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Abstract—1In this paper, we study the separation of synchro-
nous sources (SSS) problem, which deals with the separation
of sources whose phases are synchronous. This problem cannot
be addressed through independent component analysis meth-
ods because synchronous sources are statistically dependent.
We present a two-step algorithm, called phase locked matrix
factorization (PLMF), to perform SSS. We also show that SSS
is identifiable under some assumptions and that any global
minimum of PLMFs cost function is a desirable solution for SSS.
We extensively study the algorithm on simulated data and
conclude that it can perform SSS with various numbers of sources
and sensors and with various phase lags between the sources, both
in the ideal (i.e., perfectly synchronous and nonnoisy) case, and
with various levels of additive noise in the observed signals and
of phase jitter in the sources.

Index Terms— Independent component analysis (ICA), matrix
factorization, phase-locking, source separation, synchrony.

I. INTRODUCTION

LIND source separation (BSS) is an important class

of signal processing problems, which arise in sev-
eral domains, such as speech processing, image processing,
telecommunications, and biomedical applications. In BSS, one
has access to a set of measurements y(z) € R” or C, where
R and C denote the real and complex fields, respectively.
These measurements result from a superposition of another
set of signals s(r) € RY or CV, called sources, which are
not directly observable. The goal of BSS is to reconstruct the
sources using only the measurements.

Within the broad BSS class there are many types of prob-
lems. Linear and instantaneous BSS problems are a relevant
subclass, where each entry of y(¢) is a linear combination of
the components of s(¢). In this case, the problem is described
by the equation y(r) = Ms(¢), where the mixing matrix M
contains the coefficients of the linear combinations. Generally,
both the sources s(¢) and the mixing matrix M are unknown,
and must be estimated using only the observed data y(z).

Linear BSS problems can also have a convolutive nature, in
which case they are known as convolutive BSS (see [1] for an
extensive overview). Nonlinear BSS has also been addressed,
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even though it is considerably harder than its linear counterpart
(2], [3].

Although linear and instantaneous BSS is the simplest class
of BSS problems, it is far from being trivial. Generally, the
BSS problem is ill-posed, i.e., it has an infinity of solutions,
because there are infinitely many choices for M and s(t)
yielding a given y(¢). To solve this problem, one must assume
extra conditions on the sources s(¢), on the mixing matrix M,
or on both. A popular choice is to assume that, for each time
point #, the vector s(f) is a realization of a random vector
whose components are statistically independent. This is the
fundamental assumption of independent component analysis
(ICA) [4], [5]. While in ICA there still are infinitely many
solutions, it can be shown that all of them are equivalent, up
to certain nonessential indeterminations, which are typical of
BSS problems (see Section II-E). Good overviews of ICA can
be found in [6]-8].

A generalization of ICA is independent subspace analysis
(ISA) [9]-[11], also known as subspace ICA [12] and mul-
tidimensional ICA [13]. In ISA, there are several groups of
sources; within each such group (or subspace) the sources may
have dependencies, but groups are mutually independent. ICA
is a particular case of ISA with only one source per subspace
(see [11] and references therein).

A BSS problem, which has seen increasing interest in recent
years, assumes that the sources and the mixing matrix are
nonnegative. This problem is known as nonnegative matrix
factorization (NMF) [14], [15]. NMF has been extended to
the complex domain, and is used, e.g., in the separation of
audio signals [16], [17]. This recent field is now known as
complex matrix factorization.

This paper deals with yet another BSS problem. We assume
that the sources have perfect phase synchrony [18], as mea-
sured by their pairwise phase locking factors (PLFs) [19], [20];
we define the PLF in Section II-B. Our motivation for this
choice comes from neuroscience: phase synchrony and similar
concepts have been used to study electroencephalographic
(EEG) and magnetoencephalographic (MEG) signals for more
than a decade (see [19]-[21]). As an example, it has been
shown that muscle activity measured with an electromyogram
and motor cortex EEG or MEG have coherent oscillations
when a person engages in a motor task [22], [23]. It was also
found that, again during a motor task, several brain regions
oscillate coherently with one another [21], [23]. In addition,
there are multiple indications that several pathologies, includ-
ing Alzheimer, Parkinson, autism, and epilepsy, are related
to a disruption in the synchronization profile of the brain
(see [24] and references therein for a review). Despite this
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motivation, none of the work presented in this paper is specific
to neuroscience; in particular, the proposed algorithm can be
applied to any field where synchronous sources are mixed and
these mixing needs to be undone.

In this paper, then, the goal is to solve the BSS problem
assuming that all the sources are fully synchronous. This
is a linear and instantaneous BSS problem which we call
synchronous source separation (SSS).

Previous work on the SSS problem includes a generalization
of it, where the sources are organized in subspaces, with
sources in the same subspace having strong synchrony and
sources in different subspaces having weak synchrony [25].
This problem was tackled with a method related to the one
proposed here: independent phase analysis (IPA) is a two-
stage algorithm, which performs well in the noiseless case
and with moderate levels of added Gaussian white noise
[25], [26]. In short, IPA uses TDSEP! [27] to separate the
subspaces from one another. Then, the separation within each
subspace is an SSS problem, which is completely independent
from the separations within all other subspaces; IPA uses an
optimization procedure to perform these intrasubspace separa-
tions. Although it performs well for the noiseless case, with
various types of sources and various subspace structures and
can even tolerate moderate amounts of noise, its performance
for higher noise levels is unsatisfactory. Also, in its current
form, IPA is limited to square mixing matrices, i.e., to cases
where y and s are vectors of the same size. It is also susceptible
to returning singular solutions, which are local optima where
two or more estimated sources are identical [25].

In this paper, we present an alternative technique to solve
the SSS problem, named PLMF [28], [29]. Compared with
IPA, PLMF has no singular solutions and can deal with
higher amounts of noise and with nonsquare mixing matrices
(more measurements than sources). Perhaps more importantly,
PLMF has a stronger theoretical foundation, which yields
some important identifiability properties, discussed ahead in
Section III. Although the model used in PLMF assumes
perfect synchronization between the sources, we will present
results studying PLMFs robustness to deviations of this model,
induced, e.g., by additive noise or by imperfect synchroniza-
tion between the sources.

This paper is organized as follows. In Section II, we
provide an overview of some theoretical concepts that will be
needed throughout this paper. Section III describes the PLMF
algorithm and presents theorems that support the approach
it takes. Section IV shows the results of an extensive set of
experiments on simulated data. These results are discussed in
Section V, and conclusion is drawn in Section VI.

II. BACKGROUND
A. Phase of Real-Valued Signals
In complex signals, the phase is uniquely defined (up to a
multiple of 2z). However, in many real-world applications,

such as brain EEG or MEG, the available measurements are
real valued. In the case of brain signals, it is very common to

ITDSEP is an algorithm which uses time-lagged correlations to separate
sources.
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preprocess them with bandpass filters with relatively narrow
bands. In such cases, a meaningful phase can be obtained
by first transforming those real signals into the corresponding
complex-valued analytic signals, obtained through the Hilbert
transform [30]), and then extracting the phase of the analytic
signals [31].

The transformation of a real signal into its corresponding
analytic signal is a linear operation [31]. Thus, linear combina-
tions of real signals result in the same linear combinations of
the corresponding analytic signals. Since this paper deals with
linear mixing processes, we consider the sources directly as
complex-valued with no loss of generality, and present results
on simulated data, which are directly generated as complex
valued.

B. Phase-Locking Factor

Let ¢;(¢t) and ¢ (z), for t = 1,..., T, denote the time-
dependent phases of signals j and k. The real-valued> PLF
between these two signals is defined as

T

0j = %;eimmmrﬂ = |(er0)| )

where |-| and (-) are the absolute value and time average opera-
tors, and i = /—1. Note that 0 < 0jk < 1. The value gj; =1
corresponds to two signals that are perfectly synchronized:
their phase lag, defined as A¢ (1) = ¢, (t)—¢x (¢), is constant.
For an infinite observation period T, the value gjx = 0 is
attained, e.g., if the two phases are uniformly distributed in
[0,27) and are statistically independent. For finite 7', even
that situation may yield nonzero values of g i, which will
tend to become smaller as 7 grows. Values between 0 and 1
represent partial synchrony. Note that a signal’s PLF with itself
is trivially equal to 1; thus, for all j, g;; = 1.

C. Effect of Mixing on the PLF

We now discuss and illustrate the effect of linearly mixing
sources which have all pairwise PLFs equal to 1. The effect of
such an operation has a simple, yet powerful, and mathemati-
cal characterization: it was shown in [25] that if s(¢) is a set of
such sources and if we define y(t) = Ms(¢) with det(M) # 0,
then the only possibility for the observations y to have all
pairwise PLFs equal to 1 is if M is a permutation of a diagonal
matrix (as long as mild assumptions on the sources are met). In
other words, the only possibility for all pairwise PLFs to be 1
is for y to be equal to s up to permutation and scaling, a typical,
nonrestrictive indeterminacy in source separation problems
(indeterminacies are further discussed in Section II-E).

This effect is illustrated in Fig. 1, which shows four per-
fectly synchronized sources and their PLFs. This figure also
shows four signals obtained through a linear mixing of the
sources, and their PLFs. These mixtures have PLFs below 1,
in accordance with the result stated in the previous paragraph.

2Real-valued is used here to distinguish from other works, where the
absolute value operator is dropped, hence making the PLF a complex quantity
[25].
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Fig. 1. Top row: three sources (left) and PLFs between them (right). On
the right column, the area of the square in position (i, j) is proportional to
the PLF between the signals i and j. Therefore, large squares represent PLFs
close to 1, while small squares represent values close to zero. The smallest
off-diagonal element is 0.9944, instead of 1, due to the finite value of T'.
Bottom row: three mixed signals (left) and PLFs between them (right). The
largest off-diagonal element is 0.7444.

This property shows that separation of sources is necessary
to make any type of inference about their synchrony, as
measured through the PLE. If the sources are not properly
separated, the synchrony values will not be accurate. Estab-
lished BSS methods such as ICA are not adequate for this
separation task, since phase-locked sources are not mutually
independent. In fact, ICA-based methods have been shown
to fail in this type of problem [25]. PLMF, presented ahead,
is a source separation algorithm tailored specifically to this
problem.

D. Model
Let us assume that we have a set of N complex-valued
sources s;(¢t) for j=1,...,Nand ¢t =1,...,T. We assume

that N is known. Let S denote a N x T' complex-valued matrix
whose (j, £)th entry is s;(¢). One can separately represent the
amplitude and phase components of the sources through the
decomposition S = A © @, where © is the element wise
(or Hadamard) product, A is a real-valued N x T matrix
with its (j, #)th element defined as a;(t) = |s;(t)|, and @
is a N x T complex-valued matrix with its (j, #)th element
defined as ®; (1) = el arelsj (0] = ¢i¢j (1) The elements of A are
nonnegative, whereas those of @ have unit absolute value.

The representation of S in terms of amplitude and phase is,
thus far, completely general: it merely represents S in polar
coordinates. Let us now assume that the sources are perfectly
synchronized; as discussed in Section II-B, in this situation
Agji(t) = ¢j(t)—¢i(2) is constant (independent of ¢), for any
Jj and k. For this reason, from now on we drop the dependency
on t from Ag¢jr. O can always be decomposed as

® = zf” )

where z = [z1,..., vl is a complex-valued column vec-
tor of size N, with all entries having unit absolute value,
containing the relative phase lags of the sources. Similarly,
f =10A,..., fT]T is a complex-valued column vector of
size T, with entries with unit absolute value, containing the
common phase variation along time. If the sources are phase-
locked, then rank(®) = 1, and the above decomposition is
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always possible. Note, however, that this decomposition is not
unique.> The time evolution of each source’s phase is given
by ¢;(t) = arg(z;) + arg(f;), where z; and f; are the jth
element of z and the tth element of f, respectively.

We assume that we only have access to P measurements
(P > N) with time duration T each, that result from a linear
mixing of the sources, as is customary in source separation
problems

Y=MS+N 3)

where Y is a P x T matrix containing the measurements, M is
a P x N real-valued mixing matrix and N is a P x T complex-
valued noise matrix. In our analysis, we will start by dealing
with the noiseless model, where N = 0. Later, we will also
test how PLMF copes with noisy data. In the noiseless case,
then, the model of the observed data is

Y = MS = M[A © (zf7)] = MD,AD; “4)

where D, = diag(z) is a N x N diagonal matrix with the
elements of z on its diagonal, and D¢ = diag(f) isa 7 x T
diagonal matrix with the elements of f on its diagonal.

E. Indeterminacies

BSS problems usually do not have unique solutions. For
example, in ICA it is well known that the order of the
estimated sources might not be the same as their original
order. This happens because if Y = MS, then we also have
Y = MpSp where My is any permutation of the columns of
M, and Sy is the same permutation applied to the rows of S.
Also, the amplitude scale of the sources cannot be determined:
from any given solution, a new solution can be generated by
multiplying a column of M by some nonzero scalar and the
corresponding row of S by the inverse of that scalar. These
two indeterminacies are common in BSS problems, and are
known as the permutation and scaling indeterminacies. They
are also present in the SSS problem.

In this paper, it is also necessary to deal with a third
indeterminacy; unlike the former two, this one does not affect
the result of source separation, but rather our model of the
sources. If z and f are a factorization of ®, then so are
¢z and ¢f, as noted earlier. We call this the rotation
indeterminacy. Note that all values for y yield exactly the
same ®, and thus the same sources S; nevertheless, since we
explicitly model the sources using z and f, we still have to
consider this indeterminacy.

III. ALGORITHM

We now present PLMF, an algorithm to solve the SSS
problem. The method is presented in three parts: preprocess-
ing, which is covered in Section III-A, and two successive
estimation procedures (which we call subproblems), which are
covered in Sections III-B and III-C. These two sections also
present identifiability theorems for each subproblem, which

3Multiplying z by a complex number of the form eV (where y is any
real number), and multiplying f by e™'7 yields the same matrix ®. See also
Section II-E.
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are then merged into a global theorem in III-D. A summary
is presented in Section III-E.

We assume that the number of sources, N, is known. PLMF
tackles the SSS problem by solving

1
in — Y — MD,ADs|3 5
Mr’r}&lg’lel 2AD¢ || % 5)

s.t.: I)max [m;j| =1
l’.]
2)|zj| =1 for all j
3)|f;] = 1 for all ¢

where || - || is the Frobenius norm and s.t., which literally
means subject to, indicates the list of constraints on the
variables. The first constraint forces the largest absolute value
among all elements of M to be 1. The second and third
constraints force z and f to have entries with unit absolute
value. M and A are real variables, while z and f are complex
ones. This choice of variables and constraints follows from
our model of the sources, as explained in Section II-D. This
is a nonconvex problem [32] due to the presence of a product
of several variables in the cost function and of nonconvex
constraints. Nonconvex problems can have several optima
and, in fact, this problem has multiple global optima because
of the indeterminacies mentioned in Section II-E. One of
the results in this paper is that, under certain conditions,
all global optima of this problem correspond to desirable
solutions.

Our assumption of real M is a consequence of assuming an
instantaneous mixture of the sources, as motivated in Section I:
if the mixture is instantaneous, the sources are present in
each mixed signal without any phase change due to delay,
thus the mixing matrix is real. Also, note that while our
model for the sources from Section II-D results in a matrix A
with nonnegative entries, PLMF does not explicitly force that
assumption. As we shall observe, even if the sources follow
the model from Section II-D with nonnegative amplitudes, it
is not necessary to impose this constraint on the optimization
problem.

To solve the minimization problem in (6), we use
a two-stage approach. In the first stage, or subproblem,
(Section III-B) we find f, by solving a relaxed version of
problem (6). In the second subproblem (Section III-C), we
use the estimated f, keep it fixed, and solve (6) relative to M,
A and z.* This approach is motivated by theoretical results,
presented ahead, which show that both subproblems are iden-
tifiable; in other words, all their global minima correspond to
correct solutions. Each of these subproblems is tackled with
the block nonlinear Gauss—Seidel (BNGS) method [33], as we
discuss below.

Prior to that, however, we will discuss prewhitening, an
important preprocessing step, which is useful in several BSS
problems, including SSS.

4This contrasts with our original PLMF approach presented in [29]. In that
work, we optimized the cost function (6) on all four variables simultaneously.
We refer to the approach from [29] as one-stage PLMF. Section IV shows a
comparison between that approach and the one presented in this paper.
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A. Prewhitening

It is well known that the difficulty of solving inverse prob-
lems such as ICA and SSS can be approximately characterized
by the condition number of the mixing matrix [34].> The
condition number of a matrix M is defined as the ratio
P = Omax/Omin, Where omax is the largest singular value of
M and opj, is the smallest singular value.® The condition
number obeys p > 1 for any matrix. Problems with a lower
p are, in general, easier than problems with a higher p, even
though this number does not fully characterize the difficulty
of these problems [34].

The condition number of a BSS problem depends on the
unknown matrix M. In ICA without additive noise, after
prewhitening, the mixing matrix has p = 1 [6]; therefore,
whitening is often used there as a preprocessing step. In SSS,
prewhitening does not guarantee that the mixing matrix will
have a condition number of 1. However, we will prove that,
under certain assumptions, an upper bound for this condition
number exists if prewhitening is performed; we will also show
empirical evidence of the benefits of prewhitening.

We begin by noting that the usual way to perform whitening
involves computing the (empirical) covariance matrix of the
data,” given by the square P x P matrix Cy = 1/TYY".
Usually, prewhitening involves multiplying the data Y on the
left by a matrix, which we define as

B=D V¥ (6)

where D is a N x N diagonal matrix containing the nonzero
eigenvalues of Cy in its diagonal, V is a P x N matrix with the
corresponding eigenvectors in its columns, and (-)7 denotes
the conjugate transpose of a matrix.

Multiplying both sides of the equation Y = MS, on the left,
by this matrix transforms the original source separation prob-
lem Y = MS into a new problem BY = BMS, where BY can
be interpreted as new data, and BM as a new mixing matrix. If
this new problem is solved, we obtain an estimate of the origi-
nal sources and an estimate of the product BM. While it would
be possible to subsequently estimate M itself, in this paper,
we are concerned only with recovering the original sources,
and thus a good estimation of the product BM will suffice.

In the problem considered in this paper, the mixing matrix
M is real but the data Y are complex. Therefore, the equivalent
mixing matrix BM is, in general, complex. Thus, without
whitening, one is searching for a real P x N mixing matrix;
with whitening one has to search for a complex N x N mixing
matrix. We now show how one can transform this into a search
for a real N x N mixing matrix.

We split the data Y into its real part Yr = real(Y) and
its imaginary part Y; = imag(Y), and define Sg and S; in a

SWhile essentially all linear inverse problems involve a matrix whose
function is similar to the function of our mixing matrix, in many cases it
does not correspond to a mixing of signals and therefore is not called mixing
matrix. We still call it mixing matrix for brevity.

60ther definitions of condition number exist. The one presented here is
quite common, and will be used throughout the paper.

"In BSS problems it is common to start by removing the mean from the
data. Our data has a mean value of zero, by construction; therefore, we will
assume that the data has zero mean from now on.
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similar way for the sources S [35]. Since M is real, the initial
complex problem Y = MS can be turned into an equivalent
real problem in two different ways

Y M
[Yﬂ:[mﬂ [Zﬂ or [YxY/1=M[SzSi]. ()

We call the first formulation the vertically stacked form
(VS form) and the second one the horizontally stacked form
(HS form). Clearly, any of these two formulations is equivalent
to the original one, in the sense that a solution for either
of them is immediately transformable into a solution for the
original problem.

One can apply the whitening procedure to the left-hand
side of either the VS form or the HS form, which are
now real. Both of these would yield the same upper bound
for the condition number of the equivalent mixing matrix in
the Theorem that follows. We have empirically found that
the condition number of the equivalent mixing matrix is, on
average, farther from the upper bound presented ahead (and
thus, better conditioned) if the HS form is used. Therefore,
we focus on that formulation only.

The upper bound for the condition number of the mixing
matrix after whitening is given by the following theorem.

Theorem 1: Let S = [Sg S;] and Ygry = [Yr Y/]. Let
B be the result of applying the procedure from (6) to YRri.
Furthermore, suppose that the following assumptions hold.

1) M and S both have maximum rank.

2) There is no additive noise; thus, Y = MS holds.

3) The amplitudes of each source, a;(t), are independent
identically distributed (i.i.d.) realizations of a random
variable, which we denote by A;.

4) Aj is independent of Ay for j # k.

5) Aj is independent of ¢ for any j and k, including
j=k.

6) All A; have the same distribution (we denote by A a
random variable with that distribution).

7) ¢; and ¢ have maximum PLF, i.e., they have a constant
phase lag; this implies that there exists ¢ (¢), independent
of j, such that ¢;(t) = ¢;(1) + ¢(¢) for all j and t.

8) The random sequence ¢(¢) is uniformly distributed in
[0, 27); note, however, that this sequence does not need
to be i.i.d. on that interval.

Then, the condition number of the equivalent mixing matrix,
denoted by p(BM), obeys

E[A]?
Var[A]

p(BM) < [1+N ®)
where N is the number of sources, [E[-] is the expected value
operator and Var[-] is the variance operator. Furthermore, this
upper bound is tight, meaning that in some cases (8) holds
with equality.
Proof: See Appendix A. ]
Intuitively, what this theorem says is that, in the absence of
noise and after prewhitening, the difficulty of the problem is
bounded above by (8).
In practice, the assumptions of this theorem are very restric-
tive. However, we have empirically found that even with
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MEG-like data, where the assumptions of the theorem are
far from being true (in particular, due to the presence of
noise), whitening strongly improves the conditioning of the
SSS problem, and consequently improves the performance of
separation algorithms [36]. In the beginning of Section IV-B,
we present empirical results, which corroborate and illustrate
this theorem.

To keep the notation simple, from now on, except where
noted, we assume that prewhitening has been performed;
thus, we take the prewhitened data BY as new data, and
we designate these new data simply as Y and the equivalent
mixing matrix BM simply as M.

B. Estimation of £

The first stage of PLMF estimates the common oscillation f.
We perform this estimation by solving the subproblem

1
in - [|[Y — HADg¢||2 9
é{l{lxl}lel tll 7 ©)

s.t.: I)max |h;j| =1
i,j
2)|f;| = 1 for all 7.

H is any complex matrix with the same dimensions as M,
and the largest absolute value among its entries must be 1;
f is complex with entries having unit absolute value, as
before. This formulation collapses the product MD, into the
matrix H, which is now allowed to be any complex matrix.
This relaxation® means that the subproblem in (10) is easier to
tackle than the original problem in (6). If the sources exactly
follow the model in (4), a factorization of the form Y = HAD¢
always exists, since the true factorization is a special case of it.

It is important to remark that the goal of this first subprob-
lem is to estimate f; even though a solution of (10) will also
yield estimates for H and A, these are discarded at the end of
this first stage.

We now show that if Y = HADyg, then f is correctly
estimated through the minimization in (10), apart from a
sign indeterminacy (which can be easily compensated, as
discussed below), and from the rotation indeterminacy, which
was already discussed in Section II-E.

Theorem 2 (Quasi-identifiability of f): Let Y = H1A Dy
with H; € CP*N_ A} e RVN*T Dy € ]D)lT, where }D)lT is the
set of T-by-T diagonal matrices whose diagonal entries have
unit absolute value, and H; has full column rank. If there is
another factorization of the same form, Y = HyA,Dg,, then
necessarily one has Dy = ED¢; where E € ]D)]T is a diagonal
matrix whose diagonal elements belong to the two-element set
{—e", +¢7}, where y is a real number.

Proof: See Appendix B. [ ]

The previous theorem only ensures a quasi-identifiability
of f, since Dy is determined up to multiplication by matrix E.
Note that it is not necessary to determine the value of y, which
corresponds to the rotation indeterminacy, since we will subse-
quently estimate z which will compensate this indeterminacy.

8Recall that M can be any real matrix and Dy is a complex diagonal matrix
whose diagonal elements have unit absolute value. It is easy to verify that the
product MD, does not span the space of all possible complex matrices H.
Therefore, this is a relaxed version of the original problem (6).
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Fig. 2. Typical result of the phase correction procedure described at the end
of Section III-B. Top row: results for noiseless data. We show the real part of
f before the correction is made (left) and the real part of f after that correction
(right). Bottom row: similar to the top row but using data with additive noise.
In both cases, the phase jumps are all corrected.

Due to the phase indeterminacy, for some A, there are multiple
(z, f) pairs which yield the same sources. This theorem, and
the one in the following section, ensure that even though we
estimate f first and z later, we end up with a correct pair.

It is thus only necessary to estimate which diagonal
elements of E are equal to —e?7 and which are equal
to +e'7. This sign estimation is easy to perform if f varies
smoothly with time; in our case, we simply compute, for
t=1,...,T — 1, the quantity

|fR() — frRG+ DI+ [f1(1) — f1(t + D)

where fr(t) is the real part of the rth entry of f, and f;(¢)
is the imaginary part of that entry. It is easy to show that, if
f(@t+1) = —f(r), then this quantity lies between /2 and 2.
If £ varies smoothly, we expect the values of (10) to be small
if there is no change of sign from time ¢ to time (¢ + 1), and to
be Z+/2 if such a sign change occurs from ¢ to (¢ + 1). In our
algorithm, we determine that there is a change in sign when

Y

We have empirically verified that this simple procedure
captures all sign changes in the data used in this paper.
However, for other types of data, one may need to use better
phase unwrapping techniques [37]. Typical results of this
procedure are shown in Fig. 2 for noiseless and noisy data;
note that all discontinuities have been detected and corrected.

(10)

|fR(®) — frRGE+ DI+ [f1(1) — f1t+ D] > 1.

C. Estimation of M, A, and z

After estimating f (up to rotation), the original problem in
(6) reduces to a second subproblem

.1 2
min > |[YDf —MD,A| (12)

M,A
s.t.: I)max |m;;| =1

2)|zj| =1 for all j
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(note that Df = D¢ 1). Constraints should be interpreted as in
the original formulation (6).

This problem is again easier than the original one, since one
of the variables (f) is already estimated. Importantly, one again
has identifiability in this second subproblem, as we now show.

Theorem 3 (Identifiability of M,A,z): Let YDF =MD, 1A
with M; € RPN D, € ]D){V, A1 € RVXT where RVXT
denotes the set of N-by-7T matrices with real entries.
Furthermore, assume that the phases of all sources are different
from one another modulo 7 (in other words, two entries el
and ¢'f of the diagonal of D, never satisfy e = ¢f nor
et = —eif ), and that A; has maximum row rank. If there
is another factorization of the same form, YD}" = MDA,
then one necessarily has M| = My, D;; = Dy, and A| = A
(up to permutation, scaling, and sign).

Proof: See Appendix C. [ ]

The previous theorem assumes that all the arguments of
the entries in the diagonal of D, are different modulo z.
A similar theorem can be proven for a more general case where
k diagonal elements violate this assumption, whereas the
remaining (N — k) obey it. In that case, D, is still identifiable.
However, only (N — k) rows of A and the corresponding
(N —k)-by-(N —k) block of M are identifiable. In other words,
only the (N —k) sources with distinct phase values (modulo 7)
are identifiable; the remaining sources will, in general, be
mixed with one another in the estimated sources. Due to lack
of space, we do not present a proof of this generalization.”?

D. Global Identifiability

If the data are generated according to (4) with nonnegative
amplitudes (i.e. A has nonnegative entries), Theorems 2 and 3
can be combined to produce an interesting result: the original
PLMF problem, as stated in (6), has a unique solution with
nonnegative amplitudes. This is stated in the next theorem.

Theorem 4: LetY be data generated according to the model
in (4) with nonnegative amplitudes, and let Y = M D, A Dy,
be a factorization of the data such that the entries of Aj
are nonnegative, the constraints of problem (6) are satisfied,
M; has full column rank, the phases of the entries of z;
are different modulo 7, and A; has maximum row rank. Let
Y = MyD,,A,D¢, be another such factorization. Then, the
two factorizations are equal up to permutation, scaling, and
rotation, as defined in Section II-E.

Proof: See Appendix D. [ ]

Given this theorem, and since in our experiments we will
indeed use data generated using nonnegative amplitudes, it
is relevant to clarify why we chose to split PLMF into two
subproblems, even though the whole problem is identifiable.
There are two reasons for this choice. The first one is that
we empirically found that simultaneously estimating all four
variables, as in [29], is more prone to getting trapped in
local minima than the two-stage procedure presented in this
paper. The second reason is that the proof of theorem 4

9A sketch of the proof is as follows: the previous derivation remains valid
until (42) in the appendix; however, now only (N — k) eigenvalues have
multiplicities of 1, and identifiability holds for the sources corresponding to
those eigenvalues only.
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TABLE I
PLMF ALGORITHM

PHASE LOCKED MATRIX FACTORIZATION

I:  Given: data Y

0:  WHITENING

2:  Whiten data Y

I.  ESTIMATION OF f

3:  for run € {1,2,....MaxRuns¢}, do
4: Randomly initialize ﬂ, A, f

5: for iter € {1,2,...Maxlters}, do
6: Solve minimization (9) for H
7: Solve minimization (9) for A
8: Solve minimization (9) for f
9: end for

0:  end for

1:

From the MaxRunsg solutions, choose the one which yields
the lowest value of the function being minimized in (9)

12:  Store f and discard H and A

13:  Correct sign of f by detecting values of (10) greater than 1
II. ESTIMATION OF M, A, z

14:  for run € {1,2,...MaxRunsng A}, do

15: Randomly initialize M, A, z

16: for iter € {1,2,... Maxlterng A}, do
17: Solve problem (12) for M

18: Solve problem (12) for A

19: Solve problem (12) for z

20: end for

21:  end for

22:  From the MaxRunsyj, A, solutions, choose the one
which yields the lowest value of the function
being minimized in eq. (12)

23:  return MLA, z, f

itself suggests that one should split the problem into two
subproblems.

E. Optimization Procedures

The PLMF algorithm is shown in Table I. We now explain
in further detail how each of the two subproblems is tackled.
We employ the BNGS [33] method in both optimizations; in
the first subproblem, we randomly initialize the variables H,
A and f, and iteratively optimize each of them while keeping
all others fixed (lines 5-9 of Table I). Similarly, for the second
subproblem, we initialize M, A and z randomly and optimize
each of them while keeping all others fixed (lines 16-20 of
Table I). The use of BNGS has a great advantage: problems
(10) and (13), which are hard to solve globally (in particular,
due to the presence of products of variables), become an
iteration of simpler problems (constrained least-squares
problems). There is a downside: BNGS is not guaranteed
to converge to an optimal solution in the general case. We
discuss this aspect further in Section V.

The two subproblems (10) and (13) are convex in some
variables and nonconvex in other variables. Instead of trying to
find the global minimum at each iteration, we chose to always
solve for each variable without enforcing any constraints, then
projecting that solution onto the feasible set; this projection is
an approximation of the true solution. Our choice is motivated
for two reasons: simplicity, because this way all variables are
optimized in a similar way; and speed, which allowed us to
run the extensive experiments shown in Section IV. Note that,
while this is a suboptimal procedure, the fact that the two
subproblems are nonconvex in some variables prevents us from
having a guaranteed optimal solution anyway.

Each iteration of the Gauss—Seidel method simply involves
solving an unconstrained least-squares problem, which we
solve using the Moore—Penrose pseudoinverse. After finding
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the solution of the unconstrained problem that solution is
projected into the space of feasible solutions. For example,
in the first subproblem, solving for H (line 6) is done without
considering the first constraint of (10). After the unconstrained
solution is found, H is multiplied by a scalar such that the
largest absolute value of its elements is exactly 1. All variables,
in both subproblems, are handled in a similar manner.

We use the value of the cost functions of problems (10)
and (13) as imperfect indicators of the goodness of a solution.
For this reason, each subproblem is solved multiple times for
given data Y; we then keep only the solution, which yielded
the lowest cost value for that subproblem (lines 11 and 22).

IV. EXPERIMENTAL RESULT
A. Data Generation

We use a noisy variant of the source model in (4) to generate
the data. This variant accommodates two deviations from the
noiseless case: the presence of additive noise and of phase
jitter. The model used to generate the data is

Y=MAO @) o)) +N (13)

where J is a N x T matrix of complex values with unit absolute
value, representing phase jitter, and N is a P x T matrix
of complex values representing additive channel noise. If all
entries of J are equal to 1 and all entries of N are equal to
zero, we recover the noiseless model of (4).

We generate 1000 data sets for each set of parameters
that we study. For each data set, the mixing matrix M is
randomly generated, with each entry uniformly distributed
between —1 and 1, the vector of phase lags z is generated
as [0, A¢,...,(N — 1)Ap]T (A¢p is determined below),
and the common oscillation f is generated as a sinusoid:
f = [0,exp(iAt),exp(i2At),...,exp(i(T — 1)At)], with
T = 100 and Ar = 0.1. While this is a very specific choice
(a phase which grows linearly with time), it is representative
of the smoothly varying f case, which is treated in this paper.
We have empirically verified that PLMF works well with
other choices for f as long as they are smoothly varying
(otherwise, the correction of phase jumps, mentioned at the
end of Section III-B, becomes unreliable).

The amplitude A is generated as the result of low-pass
filtering a Gaussian white noise signal. This is appropriate
for situations where the amplitudes A are expected to vary
slower than the phase oscillations f. Specifically, we begin
by generating random Gaussian white noise of length 7. We
then take the discrete cosine transform (DCT) of that signal,
keep only the 10% of coefficients corresponding to the lowest
frequencies, and take the inverse DCT of the result. We then
add a constant to this filtered signal to ensure that it is
nonnegative,10 and the result becomes aj(¢), the first row
of A. The process is then repeated, with different random
initializations, for each source in succession.

An example of signals generated in this manner is shown in
Fig. 3, where we present an extended time period (T = 500)
to better illustrate the structure of the signals.

10While the algorithm presented in this paper does not require positive
amplitudes, we will compare it with other algorithms which do require this
assumption.
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Fig. 3. Left: the real part of a typical set of four sources generated, as

described in Section IV-A, with no phase jitter. Right: the real part of a
corresponding set of eight mixtures, with an input SNR of 20 dB. Note that
in most of the following experiments, only 100 points are used.

We study the effect of the following variables.

1) Additive noise N, as measured by the signal-to-noise
ratio (SNR) of each channel. The energy of the noise
in each channel is generated such that all channels have
the same SNR, which is called the input SNR. We study
the cases of an SNR of 80, 60, 40, 20, and 0 dB.

2) Phase jitter J. We study two types of jitter.

a) The first case is jitter where each entry of J is
of the form €', where J is independently drawn
from a Gaussian distribution with zero mean and
standard deviation ojjq. We study the cases of
oiid = 0,0.02,0.04,...,0.1. We name this i.i.d.
jitter, since the jitter for time ¢ and for source k is
independent from the jitter at any other entry of J.

b) The second case is called correlated jitter. We
generate a matrix Q in a similar manner as the
amplitude A, except that positivity is not enforced,
and that we keep the lowest 2% of coefficients of
the DCT, instead of the lowest 10%. This yields
a very slowly varying signal. We then generate
the jitter J as ¢/Q, where this exponential is taken
element wise. This results in a jitter, which is
slow-varying. Due to the finite observation time
T, this jitter is also correlated from one source
to another. In the context of correlated jitter, we
will use the symbol ocor to denote the standard
deviation of the Gaussian white noise used in the
generation of the jitter.

3) Phase lag A¢. We study the cases of A¢p = = /50,
27 /50, ..., up to 12z /50.

4) Number of sources N and number of sensors P. We
study the cases N = 2,4, ..., 10, with P = N and with
P =2N.

5) Number of time samples 7. We study the values
T = 100, 200, 400, 800.

It would be extremely cumbersome to compute and show
results for all possible combinations of the above variables. To
avoid this while still studying all variables, we study a central
case where PLMF performs very well, and then change the
above variables, one at a time. In total, we study 64 different
cases. The central case has N = 4 sources, P = 8 sensors,
T = 100 time samples, an input SNR of 80 dB, no jitter, and
a phase lag of A¢ = = /10.
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Fig. 4. Comparison of the condition number of the original mixing matrix,
p(M) (horizontal axis), with that of the equivalent mixing matrix after
whitening, p(BM) (vertical axis). Top left: results for data sets, which follow
the assumptions of theorem 1, and for which each entry of A is i.i.d. drawn
from an exponential distribution. Top right: same, but each entry of A is i.i.d.
drawn from a uniform distribution. Bottom left: results for data sets generated
as in Section IV-A, with N =4 and P = 4. In this case, the horizontal axis
was truncated for clarity, since the maximum value on that axis would be
approximately 10* without truncating. Bottom right: same, but with P = 8.
No truncation was necessary in this case.

B. Results

1) Effect of Whitening: We begin by empirically confirming
Theorem 1. For this, we compute the condition number of M
before whitening, p (M), and after whitening, p (BM), for the
data described in Section IV-A. We use N = 4 and study
two situations: P = 4 and P = 8. Note that these data sets
grossly violate the first assumption of Theorem 1, since the
different time points in each source’s amplitude are not i.i.d.
These slow-varying amplitudes are closer to what is observed
in brain signals, so we study them nevertheless. For these data
sets, we empirically compute E[A]?> and Var[A] to compute
the value of the bound.

We also generate 1000 data sets, similar to those of the
previous paragraph with P = 4, but where each entry of A is
drawn independently from an exponential distribution. Finally,
we also generate 1000 more data sets where each time sample
of A is drawn independently from a uniform distribution.
These data sets have T = 10000, to ensure that the sample
covariance matrix is very similar to the true one. These data
sets verify all the assumptions of theorem 1, and are presented
for comparison with those of the previous paragraph. In these
two cases, we analytically compute E[A]? and Var[A] for the
exponential and uniform distribution.

Fig. 4 shows the results for these four types of data sets. For
each figure, each point is plotted in position (p (M), p (BM)).
Each figure also shows the theoretical value of the upper bound
as a horizontal line. The results for the top row show that,
when the data follows the theorem assumptions, the upper
bound is correct. While it may appear unexpected that a few
points are above the upper bound, this is justified by the
difference between the ideal case of T = oo, which was used
in Theorem 4 to derive the bound, and the simulated case of
finite T, where we use the sample covariance matrix instead
of the true covariance matrix.
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Fig. 5. Influence of whitening on the convergence of PLMF. The top
row shows the evolution of the cost function of the first subproblem (10)
as a function of the number of iterations, without whitening (left) and
with whitening (right). The top-left and top-right subfigures used the exact
same data. The bottom row shows the same for the second subproblem
[equation (13)]; again, both subfigures used the same data. Clearly, whitening
improves the speed of convergence.

The results for the bottom row show that, for the more
realistic data studied below, the upper bound is not correct.
This does not contradict theorem 1, since these data sets do
not obey its hypothesis. These results also show a relevant
difference between the cases P = 4 and P = 8: in the former,
whitening typically yields a very large decrease in condition
number, whereas in the latter it yields no significant change
on average.!!

2) Results of PLMF: In all the results discussed in this
section, MaxRunsf = MaxRunsm, s,z = 5. In other words, we
solved each subproblem five times and kept only the solution
which yielded the lowest cost value. We used MaxlItery = 100
on the first subproblem and MaxlIterp Ao,z = 1000 on the
second one.

We start by assessing the usefulness of prewhitening by
comparing how PLMF behaves when it is or is not used.
Fig. 5 shows a typical result of this comparison. On both sub-
problems, the number of iterations required until convergence
decreases if whitening is performed.

We measure the separation quality using the estimated
equivalent mixing matrix, which in this section is denoted as
BM to distinguish it from the true equivalent mixing matrix
BM.'? We begin by computing the gain matrix, defined
as G = (BI\A/I)TBM, where T denotes the Moore—Penrose
pseudoinverse of a matrix. The gain matrix is always square,
of size N by N. If the separation was perfect, G should be a
permutation of a diagonal matrix; we undo this permutation
using the knowledge of the true mixing matrix before
computing the following measure. Let g;; denote the (i, j)
element of G. Our quality measure, which we term simply

HThere is a simple explanation for this behavior. M has size (P, N), and
its entries are mutually independent and are drawn from centered variables.
Due to this, its columns tend to become orthogonal as P — oo, and therefore
increasing P tends to make the singular values of M very similar. This is
why doubling P makes the typical values of p (M) much lower in the bottom
row of Fig. 4.

1ZAs stated in Section III-A, estimating the equivalent mixing matrix is
enough if we are interested in recovering the original sources, and not the
mixing matrix.
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Fig. 6. Separation quality versus input SNR. Under heavy noise, PLMF can
recover the sources with about as much noise as they had in the input. Error
bars correspond to one standard deviation.

separation quality, is defined as
i85

i) 8
In words, we sum the squares of the diagonal elements of
G and divide that value by the sum of the squares of its
nondiagonal elements. The 10log(.) function allows us to
express that quotient in dB, a unit typically used for the SNR.

If the sources were orthogonal and all had the same energy,
O would measure the SNR. However, this is not the case:
while our sources have the same energy, they are not uncorre-
lated. In fact, for very small phase lag, the correlation factor
between pairs of sources is usually quite high (as shown in
Fig. 3). Despite this, we present values of Q in dB to allow
an easier interpretation.

We also compute the quality measure for each source
separately, given by

0 = 10log (14)

g2

Q; =10log %

2z 8ij

Here, the numerator is the square of the (j, j) entry of G,

while the denominator is the sum of the squares of all other

elements in the jth column. In every figure conveying results

of our experiments, each point in the figure corresponds to the

average value of Q (or Q;) among the 1000 runs for those

experimental conditions, and the error bars represent the value
of that average plus/minus one standard deviation.

As a final remark, note that we could also compute a quality
measure that depends on the sources, i.e., on the variables
A, z and f and their estimations. The quantity Q defined
above has the advantage of having a simpler interpretation,
because it depends only on BM and its estimation. Finally,
note that if BM is a good estimate of BM, that allows us to
recover a good estimate of the original sources, by directly
computing S = (BI\A/[)TBY. If estimates of A, z and f are
desired, those can easily be obtained from S.

Fig. 6 shows how the average separation quality varies when
the input SNR changes from 80 dB, which is a case of virtually
no noise, to 0 dB, which corresponds to very strong noise.
It can be seen that PLMF performs very well: it yields results

15)



ALMEIDA et al.: SEPARATION OF SYNCHRONOUS SOURCES

1903

100

o
k)
>
& msl
©
3
T ms2
5
2 s3
o
®
-9 ms4
o
wv

Input SNR (dB)

Fig. 7. Separation quality per source versus input SNR. In each group of bars,
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Fig. 8. Separation quality versus phase lag. PLMFs results are, in general,

good, but they deteriorate progressively as one approaches the case where
A¢ = 0, where theorem 3 fails to hold.

with a separation quality, which is only 2-3 dB below the
input SNR, except for low-noise cases (input SNR of 80 and
60 dB), in which the separation quality is nevertheless very
good (65 and 55 dB, respectively).

The separation quality per source is shown in Fig. 7.
It can be observed that the average difference between the
best estimated source and the worst estimated one is around
7-9 dB. This behavior is consistent through all the simulations
in this paper. For this reason, and due to lack of space, we
shall not present any further per-source results.

Fig. 8 shows how the separation quality varies with the
phase lag A¢. For most values of this parameter, the separation
quality is very high. However, the separation quality becomes
progressively lower when A¢ approaches zero, where the
hypothesis of Theorem 3 fails to hold. Nevertheless, this
deterioration is gradual and is only relevant for very small
phase lags (smaller than 27 /50, or 7.2 degrees, which yields
a separation quality of 23.7 dB).

Fig. 9 shows the effect of varying the number of sources
N and the number of sensors P. Generally, the quality of the
results decreases with increasing N, which is expected since
the size of the problem variables M, A and z increases. When
there is very little noise (input SNR of 80 dB), there is a little
benefit in doubling the number of sensors from P = N to

120
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Fig. 9. Separation quality versus number of sources (N), number of

sensors (P), and input SNR. For the low noise case, having twice as many
sensors only brings a negligible benefit. However, when there is considerable
noise, having more sensors improves the results considerably, especially for
N =4, 6,8 where the improvement is larger than 10 dB.
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Fig. 11. Separation quality versus correlated phase jitter. The horizontal axis
represents the amplitude of the correlated phase jitter.

P = 2N. However, when there is considerable noise (input
SNR of 20 dB), that benefit becomes significant, especially
for P =4, 6,8 where the improvement exceeds 10 dB.

Figs. 10 and 11 show the results with various levels of
ii.d. and correlated phase jitter, respectively. At first glance,
it appears that either type of jitter deteriorates the results.
However, there are fundamental differences between these two
types of noises, which render the i.i.d. version less damaging
for source estimation than the correlated version, as will be
discussed in Section V.
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Fig. 12. Separation quality versus number of time samples 7. We study four
cases: N =4, P =8 and N = P = 10, each with input SNR of 80 and
20 dB.

Fig. 12 shows that, in some situations, increasing the
number of time samples T is beneficial. The results indicate
that in the (N = P = 10, input SNR = 80 dB) case
the performance can be significantly improved by doubling the
number of samples from 7 = 100 to T = 200, whereas in the
other cases the improvement is small. This suggests that poor
performance may not always be due to an insufficient number
of time samples. It is also interesting to verify that in some
cases, such as the (N =4, P = 8§, input SNR = 80 dB) case
shown here, increasing the number of points actually yielded
a slight decrease in performance. This is probably due to the
larger size of the variables A and f, which become harder to
estimate.

3) Comparison With ICA and Other SSS Algorithms: To
finalize, we compare the two-stage PLMF algorithm presented
in this paper with IPA [25] and the one-stage PLMF algo-
rithm which estimates all four variables simultaneously [29].
To illustrate, we also compare with FastICA [6], a popular
ICA method. We use the same data generation procedure as
in the previous results, with one exception: IPA needs a large
number of samples T to perform well, whereas PLMF does not
and actually works better with smaller T, since the problem
is easier to solve with smaller matrices. For these reasons, we
use T = 1000, At = 0.01 for IPA and T = 100, At = 0.1
for both versions of PLMF, keeping everything else equal.
In practice, this corresponds to having data with a sampling
frequency 10 times higher for IPA than for the two versions
of PLMFE.

We compare the algorithms in four situations, all of which
have N = P = 2 sources and sensors and no phase
jitter: low noise and large phase lag (input SNR of 80 dB,
A¢p = m/3), low noise and small phase lag (input SNR of
80 dB, A¢ = =/10), moderate noise and large phase lag
(input SNR of 20 dB, A¢ = 7 /3), and moderate noise and
small phase lag (input SNR of 20 dB, A¢ = 7 /10).

The results are shown in Fig. 13. FastICA performs poorly'3
compared with all SSS algorithms, a consequence of the

3We used the MATLAB FastICA implementation available from
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml. All parameters were
left at their default values, except for the nonlinearity option where we tried
all possibilities. All such options yield very similar results; the results reported
here use the default option.
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Fig. 13.  Comparison of FastICA [6], IPA [25], one-stage PLMF [29],

and two-stage PLMF (this paper). The two-stage PLMF algorithm clearly
dominates the other two algorithms, except for one situation (A¢ = 7/3,
input SNR of 20 dB) where it is essentially tied for first place.

strong interdependence of the sources used here. Apart from
one situation where both versions of PLMF are tied, these
results show a clear superiority of the two-stage PLMF when
compared with the other two SSS algorithms.

Fig. 13 only studies the influence of two variables: additive
noise and phase lag. We did not study the influence of
other variables due to space limitations and because IPA is
considerably slower than PLMF.

V. DISCUSSION

We begin our discussion by briefly mentioning the runtime
of PLMF: it takes about 3 s in total, on a typical modern
desktop computer, to run PLMF in MATLAB for a data set

with N = 4 sources, P = 8 sensors, and 7 = 100 time
samples. The time grows to about 11 s for N = 10, P = 20
and T = 100 (more sources and sensors, same number of

samples), and to about 6 s for N =4, P =8 and T = 400
(same number of sources and sensors, more samples).

Although one can conceive of sources where the rows of A
and the vector f vary rapidly with time, in many real-world
systems we expect them to vary slowly. This smoothness can
be enforced explicitly, by adding regularizer terms to the cost
function in (6), penalizing large fluctuations in the values of
A and f. In that case, the problem becomes

min 3 [Y — MD,ADel3 + 2 IALA I3 + 4 [Lef13 (16)
MA,zf 2
with the same constraints as before, where Lo and L¢ are the
first-order difference operators of appropriate size, such that
the entry (j, ) of ALy is given by a(t4+1)—a;(¢), and the kth
entry of L¢f is given by f41) — fi. The two parameters Az
and Ag control the strength of the two regularizer terms. These
two extra terms are especially useful in noisy situations, where
they can filter out the high-frequency components of additive
noise [38].

We now discuss the difference between the two types of
jitter whose effects were shown in Figs. 10 and 11. The
results from Figs. 10 and 11 might suggest, at first, that both
types of phase jitter cause PLMFs performance to deteriorate.
However, a detailed inspection of the estimated variables
reveals a significant difference in behavior. Figs. 14 and 15
present a typical result of the first subproblem for two cases,
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Fig. 14.  Typical results of the first subproblem (estimation of f) in the

presence of strong i.i.d. phase jitter. While there is considerable error in
the estimation of f, this error could be significantly reduced using a simple
low-pass filter.
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Fig. 15. Typical results of the first subproblem (estimation of f) in the

presence of strong correlated phase jitter. There is considerable error in the
estimation of f, and this error could not be significantly reduced using a
low-pass filter.

which are similar in all aspects, except that the first one
has i.i.d. phase jitter with a very high standard deviation
(oiig = 0.2 rad), whereas the second one has very strong
correlated jitter (with an amplitude of oeorr = 0.2).14 Let (1)
denote the phase of the rth entry of f. The plots show the true
value of w(¢) used to generate the data, the estimated value
of the same variable (taken as the unwrapped angle [37] of
the estimated f), and the difference between the two. Both
cases have significant estimation errors. However, the errors
in Fig. 14 are i.i.d. and could easily be corrected, at least
partially, by low-pass filtering of y (), applied between the
first and second subproblems of PLMF. The errors shown in
Fig. 15 are not easy to correct, unless one knows a priori the
type of correlated noise present in the system.

As mentioned in Section III-E, the optimization problems in
PLMF are solved by optimizing each variable while keeping
the other variables fixed; this is known as a BNGS method.
There is considerable theoretical work on BNGS methods.
In particular, [33] gives sufficient conditions for the following
property: if a BNGS method converges to some limit solution,
then that limit solution is a critical point of the problem.
In other words, it is a point where the gradient of the cost
function is zero. Unfortunately, the first subproblem of PLMF
does not obey the conditions of that theorem; it would be
necessary that H, A and f each lie in convex sets, and
that is not true for H and f. The second subproblem does
not obey those conditions for a similar reason involving
M and z.

4These very high values were chosen for illustration purposes, and do not
correspond to any of the results in Figs. 10 and 11.
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It is possible to adapt the two subproblems to be convex in
each variable. For example, one could replace the constraint
on M with a new one, where max; ; |m;;| < 1. The problem
in doing this is that we introduce a new indeterminacy, where
M’s elements can tend to zero while those of A tend to infinity.
Similar adaptations could be done to make both subproblems
convex in all variables. This would yield a theoretical guaran-
tee that if the algorithm converges, it does so to a critical point;
however, it is unclear whether these new indeterminancies
would deteriorate the results. This is a research direction we
will pursue in the future.

It would be desirable to test PLMF using real data. To do
so for EEG or MEG data, one would need data where one
simultaneously knows both the EEG/MEG recordings from
outside the scalp and the corresponding electrical activity
within the brain. Such data are not easily accessible. In [36],
we addressed this issue by constructing pseudoreal data. These
data start from an actual MEG recording (which contains
the mixed signals but not the actual sources, which are
unknown). We then extract amplitude and phase from those
recordings and use those to artificially construct data which are
synchronous, and whose actual sources we know. Application
of PLMF to such pseudoreal data is a direction we intend to
address in future work.

VI. CONCLUSION

We have presented PLMF, an algorithm to perform SSS.
We have shown that, under reasonable assumptions, the SSS
problem has a single solution up to natural indeterminacies.
In the PLMF algorithm, we have split the SSS problem
into two subproblems, which are both identifiable under mild
assumptions.

We have presented extensive results, using simulated data,
showing how the quality of the separation varies as a function
of several variables (number of sources, number of sensors,
level of noise, and so on). These results show that PLMF has
good robustness against additive noise and can handle small
phase lags between sources; furthermore, PLMF can handle
numbers of sources at least up to eight, in low noise conditions.
In its present form, PLMF is unable to cope with moderate
or strong phase jitter; however, for specific situations, such
as ii.d. jitter, simple post-processing of certain variables
can mitigate that limitation. Results also show that splitting
the problem into two subproblems yields large performance
benefits when compared with previous algorithms for the SSS
problem.

APPENDIX A
PROOF OF THEOREM 1

Let Cgzg, denote the correlation matrix of Zgr; = BYrr =
BMSR;. First of all, we confirm that Cz,, =1

Czy = ZriZE, (17
= BYr Y5, BY (18)
= BCy, B” (19)
=D /2yTypvIyDp~1/2 (20)
=1 1)
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because VI'V = I by construction. Therefore, one has

1/2

I = Cz;, = BMCs, M"B” = (BMC/; o2

)BMCg,) (22)

and one can conclude that BMCé/R ?

which we denote by R.

We now study the singular values of the equivalent mixing
matrix BM. From the definition of R, it holds that BM =
RCS_RlI/ 2, and that the singular values of BM are the same
as those of Cglgl/ 2, since R is orthogonal. Therefore, the
conditioning of the equivalent source separation problem can
be studied by studying the singular values of Cg}:l/ 2,

We first note that Cs,, = (Cs; + Cs;)/2. We start by
computing the (j, k) element of Cg,

[Csgljk = E[Rel[s;(f)IRe[sk (2)]]
= E[A(t) cos[@; (1) Ak (t) cos[Pr(1)]].

If j # k, the phases are independent of the amplitudes and
the two amplitudes are independent of each other. Thus, for

Jj#Fk
[Cseljx = E[A;()IE[Ak(t)]E[cos[¢; (t)] coslgk (t)]] (25)
1
= 1[-3[A]2]E[5 cos[g; (1) + i (1)]

is an orthogonal matrix,

(23)
(24)

+ 5 coslj 1) — (0] 26)
_ E[A]QIE[% cos[g; (1) + e (1) + 26 (1)]

+ 5 cosl; (1) — (D] @7)
= %E[A]zE[COSW)j(l) — ¢r(D]] (28)

where in the second-to-last equality we used the assumption
that all sources are perfectly phase-locked, and thus for any
J»@j(t) =¢;(1) + ¢(t); and in the last equality we used the
assumption that ¢(¢) is uniformly distributed in [0, 27 ), and
thus E[cos[¢; (1) + ¢ (1) + 2¢(1)]] = 0.

On the other hand, if j = k, from (24) we get

1
[Cs,ljj = E[Aj()A;()]E[cos[¢; (1)]*] = zE[AQ]. (29)

By replacing co-sines with sines in (24), a very similar
reasoning yields the exact same expressions for the (j, k)
element of Cs,. Since Csg; = (Cs, + Cs,)/2, the expressions
for the (j, k) element of Cg, are similar to those in (28) and
(29) with the factor 1/2 omitted.

Since E[A%] = Var[A] + E[A]?, we can merge the cases
Jj =k and j # k into the following expression:

Var[A]l + E[A]*F
2

where I is the identity matrix and F;r = cos[¢; (1) — ¢r(1)]
for all j, k, including j = k.

We now study the eigenvalues of matrix F (which are
equal to its singular values, since F is symmetric and positive
semidefinite, as shown below). It is easy to see that F =
Re(G), with G = xx” | where the vector x has components
Xj = ¢?i (D G has a simple eigenvalue with value N (the

Csp =

(30)
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number of sources), and an eigenvalue with value 0 with
multiplicity N — 1.

Since the eigenvalues of G are 0 and N, the eigenvalues
of F necessarily obey 0 < A(F) < N. To see this, let v be
any real vector with unit norm. Note that since v is real, we
have v/ = v’ . Note further that v/ Im(G)v = 0 because G is
Hermitian, and therefore its imaginary part is skew-symmetric.
Then

vIFv=v Fv+ VTIm(G)V =vIGv =vHGyv. 3D

The rightmost expression’s value is between 0 and N, since
those are the smallest and largest eigenvalues of G. Thus
the leftmost expression must also be between those values.
Therefore, the eigenvalues of F obey 0 < A(F) < N.

We now use simple properties of eigenvalues to get bounds
for the eigenvalues of Csgy,, using the result from (30)

0<AF)<N (32)
2 2
0< /I(E[A] F) < NE[A] (33)
2
YarlAl _ (s ) < ~2dA] J;N]E[A] . (4

Thus, the condition number of Cgy, is bounded above by the
quotient of these two bounds: p(Csg,;) <1 + NE[A]?/Var[A].
Also, from simple properties of singular values, one can
conclude that

—172 E[A]?
pBM) = p(Cg, /") =/p (CSRI)E‘/l—f-NVar[A]. (35)

The proof that this upper bound is tight is very simple. It is
sufficient to consider the case ¢;(1) = ¢ (1) for all j, k, i.e.,
the situation where all sources have zero phase lag with one
another. In that case, F is a matrix of ones, and its eigenvalues
are exactly 0 and N. It is very simple to see that in that case,
p(Cgl/?) = (1 + NE[A]?/Var[A]) /2.

APPENDIX B

PROOF OF THEOREM 2

Our starting point is HjA1Df; = HyAsDrr. We multiply
both sides on the left by H;’, where the symbol T denotes
the Moore—Penrose pseudoinverse [39]. We also multiply on
the right by Df_l1 = Df,, where * represents the entrywise
complex conjugate. We thus obtain a new equation A} =
HoA;Dyo where Hy = H{Hy € CV*V has full rank and
Dty = Dp;Df, € D]

We now write the equation for the 7th columns of A; and
Aj (which we denote by a;(r) and a,(¢), respectively)

a; (1) = Hoay(r)e® (36)

where ¢'¥® is the tth diagonal element of Dgg. If we write this
equation for two time instants #; and #, and linearly combine
them with real coefficients a; and o, we get

a1a;(t) + azxa;(f2)
= Hj [alaz(tl)ei"’(“) + azaz(lz)eiW(IZ):I . @37

The left-hand side of (37) is real for all a1, a2 € R. The right-
hand side can be real for all aj,a; € R only if V(™) and
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V") are parallel vectors in the complex plane, which yields
y(t) =y(n)or y(t) =y()+r.

By using the above reasoning for all pairs (¢, ©2) we can
conclude that Dgyp = E where E is diagonal with elements in
the set {—e'”, 4+¢7}, where y is a real number. Multiplying
both sides of this last equation on the right by D¢y = Dy !
yields D¢y = EDyy, as desired.

APPENDIX C
PROOF OF THEOREM 3

Let E; and E; be real diagonal matrices such that E;D,; and
E,;D,, are diagonal matrices whose diagonal elements have a
real part of 1. We assume, with no loss of generality, that these
matrices exist (see the end of this proof for an explanation of
why no generality is lost with this assumption). It is easy to
see that, if they exist, E; and E; are invertible. We thus have

MiD;1A1 = MaDpA; (38)
M E;'E|D; A = ME; 'E;DrA» (39)
M|D; A1 = MyD, A, (40)

where M’l’2 = Ml,ZEl_é and D/zl’2 = E; Dy 2. Note that
the assumption that all diagonal entries of D, are different
modulo 7 ensures that all diagonal entries of D/, are different,
and the same for D,,. Let us split (40) into its real and
imaginary parts. Since by definition the real part of Dy, , is
the identity matrix, we obtain

M/A; = M)A,

M/ Im(D;)A; = M,Im(D),)A,. (41)

Solving the first equation for A and plugging the result into
the second equation yields, after simplification

M/ Im(D,, )M/~ = M5 Im(D,)M} . (42)

Since Im(D},,) is a diagonal matrix, the left-hand side can be
interpreted as an eigenvalue decomposition of some matrix,
where Im(D);) contains the eigenvalues in its diagonal and
M| contains the corresponding eigenvectors in its columns.!?
A similar interpretation can be given to the right-hand side.
Furthermore, since all diagonal elements of D/ZL2 are different
from one another, all eigenvalues have algebric and geometric
multiplicities of 1 on the left-hand side and on the right-
hand side. Therefore, Im(D},;) = Im(D,,) up to an arbitrary
permutation of its diagonal elements, and M| = M) up to
the same permutation and up to arbitrary scaling of each of
their columns. Consequently, from (40), one concludes that
A1 = A up to the same permutation and to a scaling of its
rows which is the inverse of the scaling of the columns of
M| and M}.

Since A; = Aj up to permutation and scaling of rows,
we can instead write that fact as A; = PA,, where P is a
permutation of a diagonal matrix with nonzero entries on the
diagonal.

We now have, from (38)

M;D;1PA; = MDA, (43)

15C0ntrary to common convention, in this case the eigenvectors do not have
unit norm.
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and, since A and A, have maximum row rank by assumption

M;D; 1P = M;D,. (44)

Let us consider the mth column of both sides of this equation.
Suppose that the (m, n)th entry of P is nonzero. We get

(45)

elalm mi,, = ela2n my,,

where e,,! is the (m,m)th entry of Dy, e;? is the (n,n)th
entry of Dy, my,, is the mth column of Mj, and my,, is the
nth column of Mj. We can thus conclude that M; = M5 up to
permutation and positive scaling of columns, and D, = Dy
up to the same permutation of columns.

We now show that we can, with no loss of generality,
assume that E; and E; exist. Note that they exist unless some
elements in z; and/or z; have a real part of zero. In that case,
let O denote a real number such that the elements of ez,
and e%z, all have nonzero real parts. Since the number of
elements in z; and z; is finite, such a number always exists.
All the steps of this proof remain valid if one replaces z; and
2> with €%z, and €z, everywhere.

APPENDIX D
PROOF OF THEOREM 4

Define Hi = M;|D; and H, = M;D,;,. Theorem 2
can be applied to the factorizations HiA1D,, and HyA,D,,.
Therefore, Df, = EDy,, where E = €L, where I is a
diagonal matrix with diagonal elements equal to —1 or +1
and y is a real number.

Substituting for Df,, we get the two factorizations

Y =MD, e’ AIeDy, and Y =M;,D,,AsDy,.

Define D/Zl = Dzlei}' and A] = Al:. Then, theorem 3 is
applicable to the two factorizations YD;‘z = MiA] D’z1 and
YD}"2 = MA,D,,.

Therefore, we get M| = My, z/1 =1z (ie, z; = e,
thus z; = zp up to rotation), and A} = Al = Ay, up to
permutation and scaling. Since A; and A, are negative by
assumption, the last of these equalities implies that A} = Aj
up to permutation and positive scaling.
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