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Multiple Moving Target Detection and Trajectory
Estimation Using a Single SAR Sensor

Jos�e M. B. Dias and Paulo A. C. Marques

Abstract| The paper presents a novel methodology for

determining the velocity and location of multiple moving

targets using a single stripmap synthetic aperture radar

(SAR) sensor. The so-called azimuth position uncertainty prob-
lem is therefore solved. The method exploits the structure

of the amplitude and phase modulations of the returned

echo from a moving target in the Fourier domain. A crucial

step in the whole processing scheme is a matched �ltering,

depending on the moving target parameters, that simulta-

neously accounts for range migration and compresses two-

dimensional signatures into one-dimensional ones without

loosing moving target information. A generalized likelihood

ratio test approach is adopted to detect moving targets and

derive their trajectory parameters. The e�ectiveness of the

method is illustrated with synthetic and real data covering

a wide range of targets velocities and signal to clutter ratios

(SCRs). Even in the case of parallel to platform moving

target motion, the most unfavorable scenario, the proposed

method yields good results for, roughly, SCR> 10dB.

Keywords|Synthetic aperture radar, azimuth position un-

certainty problem, multiple moving targets, trajectory pa-

rameter estimation, range migration, generalized likelihood

ratio test.

I. Introduction

F
IGURE 1 shows the slant-plane of a typical stripmap

synthetic aperture radar (SAR) scenario (coordinate x

denotes slant-range, i.e., broadside distance measured from
the radar). A radar travelling at constant altitude and

constant velocity along the 
ight path (cross-range direc-

tion) transmits microwave pulses at regular intervals and

records the backscattered echoes. The illuminated scene

might contain static and moving targets. High resolution
in the slant-range direction is achieved by pulse compres-

sion techniques, whereas high resolution in the cross-range

direction is achieved by synthesizing a large aperture, ex-

ploiting the relative motion between the platform and the

illuminated scene [1].

The need for detecting moving targets and estimating

their trajectories appears in many SAR applications [2],

[3], [4], [5], [6], [7]. For example, properly moving target

focusing and locating requires the knowledge of the respec-

tive velocity vector (i.e., cross-range and slant-range veloc-
ity components) [7, ch. 6.7]. If the moving target returns

are processed in the same way as the static returns, the re-

sulting SAR image shows the former defocused and/or at

wrong positions, depending on the motion direction [2], [8].

Roughly, a moving target in the cross-range direction ap-
pears blurred, whereas a moving target in the slant-range

direction appears misplaced.

Several methods have been proposed to detect and fo-

cus moving targets using a single antenna. Most of them
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Fig. 1. Typical stripmap SAR scenario.

are based on the cross-range phase history originated by

moving targets (e.g., [3], [4], [5], [9], [10, ch. 5], [11],

[12]). However, the cross-range phase history originated
by a point moving target with constant velocity is charac-

terized only by two parameters [2]: the Doppler shift and

the Doppler rate. The latter gives the velocity magnitude

and is required for correct focusing, whereas the former de-

pends on the projection of the relative velocity along the
radar-target line of sight [4], [10, ch. 4]. Therefore, from

the cross-range phase history of a moving target it is not

possible to infer the exact direction of its velocity vector,

making it impossible to correctly locate the moving target

image. This limitation is termed azimuth position uncer-

tainty [4] or blind angle ambiguity [5], [7]. Both, Soumekh

in [10, ch. 5] and Barbarossa in [4] state that unless stereo

measures are available, it is not possible to determine the

complete velocity vector.

In [13] Kirscht proposed an approach to the moving tar-

get detection and velocity estimation based on a sequence

of single-look SAR images generated from conventional

single-channel SAR. These images are processed using dif-
ferent look center frequencies, therefore showing the ground

at di�erent look angles and at di�erent ranges. The cross-

range velocity component is obtained from the moving tar-

get displacements estimated between successive single-look

SAR images. The slant-range velocity component is esti-
mated by evaluating the variation of the signal amplitude

during the sequence. This approach relies on thorough

measurements of the moving target position and ampli-

tude. This requirement is hard to ful�ll, as moving targets

appear defocused and/or split when focused with wrong
velocity parameters.
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Besides the blind angle ambiguity, the detection and pa-
rameter estimation of slowly moving targets or targets with

velocity parallel to the radar velocity is another diÆculty

for single-antenna based systems. The reason is the to-

tally, or almost totally, overlapping between the moving

target spectra and the clutter spectrum. The utilization of
more than one receiving antenna exploiting multi-channel

and space-time-frequency processing schemes (see [14], [15],

[16] for an introduction to space-time processing in radar)

have been proposed as a way to overcome the limitation

of single-antenna based methods. Examples are the multi-
channel SAR [6], [17], the linear antenna array or velocity

SAR (VSAR) [18], the dual-speed SAR [19], and the multi-

frequency antenna array SAR (MF-SAR) [20]. Each one of

these methods yields better results than the single-channel

approaches at the expense of higher complexity in the re-
spective hardware and software.

This article, which elaborates on ideas presented in [21],

has two main goals. Our �rst goal consists in showing that,
in stripmap SAR, it is possible to infer the complete param-

eter vector of constant velocity targets using a single sensor;

therefore, the azimuth position uncertainty is solved with

just a single sensor. The second goal is the derivation of a

detector and an estimator for the moving target parame-
ters (i.e., initial coordinates, velocity, and re
ectivity). Ba-

sically, we exploit the structure of the amplitude and phase

modulations of the returned echo from a moving target in

the Fourier domain. The echo amplitude is a scaled and

shifted replica of the antenna radiation pattern; the scale
and shift are functions of slant-range and cross-range ve-

locities, respectively. The echo phase is a function of the

moving target velocity magnitude and the target coordi-

nates. A generalized likelihood ratio test is then derived

to detect moving targets and to estimate their trajectory
parameters.

A crucial step in the detection/estimation scheme is a

matched �ltering operation, depending on the moving tar-
get parameters, that simultaneously copes with range mi-

gration and compresses two-dimensional signatures into

one-dimensional ones without degrading the slant-range

resolution. This matched �ltering operation introduces,

therefore, a huge simpli�cation on the detector/estimator
structure.

The proposed technique yields good results, even for very
low signal to clutter ratios (SCRs), whenever the moving

target spectra are not totally overlapped with the clutter

spectrum. Otherwise, the detector and the estimator still

work provided that, roughly, SCR> 10 dB.

The article is organized as follows. In Section II aspects

of SAR signals are reviewed, the 2D Fourier transform of

the echo from point moving targets is derived, the com-

pressed signals using approximate moving target parame-
ters are characterized, aspects of cross-range sampling are

addressed, and, �nally, the background and noise statistics

are derived. In Section III, a generalized likelihood ratio

test is derived to detect moving targets and estimate their

trajectory parameters. The detection/estimation problem
is formalized as one of detection and parameter estimation

r

swath

za

y=ya

xa

z

(x’,y’)

y=u

x

~x’-x

ya= r sin   cos

 za = r sin   sin

x - slant range axis
xa- antenna radiation axis

xxa =

Fig. 2. Antenna aperture in the plane xa = 0, at cross-range y =
u, moving at constant altitude in the cross-range direction, and
illuminating a moving target with slant-plane coordinates (x =
x0; y = y0).

of deterministic signals immersed in Gaussian noise. Still in

Section III, an eÆcient scheme to compute the generalized

likelihood ratio test is proposed. Section IV presents results
illustrating the e�ectiveness of the proposed methodology.

II. Background

F
IGURE 2 shows a SAR antenna at cross-range position

y = vrt � u, travelling at speed vr in the cross-range

direction and operating at frequency !0. The antenna il-

luminates a single moving target with constant velocity

(�vx;�vy) in the slant-plane1, complex re
ectivity f , and
slant-plane coordinates�

x
0 = x0 � vxt = x0 � �u

y
0 = y0 � vyt = y0 � bu;

where (�; b) � (vx=vr; vy=vr) is the target relative veloc-

ity vector. It is assumed that the moving target and the

background, made of static targets, have been spotlighted

(see, e.g., [5]) such that the target region is con�ned to
(x; y) 2 [xm; xM ]� [ym; yM ], as illustrated in Fig. 1.

The auxiliary coordinate system (xa; ya; za) and the as-

sociated spherical coordinates (r; �; �) are used to describe

the antenna radiation pattern produced by an aperture

travelling in the plane xa = 0 at constant cross-range ve-
locity and constant altitude. The re
ectivity of the moving

target is taken to be independent of the aspect angle2 and

a(�; �; !) is denoted as the two-way antenna radiation pat-

tern at frequency ! + !0.

When the radar is positioned at coordinate y = u, the
distance between the target and the radar is

r �
p
(x0 � �u)2 + [y0 � (1 + b)u]2: (1)

1The minus sign has been adopted as it introduces symmetry in the
formalism.
2Most man-made targets exhibit re
ectivity depending on the as-

pect angle. However, this assumption greatly simpli�es the formula-
tion and yet leads to good results, as shown in Section IV.
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Since the system is linear, the output to the pulse p(t)
transmitted when the radar is at y = u is, in complex

envelope notation,

s(u; t) =
1

2�

Z +1

�1

a(�; �; !)P (!)fe�j2kr| {z }
s(u;!)

e
j!t
d!; (2)

where P (!) is the Fourier transform of the complex enve-

lope of p(t), k = 2�=� = (!+!0)=c is the wavenumber (� is

the wavelength at frequency !+!0 ), and s(u; !) (see foot-
note3) is the Fourier transform of s(u; t) with respect to t.

Herein, we follow Soumekh's terminology (see [7, ch. 6.7]),

according to which, coordinates u and t are termed slow-

time domain and fast-time domain, respectively. This ter-

minology stems from the fact that the motion of the radar
platform is much slower than the speed of light at which

the transmitted and backscattered pulses propagate.

Distance r can be written in a more compact form. Ex-

panding the square-root arguments of (1) and denoting

� � 1 + b, we conclude that

r =
p
X2 + (Y � �u)2; (3)

where

X
2 + Y

2 = x
2
0 + y

2
0 ; (4)

�Y = �x0 + �y0; (5)

� =
p
�2 + �2: (6)

Still following Soumekh's terminology (see [7, ch. 6.7]),

(X;Y ) are the motion-transformed coordinates,
p
X2 + Y 2

is the radial range, �Y is the squint cross-range, and � is

the relative speed. Solving equations (4), (5), and (6) with

respect to (x0; y0), we obtain�
x0

y0

�
=

1

�

�
� ��
� �

� �
X

Y

�
:

The motion-transformed coordinates (X;Y ) are a rotation

of coordinates (x0; y0) by the angle arctan(�=�).

The mapping from (x0; y0; �; �) to (X;Y; �) is not one

to one; therefore, assuming that vector (X;Y; �) is known,
we can not determine the complete moving target vector

(x0; y0; �; �). The blind angle ambiguity refers to the fact

that equations (4), (5), and (6) do not allow us to determine

the directions of vectors (�; �) and (x0; y0), but only their

norm [equations (4) and (6), respectively] and the angle
between them: notice that �Y given by (5) is the inner

product between (�; �) and (x0; y0).

The received echo from a moving target can now be writ-

ten in the (X;Y; �) domain as

s(u; !) = a(�; �; !)P (w)fe�j2k
p
X2+(Y��u)2

:

Let

S(ku; !) � F(u) [s(u; !)] (7)

3Although this notation is not strictly correct, since we are de�ning
a function based on its arguments, we have adopted it for better
clarity.

be the slow-time Fourier transform of s(u; !). To compute
(7) we use the stationary phase method (see, e.g., [22]),

noting that a [�(u); �(u); !] is a smooth function of u com-

pared with term e
�2jkr(u). Under these circumstances we

get

S(ku; !) = A(ku; !)P (!)fe
�j (ku;!); (8)

where

A(ku; !) / a(�(u); �(u); !); (9)

 (ku; !) = 2kr(u) + kuu; (10)

both (9) and (10) computed at u = u(ku) such that
d 

du
= 0,

leading to

ku = �2k d 
du

=
2k(Y � �u)�p
X2 + (Y � �u)2

: (11)

In classical SAR jargon, ku is termed slow-time Doppler

domain.

By solving (11) with respect to u (see, e.g., [10]), we get

 (ku; !) =

s
4k2 �

�
ku

�

�2
X +

�
ku

�

�
Y; (12)

valid for ku=� 2 [�2k; 2k]. According to (12), phase  

varies linearly with X and Y . This characteristic is the

key element in the Fourier type approach to SAR imaging.

A. Antenna Radiation Pattern

Let us now concentrate on the antenna radiation pattern

A(ku; !). Soumekh in [7, ch. 6.7], based on the Fourier

decomposition of a spherical wave, derives a formula for

A(ku; !) valid for static targets. Herein we present a dif-
ferent approach to compute A(ku; !) valid for constant ve-

locity moving targets.

The two-way antenna radiation pattern from a planar

aperture illuminated with constant polarization is [23]

a(�; �; !) / g
2(k sin � cos�; k sin � sin�), (13)

where g(kya ; kza) is the Fourier transform of the electrical

�eld in the antenna aperture. When the polarization over

the aperture varies, the relation (13) still holds, but g is
more complex.

From Fig. 2 we see that

kya � k sin � cos� = k
�ya

r
= k

y0 � �u

r
(14)

kza � k sin � sin� = k
�za

r
= k

x0 � �u� �x

r
tan�:(15)

On the other hand, replacing �Y and �2, given respectively

by (5) and (6), into (11) we obtain, after some manipula-
tion,

ku = 2k�
x0 � �u

r
+ 2k�

y0 � �u

r
: (16)

From (1) and (14), we have

x0 � �u

r
=

s
1�

�
kya

k

�2
: (17)
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Introducing (17) and (14) into (16), we obtain

ku = 2k�

s
1�

�
kya

k

�2
+ 2�kya : (18)

Equation (18) can be converted into a 2nd order polyno-

mial and solved with respect to kya . We note however

that
p
1� (kya=k)

2 ' 1 � (sin � cos�)2=2. If the antenna
beamwidth is smaller than, say, 10Æ, then (sin � cos�)2=2 <

4� 10�3. Therefore
p
1� (kya=k)

2 ' 1 is a good approxi-

mation for most SAR applications. We then have

kya � 1

2�
[ku � 2k�] (19)

kza � k

�
1� �x

r0

�
tan�; (20)

where r0 denotes the range corresponding to the middle of
the integration interval. The expression for kza was ob-

tained by replacing (17) into (15) and again noting thatp
1� (kya=k)

2 ' 1.

The spatial frequency kza depends on the wavenumber

k and on the target range r0. If xM � xm, the length of
the target area in slant-range, is much smaller than �x, then

�x=r0 ' 1 and we have

A(ku; !) / g
2

�
1

2�
(ku � 2k�); 0

�
; (21)

i.e., the range dependence of A(ku; !) can be neglected. If

xM�xm is not much smaller than �x, then the antenna radi-

ation pattern becomes dependent on the range r0. However,

this dependency can be removed by introducing a proper
slant-range dependent gain. From now on we assume that

the antenna radiation pattern does not depend on r0.

In deriving A(ku; !), we have assumed that the antenna

has broadside geometry, i.e., the antenna radiation axis

is orthogonal to the azimuthal direction. However, there

are situations, for example due to wind drift, in which the
antenna displays squinted geometries. In order to include

general geometries in the echo amplitude A(ku; !), let us

assume that the antenna aperture shown in Fig. 2 has

been rotated by an angle �0 with respect to axis za such

that the rotated radiation axis has coordinates � = �0 and
� = 0. Notice that the antenna radiation pattern A(ku; !)

given by (21) is parameterized only by the relative velocity

vector (�; �) measured in the slant-plane de�ned by the

coordinates ya and xa. Therefore, the antenna radiation

pattern for a squinted geometry is given by

A(ku; !) / g
2

�
1

2�s
(ku � 2k�s); 0

�
; (22)

where (�s; �s) is the relative velocity vector (�; �) expressed

in the coordinates ya and xa rotated by �0; i.e.,�
�s

�s

�
=

�
cos �0 sin �0
� sin �0 cos �0

� �
�

�

�
:

The shift kDC � 2k�s is commonly termed the Doppler
centroid.

Concluding, the illumination function in the slow-time
Doppler domain, ku, takes the shape of the antenna ra-

diation pattern with respect to kya . The shape becomes

expanded by factor 2�s and shifted by 2k�s. For broadside

antenna geometry (i.e., �0 = 0) the expansion is given by

2k� (i.e., depends only on the cross-range relative velocity)
and the shift is given by 2k� (i.e., depends only on the

slant-range relative velocity).

The remainder of the paper is devoted to building a

detector of moving targets and an estimator of their pa-

rameters (�s; �s; X; Y ), both based on the structure of the

received signal S(ku; !) = A(ku; !)P (!)e
� (ku;!). Notice

that the phase  (ku; !) is informative with respect to �,
X , and Y , whereas A(ku; !) is informative with respect to

�s and �s. Once these parameters have been inferred, we

solve equations (4), (5), and (6) to determine the moving

target parameters (�s; �s; x0; y0). The azimuth ambiguity

is therefore solved using a single sensor.

The proposed method when applied to background tar-
gets without internal motion yields the Doppler centroid

of these targets. This parameter is of prime importance

in SAR imaging. Furthermore, and given that the rela-

tive velocity vector (�; �) of a background target is known

beforehand, the squint angle �0 can be obtained from
the vector (�s; �s) of a background target using �0 =

angle (�; �) � angle (�s; �s). Hence, we assume from now

on that �0 = 0.

In the remainder of the paper we assume that the back-

ground targets are static (i.e., � = 0 and � = 1). This

scenario applies to airborne SAR. However, the concepts
and ideas apply to constant velocity moving background

targets, as occurs, for example, in spaceborne SAR, due to

the earth rotation.

B. Compression of the Moving Target Echo

Let us consider a single moving target with parameters

(�; �;X; Y; f) and echo Sm immersed in background echo

S0. The total returned echo is given by

S(ku; !) = Sm(ku; !) + S0(ku; !); (23)

with

Sm(ku; !) = P (!)A(ku)fe
�j (ku;!); (24)

S0(ku; !) = P (!)A0(ku)
X
n

fne
�j n(ku;!); (25)

where the dependency of A on ! has been omitted, vector
A0(ku) denotes the amplitude echo of a static target (i.e.,

� = 0; � = 1), and phases  (ku; !) and  n(ku; !) are given

by (12) for the moving target parameters (�;X; Y ) and

(1; Xn; Yn), respectively.

According to (24), the moving target echo is spread over

the two dimensional domain (ku; !) 2 SPA, the support4

of P (!)A(ku), thus introducing complexity in any moving

4By support of f , we mean the set of (ku; !) points where
f(ku; !) 6= 0.
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target detection/estimation scheme. To compress the mov-
ing target echo into a one-dimensional domain, let us de�ne

the signal

sc(ku; t) � F�1
(!)

h
S(ku; !)P

�(!)ej 
0(ku;!)

i
; (26)

where  0(ku; !) is given by (12) for moving target param-

eters (�0; X 0
; 0) close to (�;X; 0). In appendix A, we show

that if � � c=(BDy), where c is the speed of light, B the
pulse bandwidth, and Dy the cross-range aperture width,

and jX=�4 �X
0
=�

04j � (64�k30)=jkuj4max, then

sc(ku; t) = fRp[t� �(ku)]A(ku)e
�j�(ku)| {z }

smc

+w(ku; t); (27)

with

�(ku) =
2(X �X

0)

c
+

1

c

�
ku

2k0

�2�
X

�2
� X

0

�02

�
(28)

�(ku) = � k
2
u

4k0

�
X

�2
� X

0

�02

�
+ ku

Y

�
+ '; (29)

where Rp(t) is the deterministic autocorrelation of the

transmitted pulse p(t), ' = 2k0(X � X
0), and w(ku; t) is

the term due to the background echo.

The energy of autocorrelation Rp(t) is highly concen-

trated about t = 0. Therefore, the energy of smc(ku; t) is
highly concentrated about t = �(ku). For �02X = �

2
X
0,

the delay �(ku) does not depend on ku, meaning that en-

ergy of smc(ku; t) is clustered along the cross-range di-

rection. By exploiting this fact, we derive, in the next

section, a moving target detector and parameter estima-
tor that simultaneously copes with range migration and

straightens the moving target signatures in the (ku; t) do-

main along coordinate ku without degrading the slant-

range resolution. For a given X 0, the estimator scans the

set � 2 [�min; �max] and detects moving targets with co-
ordinate X in an interval such that jX=�4 � X

0
=�

04j �
(64�k30)=jkuj4max.

C. Noise statistics

The moving target echo is contaminated by the system
noise and by the background echo. In order to formulate

the moving target detection and estimation problems we

are addressing, we need to determine the statistics of both

sources.

In appendix B we show that if the number of back-

ground scatterers per resolution cell is large, none is pre-
dominant, they are mutually independent, and each one

has a phase independent of its amplitude, then the random

�eld w(ku; t) is zero-mean complex Gaussian circular. As-

suming that backscattering coeÆcient �Æ is constant within

the target area, then the covariance of w(ku; t) at time t,
Cw(ku1 ; ku2) � E [sc(ku1; t)s

�
c
(ku2; t)], satis�es

Cw(ku1 ; ku2) =

�
�jA(ku1 )j2 ku1 = ku2

0 ku1 � ku2 = 2l�=L;
(30)

where l is an integer, � � �
Æ
LERp , L is the target area

cross-range length (see Fig. 1), and ERp is the energy of
the autocorrelation of the transmitted pulse.

......
kDCks/2-ks/2 ks 2ks-2ks

ku

0

u S (ku u, )

S (ku, )

Observation   Interval

k’u ku

-ks/2kDC +ks/2kDC

Fig. 3. Illustration of the relation between the discrete Fourier trans-
form of s(n�u; !) with respect to n, S(ku�u; !), and the Fourier
transform of s(u; !) with respect to u, S(ku; !).

In deriving (30) we have assumed that the background
targets have constant velocity and do not display internal

motion, such as leaves moving in the wind, or waves in wa-

ter bodies. We should say, however, that if there is internal

motion in the SAR scene, the best approach to determine

the covariance Cw(ku1 ; ku2) is probably to estimate it di-
rectly from data, for it depends on the internal motion

statistics, which are normally unknown.

Concerning the system noise n(u; t), we assume that it is

zero-mean complex Gaussian circular and white. A reason-

ing similar to that of Appendix B leads to the conclusion

that

Cn(ku1 ; ku2) =

�

; ku1 = ku2

0; ku1 � ku2 = 2l�=L:
(31)

where l is an integer and 
 � �
n
LEp, with �

n being the

noise spectral power and Ep the energy of p(t). Note that

 is proportional to Ep, whereas � is proportional to ERp .

The reason is that w(u; t) is �ltered by the �lter jP (!)j2,
whereas n(u; t) is �ltered with �lter P �(!).

Under the assumption of constant re
ectivity �Æ along

the cross-range dimension, the background noise plus the
system noise satis�es

Cw(ku1 ; ku2) �
�
�jA(ku1 )j2 + 
; ku1 = ku2

0; ku1 � ku2 = 2l�=L:

(32)

D. Cross-range Sampling

From (13) and (21), and noting that the aperture ra-
diated �eld is con�ned to j�j � �M � 1 and j�j � 1,

we conclude that the support of smc(ku; t) with respect

to ku is ku 2 [�2�k�M + kDC ; 2�k�M + kDC ]. The an-

tenna beamwidth 2�M depends on the aperture illumi-

nation. Using the indicative value �M = �=(2Dy) (Dy

denotes the cross-range aperture width), we have ku 2
[�2��=Dy + kDC ; 2��=Dy + kDC ]. The bandwidth of

smc(u; t) with respect to u is therefore 4��=Dy. As the

SAR system is sampled with respect to the cross-range,

then, according to the Nyquist theorem, the cross-range
sampling interval must satisfy �u � Dy=(2�).

Let �S(
; !) be the discrete Fourier Transform of se-

quence s(n�u; !) with respect to the integer variable n.

The function �u
�S(ku�u; !) is a periodic extension of

S(ku; !) of period ks � 2�=�u. Since the sampling fre-
quency ks is above the Nyquist rate, the successive replicas
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of S(ku; !) do not overlap. This is illustrated in Fig. (3),
which shows spectra �u

�S(ku�u; !) and S(ku; !).

To obtain the compressed moving target echo (26) we

should then compute

sc(ku; t) � F�1
(!)

h
�u

�S(ku�u; !)P
�(!)ej 

0(ku;!)
i
; (33)

for ku 2 [kDC�ks=2; kDC+ks=2[. In practice, the discrete

Fourier transform �S(
; !) is computed by the fast Fourier

transform (FFT) algorithm at a set of equispaced discrete

frequencies ku 2 [�ks=2; ks=2[ (observation interval in Fig.

(3)). These frequencies should be mapped onto the interval

[kDC � ks=2; kDC + ks=2[, as it is indicated by an arrow in
Fig. (3) linking k0

s
to ks. Note that, for a given Doppler

centroid kDC , the couple (ku; k
0
u
) is unique and satis�es

ku = qks + k
0
u; ku 2 [kDC � ks=2; kDC + ks=2[; (34)

where q is an integer. The Doppler centroid dependent

mapping (34) between ku and k0u plays an important role
in the algorithms presented in the next section.

III. Detection/estimation problem

Suppose that we have identi�ed a pair (X 0
; �

0) such that

the quadratic phase term in expression (28) is neglegible

in comparison with the fast-time range resolution. In this

case, the signal smc(ku; t) has been straightened along � =

(2=c)(X�X 0). Furthermore, assuming that we measure � ,
then the motion transformed coordinateX and the relative

speed � are approximately given by X ' X
0 + (c=2)� and

� ' �
0
p
X=X 0.

De�ne

s � [s�N ; : : : ; s0; : : : ; sN�1]
T (35)

a � [a�N ; : : : a0; : : : ; aN�1]
T
;

where

si = sc(kui ; �)e
j
k
2
ui

4k0

X
0

�
02

ai = A(kui)e
j
k
2
ui

4k0

X

�2 e
�j

kui
Y

� ;

with kui = ku0 + (2�i)=L for i = �N; : : : ; 0; : : : ; N � 1,

N = dLks=(4�)e (dxe denotes the smallest integer larger

than or equal to x), and ku0 the multiple of (2�)=L closest

to kDC . Since the fast Fourier transform (FFT) is used to

compute the discrete time Fourier transform, then using
2N points in the ku domain implies using 2N points in the

u domain to sample the cross-range length L . Therefore,

with this setting, the cross-range sampling interval is �u =

L=(2N) � (2�)=ks, thus satisfying the Nyquist limit.

For a given moving target parameters vector � �
(�; �;X; Y ) and re
ectivity f , the density of vector s is

p(sjf;�) = N (�s;Cs); (36)

where the mean �s � E[s] and the covariance Cs � E[(s�
�s)(s��s)H ] are, according to (27) and (32) and assuming
that Rp(0) = 1, given by

�s = fa(�)

Cs = diag
�
�j eA0(kui)j2 + 


�
; i = �N; � � � ; N � 1;

where the operator eh(ku) denotes a ks-periodic extension
of h(ku).

The problem at hand is a binary test: under the hypoth-

esis H0, the received signal is the background echo; under

the alternative hypothesis H1, the received signal is the

background echo plus the moving target echo, i.e.,

H0 : s = w

H1 : s = fa(�) +w; (37)

where w � [w�N � � �w0 � � �wN�1]T , with wi � ew(kui ; �),
for i = �N; :::; 0; :::; N � 1.

We adopt the generalized likelihood ratio test (GLRT) [24]
to our detection problem, which, in the present case,

amounts to computing the test

l(s)
H1

?

H0

�; (38)

with � being the detection threshold and

l(s) � ln

(
p(sj bf; b�)
p(sjf = 0)

)
; (39)

where the maximum likelihood estimates ( bf; b�) are given

by

( bf; b�) = argmax
f;�

�
�[s� fa(�))]HC�1

s
[s� fa(�)]

	
; (40)

and p(sjf = 0) is the density of noise w.
To achieve a compact notation, we introduce the inner

product hx;yi �
PN�1
i=�N xic

�1
i
y
�
i
and the induced norm

kxk2 � hx;xi, where x;y 2 C
2N (C denotes the complex

set) and ci � [Cs]ii.

Noting that the distance ks � fak is minimized when

hs� fa; ai = 0 (i.e., the error s� fa is orthogonal to a)
and after some algebra we obtain

bf =
hs; bai
kbak2 (41)

b� = argmax
�

�
jhs; a(�)ij2
ka(�)k2

�
(42)

l(s) =
jhs; baij2
kbak2 ; (43)

where ba � a(b�).
Since hs; ai = kak ksk cos�as, where �as is the angle be-

tween vectors a and s, the maximum likelihood estimator

of � seeks the estimate ba with highest angular proximity to
observed data s. Moreover, the inner products present in

(42) implements noise plus clutter suppression by attenuat-
ing vectors a(�) and s proportionally to noise plus clutter

power �j eA0(kui )j2 + 
.

We adopt the Neyman-Pearson approach to signal de-

tection. Therefore, the threshold � that maximizes the

probability of detection PD = fs : l(s) > � j H1g is found

from the false alarm probability PFA = fs : l(s) > � j H0g.
Explicit expressions for densities p(ljH0) and p(ljH1) are
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not available because ba is an unknown nonlinear function
of random vector s. In order to obtain approximate values

of � and to derive bounds for the detector performance, we

assume for a while that the detector has perfect knowledge

of the parameter a (this is the so-called clairvoyant detec-

tor [24]). In this case, the probability of hs; ai isN (0; kak2)
under hypothesis H0 and N (fkak2; kak2) under hypothesis
H1. Thus, the density of 2l is

2l �
�
�
2
2 under H0

�
02
2(jf j2kak2) under H1;

where �22 denotes the chi-squared density with 2 degrees

of freedom and �0
2
2(�) denotes the noncentral chi-squared

density with 2 degrees of freedom and noncentrality pa-

rameter �. Since density �22 is the exponential density of
mean 2, the threshold � is then given by

� = � lnPFA:

The detector performance depends only on the noncen-

trality parameter

jf j2kak2 =

N�1X
i=�N

jf j2E2
p
jA(kui)j2

�j eA0(kui )j2 + 

(44)

' 1

2�

Z �ks

2

�ks

2

jf j2E2
p
j eA(ku)j2

�0ERp j eA0(ku)j2 + �nEp

dku:

The expression on the right hand side of (44) is the best

signal to clutter plus noise ratio (SCNRopt) that it is pos-

sible to attain, which is achieved by compressing the sig-
nal plus clutter noise signature (27) with the matched �l-

ter A?(ku)=(�
0
ERp j eA0(ku)j2+�nEp) (see, e.g., [25] for the

derivation of the matched �lter).

For a given backscattering coeÆcient �0 and noise spec-

tral power �n, the SCNRopt depends on the antenna radi-

ation pattern A(ku) through the relative velocities � and

�. Assuming a large clutter to noise ratio (CNR), then the

function 1=(�0ERp j eA0(ku)j2 + �
n
Ep) exhibits a high-pass

shape with cut-band roughly corresponding to the support
of A0(ku). Therefore, the lowest values of SCNRopt corre-

spond to antenna radiation patterns A(ku) whose support

are totally contained in the support of A0(ku). If the sup-

port of A(ku) becomes a little displaced with respect to

the support of A0(ku), then part of A(ku) is ampli�ed by
the high-pass �lter and the SCNRopt becomes large, thus

increasing the probability of detection. As a conclusion,

the targets most hard to detect are those with cross-range

velocity parallel to the platform motion (i.e., � � 1) and

slant-range relative velocities multiple of ks=(2k0).

Fig. 4 plots the detection performance of the Neyman-
Pearson detector, assuming perfect knowledge of the mov-

ing target parameters (�; �;X; Y ). As an indication of the

detector performance, we have PD > 0:8 for SCNRopt & 10

and PFA = 10�2. The detection probability of the realiz-

able detector is, of course, below the bounds plotted in Fig.
4.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

PFA = 10-4
PFA = 10-3

PFA = 10-2

PFA = 10-1

PD

SCNRopt

Probabilty of Detection,

Fig. 4. Detection performance of the Neyman-Pearson detector,
assuming perfect knowledge of the moving target parameters.

According to the rationale just presented, the SCNRopt
is the most important �gure concerning detection perfor-

mance in SAR. Nevertheless, most authors when referring

to SCNR do not have SCNRopt in mind. This is a source of

confusion, as the SCNR depends on the compression �lter.
In this paper and for comparison purposes, when referring

to SCNR, we are assuming a 
at compression �lter. We

then have

SCNR ' 1

2�

�����fmEp
Z �ks

2

�ks

2

eA(ku) dku
�����
2

Z �ks

2

�ks

2

�
�
0
ERp j eA0(ku)j2 + �

n
Ep

�
dku

: (45)

The SCNR, as given by (45), does not depend on the
slant-range relative velocity �. The same is not true con-

cerning SCNRopt, as we have discussed above: assuming a

high CNR, even a small � leads to a high SCNRopt.

A. Moving Target Parameters Estimation Algorithm

Computing the maximum likelihood estimate (42)

amounts to a multidimensional nonlinear optimization of

the unknown parameters (�; �;X; Y ) 2 R
4 , with unbear-

able computational burden. Herein, instead of computing
the exact maximizer of l(s;�) � jhs; a(�)ij2=ka(�)k2, we
adopt a suboptimal approach that iteratively maximizes

l(s;�) on given subsets of R4 . First we assume that there

are available rough estimates of X , �, and kDC ; the �rst

two estimates allow getting vector s from the compressed
signal sc(ku; t) and the former estimate determines the in-

terval [bkDC � ks=2; bkDC + ks=2[ containing the support of

Sm(ku; !), with respect to ku. At the end of this section

we present an algorithm to compute these estimates.

Let us denote

l(s; �; �) � argmax
Y

l(s; �; �; Y ): (46)

Parameter X has been omitted as we are assuming that it
is known. The dependency of l(s;�) on Y is only through
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the term jha; sij, which can be expanded as

jha; sij =

�����
N�1X
i=�N

bie
�j
i

����� ; (47)

where bi � A(kui)e
jk

2
ui
X=(4k0�

2)
c
�1
i
s
�
i
and 
 � 2�Y=(L�).

Notice that, by using the FFT, jha; sij can be computed

eÆciently at 
i = (�=N)i, for i = �N : : : ; 0; : : : ; N � 1.

The frequency b
 = 
i corresponding to the maximum of

jha; sij leads to bY = �Lb
=(2�). The absolute error ofbY due to the discrete nature of the FFT is �L=(4N) '
��u=2.

Algorithm 1 Determines moving target parameters

(�; �; Y ) of a single moving target and solves azimuth po-

sition uncertainty.

Input: bX; b�(0), bkDC , S(ku; !)
Output: b�; b�; bY , bx0, by0
Set: tmax

1: s := s

�b�(0); bX; bkDC� fExpressions (33) and (35)g
2: for t := 1 to t := tmax do

3:

�b�(t); b�(t)� := arg max
�;�

�2+�2=(b�(t�1))
2

l(s; �; �)

4: b�(t) := argmax
�

l(s; b�(t); �)
5: b�(t) :=q�b�(t)�2 + �b�(t)�2
6: end for

7: bY := b�Lb
=(2�)
8: bx0 := (b� bX + b�bY )=b�
9: by0 := (b� bY � b� bX)=b� fSolve azimuth ambiguityg

Algorithm 1 shows the pseudo-code to determine

(b�; b�; bY ) and to solve the azimuth position uncertainty.
Step 1 implements the fast-time compression (33) and se-

lects vector s given by (35). Steps 3 and 4 implement one-

dimensional searches and were designed to minimize the

parameter search space: step 3 maximizes l(s; �; �) over

the circle �2 + �
2 =

�b�(t�1)�2; step 4 maximizes l(s; �; �)

over the line � = b�(t).
Algorithm 2 implements step 3 of Algorithm 1 by means

of a discrete search with 2M� + 1 equi-spaced points in

the interval � 2 [�c � ��max; �c � ��max], keeping � =b�(t�1). Relative velocities �c and ��max correspond to the
Doppler frequency bkDC and to half of sampling frequency

ks, respectively.

Algorithm 3 implements step 4 of Algorithm 1 by means
of a discrete search with 2M� +1 equi-spaced points in the

interval � 2 [b�(t)���max; b�(t)+��max], keeping � = b�(t).
The unidimensional discrete searches of Algorithms 2

and 3 were designed in a multigrid fashion using ten points

per resolution level and three depth levels. This procedure

works very well and speeds up the execution time of these
algorithms by orders of magnitude.

To determine the input parameters ( bX; b�(0); bkDC) for
Algorithm 1, we exploit, in Algorithm 4, the fact that

Algorithm 2 Searches for (�; �) over a circle (step 3 of

Algorithm 1).

Input: s, b�, bkDC
Output: b�, b�
Initialization: ��max := ks=(4k0), �c := bkDC=(2k0)
Set: M�

1: for i := �M�; : : : ;M� do

2: �(i) := �c + (i=M�)��max

3: �(i) :=

q�b�(t�1)�2 � �2(i)

4: l(i) := l(s; �(i); �(i)) fExpression (43)g
5: end for

6: i := index (max(l))
7: b�(t) := �(i), b�(t) := �(i)

Algorithm 3 Searches for (�; �) over a line (step 4 of

Algorithm 1).

Input: s, b�(t), bkDC
Output: b�, b

Set: ��max, M�

1: for i := �M� ; : : : ;M� do

2: �(i) := b�(t) + (i=M�)��max
3: l(i) := l(s; b�(t); �(i)) fExpression (43)g
4: end for

5: i := index (max(l))

6: b�(t) := �(i)

7: b
 := 
(i)

any triplet X
0
; �

0
; k

0
DC

satisfying X=�
2 = X

0
=�

02 and

jkDC � k
0
DC

j � ks � (4��=Dy) (recall that 4��=Dy is the

Doppler bandwidth) set to zero the quadratic term of ex-

pressions (28) and (29). Hence, we set X 0 = �x and scan the

parameters �0 and k0
DC

. To test if the quadratic terms of
expressions (28) and (29) are close to zero we use the like-

lihood ratio test applied to each range. The compressed

signature (26) is computed (step 5) for each point of the

discrete set f�igM�

i=1�fkDCigMk

i=1. The sampling interval of

the relative speed � is small enough to assure that there

is an �i in the set that straightens the moving target sig-

nature along the ku coordinate in the compressed image
sc(ku; t).

For each image sc(ku; t) compressed with the FFT al-

gorithm using parameters �j and kDCi , we compute the

likelihood ratio test l(s; �i; �j), with �i = kDCi=(2k0) and

�j =
q
�2
j
� �2

i
, for each slant-range X(n) (i.e., s :=

s(�j ; X(n); kDCi), for n = 1; : : : ;Mx). Step 17 corrects

the estimate of � using the fact that X=�2 ' X
0
=�

02 when

the quadratic terms of expressions (28) and (29) become

zero.

Algorithm 4 �nds the stronger moving target in the tar-

get area. To detect all moving targets, lines 15 to 18 should

be replaced in order to �nd all sets (b�(n), bkDC(n), bX(n)),

for n = 1; : : : ;Mx, such that the likelihood ratio l(1; n) ex-

ceeds a given prede�ned threshold �. This scheme might,
however, produce false alarms, since, when the signature
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Algorithm 4 Determines parameters bX, b�, and bkDC of
the of the strongest moving target.

Input: S(ku; !), �x, k0

Output: bX , b�, bkDC , l(s)
Set: M�, Mk, f�igM�

i=1, fkDCig
Mk

i=1

Initialization: l(1:3; 1:Mx) = 0

1: for i := 1 :Mk do

2: kDC(i) := kDCi ; �(i) := kDC(i)=(2k0)

3: for j := 1 :M� do

4: �(j) := �j ; �(i) =
p
�2(j)� �2(i)

5: sc := sc[�(j); kDC(i); �x] fcomp. signature (26)g
6: for n := 1 :Mx do

7: s := s(�(j); X(n); kDC(i)) fExpressions (33)

and (35)g
8: obj := l(s; �(i); �(j)) fExpression (43)g
9: if obj > l(1; n) then

10: l(1; n) := obj, l(2; n) := �(j), l(3; n) :=

kDC(i)

11: end if

12: end for

13: end for

14: end for

15: n := index (max(l(1; :)))

16: bX := X(n)

17: b� := l(2; n)
p
X(n)=Xc

18: bkDC := l(3; n)

of a given moving target has been vertically aligned (i.e.,
straightened along the slow Doppler direction), the signa-

tures of some of the remaining moving targets might be

skewed because their parameters � and kDC are di�er-

ent from those of the former moving target; therefore, o�-

vertical moving targets signatures with strong re
ectivities
might mask the vertical signatures of moving targets with

weaker re
ectivities. This problem can be solved by remov-

ing the strongest moving target signature from observed

data once it has been detected. Algorithm 5 shows the

pseudo-code for this procedure. Step 8 produces a focused
image of the moving target, which has motion transformed

coordinates ( bX; bY ). Step 9 removes the moving target by

multiplying the focused image f(u; t) with a mask centered

at moving target coordinates ( bX; bY ).
IV. Results

The methodology developed in the previous section is

now applied to synthetic and real data. The former con-

tains point targets and an extended target, all in homoge-
neous background. The latter deals with real targets with

simulated motion in a real background.

A. Synthetic Data

In this subsection we present results based on synthetic

data aiming at the evaluation of the proposed technique.

Tables I and II display the SAR mission parameters and the

trajectory parameters of nine moving targets, respectively.
Targets 1 to 8 are point-like, whereas target 9 is extended

Algorithm 5 Detect multiple moving targets.

Input: S(ku; !), �x, k0
Set: � := � log(PFA) fSet test thresholdg
1: loop

2: fNext moving target candidateg
3: (b�; bkDC ; bX) := Algorithm 4[s(ku; !), �x, k0]
4: fEstimate moving target parametersg
5: (b�; b�; bY ; l) := Algorithm 1(b�; bkDC ; bX)

6: if l > � then

7: fMoving target detectedg
8: f(u; t) := F�1

(ku)
[sc(ku; t)] fFocusing moving tar-

getg
9: f(u; t) := f(u; t)mask ( bX; bY ) fDelete moving tar-

get signatureg
10: S(ku; !) := F(u;t)[f(u; t)]
11: end if

12: end loop

TABLE I

Mission parameters used in simulation.

Parameter Value

Carrier frequency 2.5GHz
Chirp bandwidth 50MHz

Swath central slant-range 10 km
Platform velocity 600 km/h

Antenna azimuthal length 4m
Antenna radiation pattern Raised cosine

Cross-range sampling interval 1m
Cross-range resolution 2m

Slant-range sampling interval 1.5m
Slant-range resolution 3m

having 6m in slant-range by 2m in cross-range. The ex-

tended target was simulated with 15 point scatterers, all

with the same re
ectivity except for the central scatterer,

which has re
ectivity 10 times higher.

Fig. 5 illustrates the moving target positions at u = 0

and their velocities. Vertical and horizontal axes repre-

sent cross-range and slant-range recentered at the central
range �x = 10000m, respectively. The velocity direction of

each target is represented by the respective arrow direc-

tion, while the velocity magnitude is written close to the

respective arrow in km/h. The target area is rectangular

centered at (X;Y ) = (�x; 0) and with cross-range and slant-
range lengths of 512m and 384m, respectively. Cross-range

gating can be obtained by digital spotlighting [5]. The

shadowed area represents the antenna footprint at u = 0,

whose synthetic array length is 256 m, for the parameters

given in Table I.

The antenna radiation pattern is A0(ku) = 1+cos(2�ku)

for jkuj � �=2 and A0(ku) = 0 for jkuj > �=2. Since
the cross-range sampling interval is 1m, the sampling fre-

quency is ks = 2� and thus ks = 2�, i.e., the bandwidth of

a static target is half the sampling frequency ks.

Fig. 6 displays the target area image focused for targets

with relative speed � = 1:0 and Doppler centroid kDC = 0.

The signal to clutter ratio (SCR) and the clutter to noise
ratio (CNR) are both 20 dB. Targets 1, 2, and 9 are fo-
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TABLE II

Moving target parameters. Targets 1 to 8 are point-like

whereas target 9 is extended [6m (range)� 2m

(cross-range)]. Coordinates are in meters.

Initial coord. Velocity MT coord.

Target x0 y0 � � X Y

1 -95 -80 0.00 1.0 -95.0 -80.0
2 -35 -80 0.01 1.0 -34.7 19.6
3 25 -80 0.01 0.9 25.2 31.4
4 85 -80 0.01 0.8 85.2 46.1
5 -85 80 0.00 1.2 -85.0 80
6 -25 80 0.06 1.0 -47.7 677.3
7 35 80 0.11 1.1 -22.8 1078.0
8 95 80 0.15 1.2 7.1 1331.5
9 0 0 0.01 1.0 -0.5 100

y (m)

x-x (m)

(191,127)

(-192,-128)

1

6

2

60 120

3 4

120 36
89.2 150

5 6 7 8

6 9

Antenna Footprint (u=0)

Fig. 5. Illustration of the moving target positions at u = 0 and
their velocities. Vertical and horizontal axes represent cross-range
and slant-range recentered at the central range �x = 10000m,
respectively. The velocity direction of each target is represented
by the respective arrow direction, while the velocity magnitude
is written close to the respective arrow in km/h.
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Fig. 6. Imaging of the target area focused with relative speed � = 1:0
and Doppler centroid kDC = 0. The signal to clutter ratio (SCR)
and the clutter to noise ratio (CNR) are both 20 dB. Targets 1,
2, and 9 are focused. All other targets are defocused as their
relative speeds or Doppler centroids are di�erent from that used
by the imaging algorithm. For displaying purposes, the cross-
range motion transformed coordinates of targets 6 , 7, and 8
have been wrapped into the interval [�256; 256]m.
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Fig. 7. Compressed signal in the (ku; X) domain given by (26),
corresponding the target area shown in Fig. (6) and using the
moving target parameters �0 = 1:0, X0 = �x, and K0

DC
= 0. The

signal to clutter ratio and the clutter to noise ratio are SCR=
20 dB and CNR= 20 dB, respectively, as in Fig. 6. Part a)
displays moving target signatures plus clutter noise plus system
noise; part a) displays only the moving target signatures.

cused. All other targets are defocused as their relative

speeds or Doppler centroids are di�erent from those used

by the imaging algorithm. The cross-range coordinate at

which the defocused targets are displayed exhibits errors

with respect to those shown in Table II. These errors in-
crease with the error in the Doppler centroid. For display-

ing purposes, the cross-range motion transformed coordi-

nates of targets 6 , 7, and 8 have been wrapped into the

interval [�256; 256]m.
Fig. 7a displays the compressed signal in the (ku; t =

2X=c) domain given by (26), corresponding to the target
area shown in Fig. 6 and using the moving target param-

eters �0 = 1:0, X 0 = �x, and K 0
DC

= 0. SCR and CNR are

both 20 dB, as in Fig. 6. For better perception, Fig. 7b

shows the moving target signatures without ground clutter

and system noise. For displaying purposes, the slow-time
Doppler frequency coordinates of targets 6, 7, and 8 have

been wrapped into the interval [��; �] rad=m.
We see from Fig. 7 that, at least visually, only targets 6,

7, and 8 produce o�-vertical aligned signatures. This was

to be expected as �(ku) given by (28) is proportional to k2u
and targets 6, 7, and 8 have the larger Doppler centroids
among all targets.
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Fig. 8. Likelihood ratio test computed by Algorithm 4. For illus-
tration purposes we have assumed an omnidirectional antenna.
All moving targets originated spikes at correct moving target
slant-range coordinates. The presence of two spurious spikes at
slant-ranges -17 and -6 will not produces false alarms because
Algorithm 5 selects only the moving target with the highest like-
lihood ratio in each iteration.

TABLE III

Estimation results for SCR= 20 dB and CNR= 20 dB.

Coordinates are in meters.

Initial coord. Velocity (�103) GLR

Target bx0 � x0 by0 � y0 b�� � b� � � log l

1 0.5 -1.8 0.12 7.9 4.17
2 0.2 0.4 0.03 3.2 8.71
3 0.2 0.5 -0.06 3.8 8.70
4 0.3 -1.0 0.03 2.4 8.62
5 -0.5 0.4 0.03 3.2 5.08
6 -0.5 1.0 -0.09 4.1 8.68
7 -1.6 0.1 -0.02 3.5 8.70
8 0.1 -1.1 0.1 3.4 5.07
9 0.5 4.0 -0.4 4.6 9.04

Fig. 8 shows the likelihood ratio test computed by Al-
gorithm 4. For illustration purposes, an omnidirectional

antenna was assumed. In fact, if the true antenna has been

used A0(ku; !), then the stronger signatures would have to-

tally masked the weaker ones. The algorithm was param-

eterized with M� = 30, �1 = 0:7, �M�
= 1:3, Mk = 24,

kDC1 = �3, and kDCM
k

= 3, leading to sampling intervals

of the relative velocity and of the Doppler centroid of 0:02

and 0:25, respectively. All moving targets originated spikes

at correct moving target slant-range coordinates. Notice,

however, the presence of two spurious spikes at slant-ranges

-17 and -6. These spikes do not produce false alarms be-
cause Algorithm 5 selects only the moving target with the

highest likelihood ratio in each iteration. It is worth noting

that targets 1, 5, and 8, although not discernable among

the ground clutter in Fig. 7, yield a large likelihood ratio,

as we can read from Fig. 8.

Fig. 9 shows the likelihood ratio test computed by Al-

gorithm 4 after deleting the signature of target 9 (step 8

of Algorithm 5). All the remaining targets 1 to 8 pro-

duced spikes at correct moving target slant-range coordi-

nates. The spurious spikes present in Fig.8 at slant-ranges
-17 and -6 have been removed.
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Fig. 9. Likelihood ratio test computed by Algorithm 4, using an
omnidirectional antenna, after deleting the signature of target 9
(step 8 of Algorithm 5). All the remaining targets 1 to 8 orig-
inated spikes at correct moving target slant-range coordinates.
The spurious spikes present in Fig. 8 at slant-ranges -17 and -6
have been removed.

Table III presents the estimation errors of parameters

(x0; y0; �; �) for the nine moving targets present in the tar-

get area. Parameters tmax, M�, and M� of Algorithms

1, 2, and 3 were set to 2, 10, and 10, respectively. Al-

gorithms 2 and 3 were applied in multigrid fashion using
three depth levels. The last column of Table III shows,

for each target, the logarithm of the likelihood ratio log l.

The higher values of log l correspond to targets with the

higher SCNRopt, or, equivalently, to targets with small

spectral overlapping with the background spectrum. Us-
ing the Neyman-Pearson threshold � = � logPF derived in

the previous section, the upper bound for the probability of

false alarm PF allowing the detection of all moving targets

is PF = 1:5� 10�2.

Roughly, the errors in x0 and in y0 are of the order of

0:5m and 1m, respectively, being lower than the slant-

range and cross-range resolutions. The errors in � and �

are of the order of 10�4 and 4 � 10�3, respectively. The

proposed approach yields good results even for targets with
spectrum totally or almost totally superimposed on the

background noise, which is the case for targets 1, 5, and 8.

Extended target 9 exhibits the largest initial cross-range

error. This is due to model mismatch, as we assume the

targets to be point-like. Nevertheless, the estimated mov-
ing target parameters are still good for many purposes.

Table IV present results similar to Table II for SCR=

14 dB and CNR= 20 dB. The estimates are similar to those

presented in Table III with a little degradation mainly for
targets 1 and 9. The logarithm of the likelihood ratio log l,

compared with the previous example, decreases by, roughly,

0.5.

Table V shows the sample root mean square error (rmse)

of the moving target velocity estimates (bx0; by0; b�; b�) as a
function of the slant-range velocity �, for � = 1:2, SCR=

10 dB, and CNR= 20 dB. Values shown were obtained

from 64 Monte Carlo simulations per point. Parameter �
determines the percentage of superposition between back-
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TABLE IV

Estimation results for SCR = 14 dB and CNR = 20 dB.

Coordinates are in meters.

Initial coord. Velocity (�103) GLR

Target bx0 � x0 by0 � y0 b�� � b� � � log l

1 0.4 -1.7 0.08 10.0 3.50
2 0.2 -0.7 0.05 3.2 8.02
3 0.2 0.5 -0.06 3.8 8.00
4 0.3 -2.8 0.14 4.4 7.94
5 -0.5 0.1 0.06 3.2 4.41
6 -0.5 1.0 -0.09 4.1 8.01
7 -3.0 1.9 -0.2 3.0 8.01
8 -0.1 -4.8 0.6 3.4 4.48
9 0.5 5.1 -0.5 4.6 8.35

TABLE V

Sample root mean square error of (bx0; by0; b�; b�; ) as function

of �, for � = 1:2, SCR= 10 dB, and CNR= 20 dB.

� rmse(bx0) rmse(by0) rmse(b�) rmse(b�)

0.005 0.64 5.6 6:9� 10�4 9:4� 10�3

0.01 0.66 3.1 3:6� 10�4 4:4� 10�3

0.015 0.22 1.9 2:1� 10�4 3:7� 10�3

0.02 0.38 2.0 2:2� 10�4 3:2� 10�3

0.025 0.33 1.3 1:6� 10�4 2:9� 10�3

ground and moving target spectra. The selected values of

� = 0:005; 0:01; 0:015; 0:02; 0:05 corresponds to spectral su-

perpositions of 84%; 68%; 51%; 36%; 20%, respectively. As
expected, estimates improve when the spectral superposi-

tion becomes lower. For SCR= 0 dB and CNR= 20 dB

the root mean square error of bx0 is very close to the values
shown in Table V, whereas the root mean square error ofby0, b�, and b� is higher by a factor ranging between 2 and 3.

Often, in real applications, the antenna radiation pat-

tern, the clutter power, and the noise power are not

known exactly. To illustrate the robustness of the proposed

scheme to model mismatches, we have applied the proposed

estimation scheme to simulated data generated with the

mission parameters shown in Table I and SCR= 20 dB and
CNR= 20 dB, but using, in the estimation algorithm and

TABLE VI

Estimation results with model mismatch. Data was

generated with a raised cosine shaped antenna and with

SCR= 20 dB and CNR= 20 dB. The estimation algorithm

assumed, compared with the true values, an antenna

radiation pattern 10% broader, a backscattering coefficient

10% higher, and a noise spectral power 10% lower.

Coordinates are in meters.

Initial coord. Velocity

Target bx0 � x0 by0 � y0 (b�� �)103 (b� � �)103

1 0.5 -1.0 0.05 3.8
2 0.2 -2.5 0.22 2.8
3 0.2 -2.2 0.18 3.8
4 0.3 -2.1 0.11 2.4
5 -0.5 -0.7 -0.16 3.2
6 -0.1 -1.6 0.17 2.4
7 -2.6 -1.2 0.15 2.5
8 -0.1 1.0 -0.21 -2.5
9 0.5 1.9 -0.20 4.6

TABLE VII

MSTAR mission parameters.

Parameter Value

Carrier frequency 9.6GHz
Chirp bandwidth 591MHz

Swath central range 4.5 km
Depression angle 15Æ

Platform velocity 220 km/h
Cross-range sampling interval 0.203m

Cross-range resolution 0.304m
Slant-range sampling interval 0.202m

Slant-range resolution 0.305m

compared with the true values, an antenna radiation pat-

tern 10% broader, a backscattering coeÆcient 10% higher,

and a noise spectral power 10% lower. Table VI displays

the moving target estimates obtained. In spite of model
mismatches considered, the results exhibit only a little

degradation, when compared with those of Table III com-

puted in a model matched scenario.

B. Real Data

In this section, images from MSTAR data public col-

lection (see [26]) collected by Sandia National Laboratory

using STARLOS sensor were used. Main mission parame-
ters are given in Table VII. Fig. 10 shows a visible (top)

and two X-Band (middle and bottom) images of the BTR

60 transport vehicle. The aspect angles of the middle and

of the bottom images are nearly 0Æ and 90Æ, respectively.

Fig. 11a shows an X-Band SAR image of ground plus six

moving targets (transport vehicles BTR 60) focused with
the wavefront reconstruction algorithm [10] (see Appendix

C) parameterized for static target (i.e., � = 0 and � = 1).

The true vehicle positions, at u = 0, are indicated with

numbered white circles. For better perception, Fig. 11b

shows (as a negative) only the image of moving vehicles.
Notice that only vehicle 1 is correctly focused and located.

The remaining vehicles are blurred or wrongly located or

both, as the image was focused using static target param-

eters, i.e., � = 0 and � = 1. The shape of the blurring

depends on the moving target velocity mismatch. Target 2
is blurred along cross-range, due to a relative velocity mis-

match; targets 3 and 4 are split due to a fractional Doppler

centroid mismatch; �nally, targets 5 and 6 are blurred in

both directions, due to relative velocity and Doppler cen-

troid mismatches.

The clutter signature in the (ku; !) domain was com-

puted by reversing the wavefront reconstruction steps de-

scribed in Appendix C. First, we compute expression
S(kX ; kY ) [see (78)] and then interpolate this function to

obtain S0(ku; !) in a rectangular grid according to (75)

and (76) for � = 1. The nth moving targets signature was

generated, according to (8), by computing

Sn(ku; !) =
X
i

An(ku)Pn(!)fine
�j

q
4k2�( ku

�n
)
2
Xik+( ku�n )Yik ;

(48)

where indexes i and n denote the ith pixel of the nth mov-
ing target.
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Fig. 10. Visible (top) and X-Band (middle and bottom) images of the
BTR 60 transport vehicle (data from the MSTAR data public
collection). Aspect angles of the middle and bottom images are
nearly 0Æ and 90Æ, respectively.

In a real scenario, the antenna radiation pattern can

be measured or estimated from a point target. In the
present data set, although there are strong targets, we

are not sure if they are point-like. For this reason we

resort to power spectrum estimation tools to determine

the shape of the antenna radiation pattern jA0(ku; !)j, the
variance �jA0(ku)j2 + 
 of the clutter plus noise signa-
ture w(ku; t), and the pulse P (!). Concerning the variance

�jA0(ku)j2+
, an homogeneous rectangular region (north-
east and south-west coordinates (100;�60) and (5; 20), re-

spectively, in Fig. 11) was selected, then computed the

sample mean of jw(ku; t)j2 along t coordinates and �nally
applied smoothing along ku coordinate. The magnitude of

pulse function jP (!)j was determined using a similar pro-

cedure.

Fig. 12 shows the estimated magnitude of the antenna
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Fig. 11. Real scene focused using parameters (� = 0; � = 1). Part
a) shows an X-Band image containing moving targets (transport
vehicles BTR 60) over ground clutter. The true vehicle positions,
at u = 0, are indicated with numbered white circles. Part b) is
the same as part a), but displays only the moving targets in
negative and focused with static targets parameters (i.e., � = 0
and � = 1). Both data (moving targets and ground clutter) were
built using data from the MSTAR data public collection.

radiation pattern. Notice that the cross-range sampling

frequency ks is only marginally above the Nyquist fre-

quency, thus placing stringent performance requirements
on the moving target detector, as these target signatures

will always overlap, at least partially, the clutter signature,

regardless of the slant-range velocity.

In simulating the moving targets signatures, A0(ku) has

been used as antenna radiation pattern and the respective
estimated magnitudes as the pulse function P (!). One

notes that, although jA0(ku)j and jP (!)j might be di�er-
ent from A0(ku) and P (!), this has no impact on the re-

sults, as the performance of the detection and estimation

schemes proposed in the previous section depends only on
the magnitudes of those functions.

Table VIII shows the parameters of the six vehicles mov-

ing in the target area. The SCR with respect to the

strongest moving scatterer is 30dB for target 1 and 20dB

for targets 2 to 6. Initial positions x0 and y0 are relative to
the strongest moving scatter. The Doppler centroids nor-
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Fig. 12. Estimated magnitude of the antenna pattern A0(ku).

TABLE VIII

Moving target parameters of the six tanks spotted in Fig.

11. Coordinates are in meters.

Initial coord. Rel. vel. Vel. (km/h)

Target x0 y0 � � jvj
1 -12.5 0 0.0 1.0 0
2 40 -40 0.0 1.1 22
3 -80 80 0.0385 1.0 8.5
4 70 -76 0.0385 1.0 8.5
5 -21 -52 0.1346 0.8 53
6 -4 65 -0.1346 1.2 53

malized to the Nyquist frequency of targets 1-2, 3-4, 5 and

6 are 0.0, 0.5, 1.75 and -1.75, respectively.

Table IX presents the estimation errors. Excepting the

initial cross-range position y0 of targets 5 and 6, all esti-

mates are very accurate. The error of the initial position
x0 and of the motion transformed coordinates X and Y are

less than 1m; the error of the slant-range velocity � and

of the cross-range velocity estimates are less 0.4% and 1%,

respectively. Concerning the initial cross-range position y0,

targets 5 and 6 present the larger errors, the reason being
the extended nature of the targets. In fact, a thorough in-

spection of the vertical tank shown in Fig. 10 reveals that

the most predominant scatterers are very close in re
ec-

tivity and aligned along the cross-range coordinate. The-

ses two targets interfere generating an equivalent Doppler

domain dependent re
ectivity f(ku) that distorts the an-
tenna radiation pattern A(ku), leading to errors on the rela-

tive slant-range velocity. This phenomenon is equivalent to

TABLE IX

Estimation results for the six extended targets shown in

Fig. 11. Coordinates are in meters.

Initial coord. MT coord. Rel. vel. (�102)

Tar. bx0 � x0 by0 � y0 bX �X bY � Y b�� � b� � �

1 0.00 -2.2 0.0 0.0 0.05 0.01
2 -0.18 -0.86 -0.18 0.0 0.02 0.02
3 0.00 -2.03 -0.08 -0.02 0.04 -0.004
4 0.01 -1.3 0.09 0.2 0.03 -0.073
5 -0.11 5.01 -0.01 -1.15 -0.15 0.021
6 -0.36 -8.36 0.12 1.00 -0.20 -1.00

having targets with re
ectivities dependent on the aspect
angle. Surprisingly, the errors induced by these model mis-

matches are perfectly acceptable with respect to the slant-

range velocity itself, the same not being true for the initial

position y0. While we obtained errors smaller than 2m for

those targets exhibiting a clearly predominant scatterer,
this was not the case with targets 5 and 6, for which we

obtained errors of the initial cross-range positions of 5.01m

and �8:36m, respectively. Recall that by0 = (b� bX + b� bY )=b�
and that bX ' 4500m; therefore, to have errors less than,

say, 1m in by0, the relative slant-range estimate b� must ex-

hibit an absolute error smaller than 2.2�10�4. This is not
achieved for targets 5 and 6, where the errors of the rela-

tive slant-range velocities are �1:5�10�3 and �2:2�10�3,
respectively.

C. Limitations of the Proposed Method

The proposed method was developed under two main as-

sumptions: 1) targets are point-like and 2) the slant-range

velocity satis�es � � c=(BDy). The �rst assumption is
violated when the target is extended and does not have

any predominant scatterer; the second assumption is more

restrictive in SAR systems with high resolution in the slant-

range direction (large pulse bandwidth B) and low resolu-

tion in the cross-range direction (large cross-range length

Dy), not a very common scenario.

Concerning limitation 1), the mean E[si] = fai of ran-

dom variable si, introduced in (35), is not valid in the case

of an extended target. A solution to this problem is mod-

elling extended targets as arrays of discrete point targets,
each one with re
ectivity fi and distance di to a refer-

ence point. The mean value of si would then be given by

E[si] = ai

P
n
fne

�j
kui

dn

� . The determination of fi and di,

for i = 1; : : : is out of the scope of this paper. Anyway,

as most natural and man-made extended targets have pre-
dominant scatterers exhibiting nearly point-like behavior,

the proposed approach applies largely to these targets.

Concerning limitation 2), it can be overcome by parti-

tioning the fast-time frequency interval into N subsets of

equal length such that the condition �� (cN)=(BDy) be-
comes true, and apply the proposed method to one of the

resulting data sets. If the accuracy of the estimates is poor,

one may compute the sample mean of the moving target

parameter estimates from all the data sets.

V. Conclusions

The paper presents a novel methodology to detect multi-

ple moving targets in stripmap SAR and to estimate their
trajectory parameters using a single sensor. By taking into

account the antenna radiation pattern, the proposed al-

gorithm determines, for each moving target (assumed to

have constant velocity), not only the target location in the

slant-plane, but also the two components of the velocity
vector (cross-range and slant range velocities). Therefore,

the so-called azimuth position uncertainty inherent to sin-

gle sensor based systems is solved.

Whatever the domain (i.e., space, frequency, or mixed)
adopted to detect the moving targets and estimate their
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parameters, their signatures are spread over a two-
dimensional set, thus introducing complexity in any pro-

cessing scheme. To reduce this complexity, a step was intro-

duced that compresses moving target signatures along the

slow-time Doppler domain for a given fast-time. Besides

compressing moving targets signatures, this step yields,
for each moving target candidate, the slant-range motion

transformed estimate and an approximate estimate of the

relative speed.

A generalized likelihood ratio test approach was then

adopted to detect moving targets and derive their trajec-

tory parameters. Determining the maximum likelihood es-

timate necessary to compute the generalized likelihood ra-
tio test would amount to a multidimensional nonlinear op-

timization of the unknown parameters, with unbearable

computational burden. Instead of computing the exact

maximum likelihood estimate, a suboptimal approach was

adopted that iteratively maximizes the likelihood function
on given subsets of the search space. The detection thresh-

old was set according to the Neyman-Pearson criterion. Is

was found that in the ideal case of perfect knowledge of den-

sity parameters (clairvoyant detector), the detector perfor-

mance depends only on optimal signal to clutter plus noise
ratio (SCNRopt) obtained with the matched �lter (�lter

matched to the signal signature immersed in clutter plus

system noise). As an indication of the detector perfor-

mance, for a false probability of 10�2 we have a detection

probability greater that 0:8 for SCNRopt & 10.

The e�ectiveness of the proposed method was illustrated

with synthetic and real data. In the former case we simu-
lated an S-band image with 8 point moving targets and

an extended target with a predominant scatterer. For

SCR= 20 dB and CNR= 20 dB we obtained estimates of

the relative slant-range and cross-range velocities within an

error of, approximately, 0.01% and of 0.4%, respectively.
The initial position coordinates displayed errors less than

the slant-range and cross-range resolutions. These values

only degrade slightly for SCR= 14 dB and CNR= 20 dB.

Real data results were obtained from X-Band images of

the MSTAR public data collection collected by Sandia Na-

tional Laboratory using STARLOS sensor. The ground

clutter and moving target signatures (transport vehicles
BTR 60) were obtained by resynthesizing the respective

re
ectivities using an inverse wavefront reconstruction al-

gorithm. The SCR of all moving targets, measured with

respect to the strongest moving scatter was less than 20dB.

With the exception of the initial cross-range position, all
estimates were very accurate. The errors of the initial po-

sition x0 and of the motion transformed coordinates X and

Y are less than 1m; the error of the slant-range velocity �

and of the cross-range velocity estimates are less 0.4% and

1%, respectively. Concerning the initial cross-range posi-
tions, we obtained errors smaller than 2m for those targets

exhibiting a clearly predominant scatterer. This is was not

the case for targets 5 and 6 that had two predominant tar-

gets with similar re
ectivity at the same cross-rangemotion

transformed coordinate. For this targets the error of the
initial cross-range position is 5.01m for target 5 and �8:36 ,

for target 6.
The major limitations of the proposed method are the

assumptions of 1) independence of the antenna radiation

pattern with respect to the fast-time frequency and 2)

of point-like moving targets. The �rst limitation can be

circumvented by partitioning the fast-time frequency into
small subsets and applying the proposed technique to the

resulting data bases. The solution for the second limita-

tion is modelling extended targets as arrays of discrete

point targets, each one with a given re
ectivity and dis-

tance to a reference point. This approach is to be exploited
in future work. Anyway, as most natural and man-made

extended targets have predominant scatterers exhibiting

nearly point-like behavior, the proposed approach applies

generally to these targets.

Appendices

A. Fast-time Compressed Signal

We wish to compute the fast-time compressed signal

smc(ku; t) � F�1
(!)

h
Sm(ku; !)P

�(!)ej 
0(ku;!)

i
; (49)

where Sm(ku; !) is given by (24) and  0(ku; !) is given by

(12) for moving target parameters (�0; X 0
; 0). Introducing

Sm(ku; !) and  
0(ku; !) into (49), we obtain

smc(ku; t) = F�1
(!)

h
jP (!)j2A(ku)fe�j�(ku;!)e�jku(Y=�)

i
(50)

with

�(ku; !) = 2k

24s1�
�
ku

2k�

�2
X �
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�
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2k�0

�2
X
0

35 :
(51)

Expanding � in Taylor series about ku = 0, we get

�(ku; !) = 2k

"
(X �X
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�
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�2�
X

�2
� X

0

�02
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where j�j / k
4
u

64k3

��� X
�4
� X

0

�04

���. Assuming that
��� X
�4
� X

0

�04

��� �
64�k3

jkuj
4
max

, then, phase � in (52) satis�es j�j � �, thus being

negligible.

By the same token we have

k
2
u

4k

�
X
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�
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2
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�
X
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� X

0

�02
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(1� k
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for
��� X
�4
� X

0

�04

���� 4�k30
jkuj

2
max

(�k)2
, with �k = k � k0.

Noting that k = k0 + !=c, inserting (53) into (52) and
the resulting expression for �(ku; !) into (50), we obtain

smc(ku; t) = F�1
(!)

h
jP (!)j2A(ku)fe�j!�(ku)e�j�(ku))

i
(54)

where

�(ku) � 2(X �X
0)

c
+

1

c

�
ku

2k0

�2�
X

�2
� X

0

�02

�
(55)

�n(ku) � � k
2
u

4k0

�
X

�2
� X

0

�02

�
+ ku

Y

�
+ '; (56)
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with ' = 2k0(X �X
0).

Assume that the variations of A(ku; !) are neglegible

within the frequency support of P (!). According to (21),

this is true if 2��k � �ku, where �ku ' (4�=Dy) and

�k = 2�B=c (B is the pulse bandwidth) are the band-

widths of A0(ku) and P (kc), respectively. The inequality
above can then be the rewritten as �� c=(BDy).

Under these conditions the inverse Fourier transform

(54) yields

smc(ku; t) = fRp[t� �(ku)]A(ku)e
�j�(ku): (57)

where Rp(t) is the auto-correlation of the transmitted pulse

p(t).

B. Background statistics

According to (26) and(30), the static ground term w is

w(ku; t) = F�1
(!)

h
S0(ku; !)P

�(!)e 
0(ku;!)

i
; (58)

where phase  
0(ku; !) is given by (12). Introducing

S0(ku; !) [see (25)] into (58) yields

w(ku; t) =

F�1
(!)

"
jP (!)j2A0(ku)

X
n

fne
�j�n(ku;!)e

�jkuYn

#
(59)

with

�n(ku; !) = 2k

24s1�
�
ku

2k

�2
Xn �

s
1�

�
ku

2�0k

�2
X
0

35 :
(60)

Proceeding as in Appendix A, we conclude that

w(ku; t) = A0(ku)
X
n

fnRp[t� tn(ku)]e
�j�n(ku);

where

tn(ku) � 2(Xn �X
0)

c
+

1

c

�
ku

2k0

�2�
Xn �

X
0

�02

�
(61)

�n(ku) � � k
2
u

4k0

�
Xn �

X
0

�02

�
+ kuYn + ': (62)

Let us assume that the number of scatterers per resolu-

tion cell is large, none is predominant, the echo amplitudes

fn, n = 0; 1; � � � ; N �1 are mutually independent and have

phase uniformly distributed in a 2� interval independent of
its amplitude. Under these conditions w(ku; t) has complex

Gaussian density [27], and the random complex amplitude

fn has mean value and variance

E[fn] = E[j�nj]E[ej�]| {z }
=0

= 0 (63)

E[fnf
�
m] = Æmn�

Æ
n; (64)

where Æmn is the Kronecker symbol, and �
Æ
n is the nth

scatterer radar cross-section. This statistics implies that

E[w(ku; t)] = 0 and that the covariance Cw(ku1 ; ku2) �
E[w(ku1 ; t)w

�(ku2 ; t)] be given by

Cw(ku1 ; ku2) =

A0(ku1 ; ku2)
X
n

P�
Æ
n
Rne

�j[�n(ku1 )��n(ku2 )]; (65)

where

A0(ku1 ; ku2) � A0(ku1 )A
�
0(ku2) (66)

Rn � Rp[t� tn(ku1 ]R
�
p[t� tn(ku2)]: (67)

According to expression (62) it follows that

�n(ku1 )� �n(ku2) =

Xn

k
2
u2
� k

2
u1

4k0| {z }
ka

+Yn (ku1 � ku2)| {z }
kb

+
X
0

�02

k
2
u1
� k

2
u2

4k0| {z }
�

(68)

= Xnka + Ynkb + �: (69)

Thus,

Cw(ku1 ; ku2) = A0(ku1 ; ku2)e
�j� (70)

�
X
n

�
Æ
n
Rne

�jkaXne
�jkbYn : (71)

Function Rp[t � tn(ku)] has its energy highly concen-

trated about tn(ku) = t, or, according to (61), about

Xn = X
0
ct+ 2 +

�
ku

2�0k0

�2
2 +

�
ku

2k0

�2 :

Assuming that jku=(2�0k0)j2 � 1, then R(Xn; ku1 ; ku2) �
Rn has its energy clustered about Xn = X

0 + (c=2)t.

Having in mind that the backscattering coeÆcient

�
Æ(X;Y ) at (X;Y ) is given by

�
Æ(X;Y ) � ��1

X
fn:(Xn;Yn)2�(X;Y )g

�
Æ
n;

where �(X;Y ) is a small rectangle of area � centered at

(X;Y ), then expression (70) can be approximated by the
integral

Cw(ku1 ; ku2) =

A(ku1 ; ku2 ;�0)e
�j�

Z 1

�1

Z
Y2

Y1

R(X; ku1 ; ku2)

� �
Æ(X;Y )e�jkaXe�jkbY dX dY (72)

The high resolution of R(X; ku1 ; ku2), with respect to X

allows writing

Cw(ku1 ; ku2) = A0(ku1 ; ku2)e
�j�Z 1

�1

R(X; ku1 ; ku2)e
�jkaX dX| {z }

S(ku1 ;ku2 )

Z Y2

Y1

�
Æ(X 00

; Y )e�jkbY dY| {z }
�Æ(X00;kb)

;
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with X 00 � X
0 + (c=2)t:

Function S(ku1 ; ku2) is the Fourier transform of
R(X; ku1 ; ku2) with respect to X computed at ka = (k2

u2
�

k
2
u1
)=(4k0) and �

Æ(X; kb) is the Fourier transform of of

�
Æ(X;Y )I[Y1;Y2](Y ) with respect to Y , where I[Y1;Y2](Y )

is the indicator function of set [Y1; Y2].

Assuming that �
Æ(X;Y ) is constant with respect to

Y 2 [Y1; Y2], i.e., �Æ(X;Y ) = �
Æ(X) for Y 2 [Y1; Y2],

then �
Æ(X 00

; kb) = e
�kbY L�

Æ(X 00) Sa (kbL=2), with Y =

(Y1 + Y2)=2, L = Y2 � Y1, and Sa (x) � sin(x)=x. More-

over, if kb = ku2 � ku2 = 2l�=L, with l 2 Z , then

Cw(ku1 ; ku2) = �
Æ
LERp jA0(ku)j2Æl (73)

where �Æ � �
Æ(X); ERp � S(ku; ku) denotes the energy of

jRp[cX=2]j2, and Æl denotes the unitary impulse.

If �Æ(X;Y ) is not constant with respect to Y , then
function �

Æ(X; ku1 � ku2) becomes more broaden. How-

ever, since jkaj � 1, it is still reasonable to assume in

most situations that S(ku1 ; ku2) is much more smooth than

�
Æ(X; ku1 � ku2). In this case we have

Cw(ku1 ; ku2) = e
�j�

ERpA0(ku1 ; ku2)�
Æ(X 00

; ku2 � ku1):

(74)

C. Wavefront Reconstruction Algorithm

This appendix summarizes the matched �ltering ap-

proach to SAR imaging.

Let kX and kY be de�ned as

kX =

s
4k2 �

�
k2
u

�

�2
; (75)

kY =
ku

�
; (76)

for (!; ku) 2 SPA, where SPA is the frequency support of

P (!)A(ku; !). The received signal (8) can thus be written

as

S(ku; !) = P (!)A(ku; !)fe
�jkXXe

�jkY Y : (77)

We assume that 4k2� (ku=�)
2
> 0 for (!; ku) 2 SPA. This

condition, always satis�ed in any application of interest,

implies that kX is always real.

In the case of an extended moving target with all its

elementary scatterers having the same relative speed �,

the returned signal is

S(kX ; kY ) = P (!)A(ku; !)

Z Z
f(x; y)e�jkXXe�jkY Y dxdy| {z }

F (kX ;kY )

:

(78)

Estimating f(X;Y ) is therefore an inverse problem

that can be addressed under the regularization [28], the

Bayesian [29], or the matched �ltering [7, ch. 2] frame-

works. The matched �ltering approach is the most frequent

used in SAR applications, as it is lighter, from the compu-
tational point of view, and robust to model mismatches.

Matched �ltering is performed both in fast-time and
in slow-time. It amounts to compute the inverse Fourier

Transform

f̂(X;Y; �) = F�1
(kX ;kY )

[P �(!)A�(ku; !)

� P (!)A(ku; !)F (kX ; kY )] : (79)

In summary, the matched �ltering approach to SAR

imaging implements the following steps:
1. Computes the two-dimensional Fourier transform of
data s(u; t)

2. Implements the change of variables (75) and (76)

3. Computes the two-dimensional inverse Fourier trans-

form (79).
This imaging scheme belongs to a class of algorithms often
referred to as wavenumber domain or ! � k processors,

or wave front reconstruction in the Soumekh's terminology

[10], [5]. The roots of this imaging scheme can be traced

back to seismic signal processing for imaging the substrata

of earth [30], [31]. This ideas were latter applied to imaging
of SAR data (see, e.g.,[32], [33], [34]).

List of Symbols

a(�; �; !) Two-way antenna radiation pattern at
frequency ! + !0

A(ku; !) Slow-time Doppler two-way antenna ra-

diation pattern
B Pulse bandwidth

c Speed of light

Cw(ku1 ; ku1) Covariance of w(ku; t) at time t

Dy Cross-range aperture length

ERp Energy of Rp(t)

Ep Energy of p(t)
f Point target refectivity

F Fourier transform operator

F�1 Inverse Fourier transform operator

g(kx; ky) Fourier transform of the electric �eld in

the antenna aperture
k Wavenumber

kDC Doppler centroid

ks Nyquist cross-range frequency

kx Slant-range spatial frequency
ky Cross-range spatial frequency

ku Slow-time Doppler (frequency) domain

(spatial frequency)
l(s) Likelihood ratio

L Cross-range length of the target area

N (�;C) Normal probability density function of

mean vector � and covariance matrixC
p(t) Transmitted radar signal

p(sjf;�) Probability density function of vector s

parameterized with f and �
P (!) Fourier transform of the transmitted

radar pulse
PD Probability of detection

PFA Probability of false alarm

r Radial distance
Rp(t) Deterministic autocorrelation of p(t)

s(u; t) Spatial signature of a scene

s(u; !) Fourier transform of s(u; t) w.r.t. t

S(ku; !) Fourier transform of s(u; t) w.r.t. u and t

S(
; !) Discrete Fourier transform of s(n�u; !)
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sc(ku; t) Compressed signature in the (ku; t) domain
t Fast-time domain

u Slow-time domain (position of the antenna)

vx Slant-range velocity of a moving target

vy Cross-range velocity of a moving target

v Velocity magnitude of a moving target
x Slant-range domain

x0 Initial (u = 0) slant-range coordinate of

a moving target
X Motion transformed slant-range coordinate
�x Center of the slant-range interval corre-

sponding to the swath
y Cross-range domain

y0 Initial (u = 0) cross-range coordinate of
a moving target

Y Motion transformed cross-range coordinate

� Relative speed of a moving target

� Detection threshohd
� Aspect angle of a target

� Moving target parameter vector (�; � X; Y )

� Wavelength

� Relative slant-range velocity of a mov-

ing target
� Relative cross-range velocity of a mov-

ing target
�
0 Backscattering coeÆcient

�
n System noise spectral power
� Longitude of a target

! Low-pass equivalent frequency domain

!0 Carrier frequency

 (ku; !) Phase of the scene signature in the

Fourier domain
�u Cross-range spatial sampling
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