor factorization, the performance of the method is expected
to be further improved. On the other hand, there are non-
local spatial similarities in the HSI, which has been proved
to be effective for many image restoration problems. Thus,
the incorporation of the non-local spatial similarities into the
CSTF method will be investigated.
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