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Abstract—Reconstruction of the backscatter and extinction
coefficients is a crucial step in many quantitative remote sensing
applications, such as radar, light detection and ranging (lidar),
and sonar. We present a novel stochastic filtering approach for
the estimation of the backscatter and extinction coefficients from
time-range elastic-backscatter lidar data. The Bayesian perspec-
tive is adopted; we take as prior a causal first-order autoregressive
Gauss—Markov random field tailored to enforce smoothness on
time and range dimensions. By using a reduced-order state-space
representation of the prior, we derive a suboptimal stochastic
filter that recursively computes the backscatter and extinction
coefficients at each range-time inversion cell. The estimator is a
kind of adaptive extended Kalman filter, being efficient from the
computational point of view. A set of experiments illustrates the
effectiveness of the proposed approach, namely its advantage over
the classical Klett deterministic approach.

Index Terms—Backscatter and extinction coefficients, Bayesian,
Kalman filter, light detection and ranging (lidar), reduced-order
model, stochastic filter.

I. INTRODUCTION

WAVE PROPAGATING in a random medium suffers at-
tenuation and scattering. If the multiple scattering among
scatters is negligible and there is no wavelength shift (elastic
scattering), then the first-order multiple scattering solution [1,
ch. 8] to the backscattered mean power received from range z is

Plz) = Z%ﬁ(z) exp (—2. /0 ’ a(z')dz'> )

where C is a system dependent constant, and (3 and « are, re-
spectively, the backscatter and the extinction coefficients (herein
termed optical parameters).

An important class of remote sensing applications aims at the
measurement of the backscatter and extinction coefficients in
the volume being scanned. Relevant examples are reflectivity
weather radars [2], [3] and elastic-backscatter light detection
and ranging (lidar) [4]-[14].

Fig. 1 illustrates a typical pulsed lidar remote sensing sce-
nario. At regular time intervals the laser emits light pulses that
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Fig. 1. Lidar remote sensing scenario. The light pulses transmitted by the laser

are scattered by the clutter, and part of the energy reaches the photodetector
yielding the signal y(z).

are steered by an optical assembly toward a given region of
the space; usually, the lateral coordinates of the beam are con-
stant during a given number of pulses; these coordinates may,
however, vary linearly from pulse to pulse to decrease the scan
time, as it happens, for example, in weather radar. Part of the
light propagating through the medium is scattered by the optical
clutter and reaches the photodetector originating the received
signal y(z).

Determining the optical parameters is a hard inverse problem,

namely, owing to the following features.

1) Mean power P is not known, and it has to be estimated
from a series of noisy echoes.

2) The pair («, ) cannot be determined (even if the mean
power P is exactly known), since (1) is a many-to-one
mapping.

3) Optical parameters are usually nonhomogeneous and
nonstationary, introducing additional complexity in the
processing scheme.

A. Classical Approaches

Relevant approaches for the inversion of optical parameters
are the slope and the exponential fitting methods (e.g., see [8]
and [15]), the Klett’s stable implementation [5], [7] of the de-
terministic solution proposed by Hitschfeld and Bordan [16] (in
the context of rain intensity measurements by weather radars),
the extended Kalman filters [17], [18], and the nonlinear sto-
chastic filter [19].

The exponential fitting technique applies to homogeneous
clutter, i.e., the backscatter and extinction coefficients are
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assumed constant; the optical parameters are found by min-
imizing the square error between the observed data and the
mean power given by (1). The slope method is also a least
square fitting technique, but applied to

S(z) = log(22P(2)).

The exponential fitting technique provides better results than the
slope method [15], at the expense of a higher computationally
burden associated with a nonlinear fitting problem.

For homogeneous clutter, the slope and the exponential fit-
ting methods are robust in the sense that they do not assume any
prior relation between « and [ (herein termed constitutive re-
lation). However, the homogeneous assumption severely limits
the application scope of these methodologies.

In order to invert function (1) with respect to optical param-
eters in the case of nonhomogeneous clutter, there is need for
a constitutive relation. Several experimental and theoretical
studies [20]-[22] have concluded that the power-law relation

B(z) = Boa“(z) 2)

models with good accuracy situations where Mie scattering is
dominant over Rayleigh scattering, and the multiple scattering is
negligible [22] (e.g., hazy, cloudy, or foggy conditions or gener-
ally for infrared (IR) wavelengths). Parameters B (the so-called
backscatter-to-extinction ratio) and the power law exponent ¢
depend on the type of aerosol and on the laser wavelength.
Constitutive relation (2) has been assumed, e.g., in [5], [15],
and [17]-[19]. In [18], the backscatter-to-extinction ratio By is
allowed to vary smoothly with range z. This makes sense when-
ever the light pulses propagate through optical clutters with dif-
ferent scattering characteristics. Herein, we assume that By does
not vary with range.

Under the constitutive relation (2), the exact solution for the
extinction coefficient is (e.g., see [5])

exp [(S621252]
a(z) = 07— 27 e [M] dz! 3)

with Sg = S(z0) and g = a(zp), where zy is a given range.
Klett [5] shows that the backward implementation of expression
(3) (integrating from the farthest range backward) is more ro-
bust to errors on a than the forward one, mainly for scenarios
where the maximum range-integrated extinction coefficient (the
so-called optical thickness) is high. According to his words:
changing from forward to backward implementation “makes a
very significant difference in the behavior of the solution. As
z decreases, « is now determined as the ratio of two numbers
that each becomes progressively larger, so that the dependence
of the solution on « decreases with decreasing z.”

The application scope of expression (3), which we at times
term the deterministic solution, is limited, as this solution de-
pends on the mean power P [recall that S(z) = log(22P(2))].
In practical applications, P is inferred by time and range aver-
aging many samples. But how many samples should be averaged
and what range and time weighting should be applied in order
to have a good balance between bias and error covariance of the
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Fig.2. [Illustration of the 2-D scheme of sites where the observations are made.
According to the adopted model, the crossed sites are the neighbors of site (4, j),
given the past.

solution? This problem is solved by the stochastic filter we de-
velop in the remaining part of the paper; this filter applies time
and range smoothing adaptively, as function of the observed data
likelihood and of the prior.

Rocadenbosch et al. [17], [18] propose extended Kalman fil-
ters whose state-vectors include the optical parameters associ-
ated with a given range interval. The state-vector equation is a
first-order autoregressive vector process; basically, it imposes,
in a probabilistic sense, smoothness between two consecutive
time estimates at a given range. The smoothness among compo-
nents within the state-vector is achieved by imposing nonzero
correlation on these components. The referred works embody
the better features of the deterministic solution and of the least
square fitting procedures: they do not assume homogeneous op-
tical parameters and they address the problem at hand under
the stochastic framework. Moreover, [18] identifies the extinc-
tion-to-backscattering constitutive parameter By by including it
in the state-vector. Their major drawbacks are the lack of robust-
ness of the estimates with respect to the state-space noise corre-
lation matrix and its complexity, in the computational sense. For
example, if the optical parameters are to be estimated within a
range size of 5 km with a resolution of 20 m, the implementation
of the extended Kalman filter involves operations with matrices
of size 500 x 500.

B. Proposed Approach

Assume that the observed data and the optical parameters
are arranged into two-dimensional (2-D) fields (images); data
along rows is associated with the echo of a given time pulse
(range coordinate varying, time coordinate fixed), whereas data
along columns is associated with a given range (time coordinate
varying, range coordinate fixed). Fig. 2 schematizes a 2-D field
where each site! is associated with a random variable with a
given time and range.

We propose a stochastic filtering solution [23], [24] to the
optical parameter estimation at hand. It relies on the probability
density function (pdf) of the observed data, given the param-
eters, and on the state-space equation modeling smoothness
among neighboring sites. The observed data are assumed to be
random variables with pdfs depending on the optical parame-
ters. In this paper, we consider only the Gaussian pdf, which

IBy site we mean a range—time inversion cell.
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models, for example, large aperture lidar applications [25]. As
shown in the Appendix, the methodology is, however, easily
adapted to other statistics, such as the exponential and Gamma
pdfs, covering a wide range of scenarios in radar and lidar.
The assumed space-state equation is the reduced-order model
(ROM) [26] description of a causal first-order autoregressive
(AR) Gauss—Markov random field (GMRF) [27]-[29]. The
state variables are the extinction coefficient and the path-optical
thickness coefficient (optical thickness).

Stochastic filtering is a Bayesian approach where the state-
space equation plays the role of prior. In this paper, the prior
enforces smooth variation of the optical parameters. This is at-
tained by properly constraining the regression parameters of the
AR model. The reason underlying the choice of a causal random
field ROM description of the GMREF is that it leads to an effi-
cient (in terms of computational complexity) stochastic filter for
the problem at hand.

The estimation problem at hand is nonlinear in the following
two senses.

1) The optical parameters do not relate linearly to the ob-
served data.

2) The variance of the observation noise depends on the

state-space vector.

Implementation of nonlinear recursive filters is known to be
a hard problem because each recursion involves products and
convolutions between pdfs. Finite filter representation is there-
fore a crucial aspect in nonlinear filtering. For the problem at
hand, the propagation of the involved pdfs was derived and im-
plemented with a point mass representation in [19]. In spite of
the good results obtained therein, the computational complexity
of the filter is unbearable in practical applications.

In this work, aiming at an efficient solution in computational
terms, we represent the likelihood function as the Gaussian pdf
that minimizes the Kulback distance [30] to the true likelihood
function. The Gaussian representation allows a fruitful rein-
terpretation of the observation model: the observed data is a
noisy version of the mean power (1), where the noise is ad-
ditive Gaussian with mean and variance not depending on the
state-vector, but rather on the observed data.

The filtering problem we were led to is still nonlinear,
as the optical parameters relate in a nonlinear fashion with
the observed data. By expanding the observation equation to
first-order about the predicted state-vector, we obtain a linear
approximation to the original function. The final filter obtained
is of extended Kalman—Bucy type having low complexity. We
stress, however, that the overall algorithm is not an extended
Kalman—-Bucy filter (EKBF), since the observation equation
does not have the canonical form: nonlinear observations
immersed in Gaussian additive noise with known statistics.

To assess the effectiveness of the proposed approach, we
compare the derived filter with the standard particle filter
(e.g., see [31] and [32]). Particle filters are sequential Monte
Carlo approaches to nonlinear recursive filtering, where the
posterior density is represented by a set of random samples with
associated weights. As the number of samples becomes very
large, the filter approaches the optimal Bayesian behavior. We
give evidence that the proposed filter provides nearly optimum

performance, yet being much light, from the computational
point of view, than the particle filter.

The parameters of the AR model and of the power-law con-
stitutive relation are not known and have to be identified. To
this purpose, we exploit the characteristics of pseudoinnovations
process, a sequence of random variables internal to the proposed
stochastic filter: the variance of this variable is minimized when
the filter is optimal. Based on this fact, we propose a computa-
tionally efficient scheme to identify the filter parameters.

C. Paper Overview

The paper is organized as follows. Section II introduces
formally the optical parameter estimation and presents the
observation mechanism, the prior model, and the ROM rep-
resentation. Section III elaborates on the stochastic filtering
algorithm and on its implementation, namely on the approxima-
tion of the likelihood function with a Gaussian pdf. Section IV
presents the algorithm aimed at the identification of the filter
parameters. Finally, Section V presents experimental results
focusing on attenuation degree and on SNR, on robustness to
model mismatch, and on the comparison with the deterministic
method and with the particle filter.

II. PROBLEM FORMULATION

Consider a pulsed remote sensing system operating at a fixed
pulse rate. Let Z = {(¢,5)|¢ =1,....M,j=1,...,N} be
a set of sites, where j refers to the range z; = zo + j0 (20
and 6 are known constants), and ¢ refers to the ith pulse, also
termed time index ¢. Define also the lexicographical ordering
n = j+ (i — 1)N, associated with the index set Z.

Define y; ; and «; ; as, respectively, the observed signal and
the extinction coefficient, both at site (¢, 7). Define also the op-

tical thickness v; ; as

Yij = / ' a;(2")d7 4)
0

where «;(z) denotes the extinction coefficient at range z and
pulse <.

Since the mapping from the bidimensional indexes to the one-
dimensional ones is injective, we use the two indexing formats
wherever necessary, i.e., we can write y; ; or y, to denote the
same entity.

A. Observation Model

In remote sensing lidar applications, the signal ¥, at the
output of a photodiode-based receiver has mean value and
variance given by (e.g., see [25])

Un =Pn + 04 &)

P2
02 == 4+ (P, +va) + 0}, 6)
m

where P, is the mean backscattered power; vq, P2/m, b( P, +
va), and o3 are, respectively, the variances of the dark current
noise, of the speckle noise, of the shot noise, and of the thermal
noise. Constant m in (6) is the speckle count [25], which de-
pends on the size of the lidar aperture. According to expression
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(1) and assuming the power law (2), the mean backscattered
power P, is given by

CBy .
2 O exp(—27,) @)

n

P, =

where C' is a system-dependent constant, By and ¢ are the
power-law parameters, and z,, o, and 7, are, respectively,
the range, the extinction coefficient, and the optical thickness,
all at site n.

Herein we assume P?/m < b(P, + v4), meaning that the
speckle noise is negligible. This scenario accurately models
large aperture lidars with high speckle count figure, where the
shot noise is predominant. We also assume that the filtered
Poisson process at the output of the photodiode-based receiver
is Gaussian. The central limit theorem underlies this approxi-
mation (e.g., see [33, ch. 4] and [34]).

In this paper, we adopt the state-vector X, =
[Cns O N415Yns Yn-N+1]T . The details of this choice will be
given shortly. The conditional pdf p(y,|x,) is

P(ynl%n) = Nlyn — .07, ] (8)

with V(y — m, 0?) standing for a Gaussian pdf with mean m
and variance 0. Note that p(y,,|x,,) depends on the state-vector
via the mean power P,, = P, (x,,).

According to density (8), the random variable y,, can be rein-
terpreted as being the sum

Yn =Yp + Un €))

where v,, is a zero-mean Gaussian random variable of variance
oy2. We stress that 0,2 depends on the mean power P, and
consequently on the state-vector. This precludes the direct ap-
plication of Kalman—Bucy algorithm to the present problem, let
alone the nonlinear nature of P(x,,).

B. Prior Model

Fig. 2 schematizes the 2-D index set Z. The shadowed region
denotes the past, in a lexicographical sense, of site (¢, 7). The
crossed sites (z, 7 — 1) and (¢ — 1, j) are the first-order neighbors
of site (¢, ), given the past.

We model the extinction coefficient o, and the optical thick-
ness 7y, as causal first-order AR-GMREF [27]-[29] given by

(10)
Y

where {wq; ;) } and {w(; j)} are mutually independent, zero-
mean, independent Gaussian white fields with variances ag and
o2, respectively, and 01,05 > 0, with §; + 6, < 1.

In(10) and (11), when? = 1 or j = 1 or both, some boundary
conditions have to be assumed, since indexes (¢, 5 — 1) and/or
(¢ — 1, 7) take values outside the index set Z. Herein, we adopt
the so-called free boundary condition, which amounts to re-
ducing the AR support at the boundary, in order not to include
sites not in Z.

Regression (10) gives the next extinction coefficient «; ; as a
weighted mean of the past neighbors «; j_1 and «;_1 ; plus a
random component. Therefore, the proposed AR prior enforces
smoothness in a statistical sense, whose strength is controlled by

a;j =1, j—1 + O2ci_1j + Wa(i )

Vi =Yig-1+ 00+ we )

o2 . Regression (11) is a discrete approximation of the integral
relation (4); noise w; ; models the approximation error.
By introducing «; ; into (11), we obtain

Yij = Yij—1+ 0010 j_1 + 00201 j + w5 (12)

where {w.(; jy} = {0wa(i j) +w( ;) } is a zero-mean Gaussian
white field of variance 03 = 6202 + o%. We note that Wa(i,j)
and w.(; ;) have cross correlation given by Elwq (i jyw~,5)] =
bo2.

1) State-Space Formulation: In the recursive stochastic fil-
tering setup, the prior has necessarily a state-space description.
The AR model [(10)—(11)] admits a state-space description.
However, its state-vector would include 2(IN + 1) components
[(N + 1) for a and (N + 1) for 7] (see [29] and [35]). Values
of the order of hundreds for N are usual in lidar applications.
To avoid this huge state-vector, and the implicit computational
complexity, we adopt the ROM proposed in [26], where the
state-vector contains only the components whose indexes are
in the support of the AR model.

The state-vector is therefore [v,, ni1- N, Vns Ynt1-N]T
and the ROM state-space formulation of (10) and (11) is
expressed as

Qpt1 91 92 0 O [07%
Ap42-N _ 0 0 0 O Ap4+1—N
Yn+1 691 (592 1 0 Yn
Lnta-nN L0 0 0 0 Yn+1-N
xy:rl A’n ’::2
0 wa(n)
nt2— 0
+ "N+ (13)
Wy (n)
Yn+2—N 0
N——
with
ol 0 b0 0
_ rm_ |0 00 0
Qn = Efwnw, ] = 602 0 %02 +02 0 a4
0 0 0 0
where E[] denotes the mean value operator.
At the boundaries {(1,j),(¢,1), ¢« = 1,...,M; j =
1,...,N}, matrix A, ; is set to
1 0 0 0 01 0 0
0 0 0 O 0 0 0 O
Ai=ls 01 0| 21710 0 0 1 (15
0 0 0 0 0 0 0 O

Notice that vector u,, in (13) plays the role of a deterministic
input. This is, in fact, what happens in the ROM state-space
formulation: past state-vector components not in the AR support
act as known (already estimated) deterministic inputs.

The filter based on the ROM state-space representation ex-
changes optimality with computational complexity. A pertinent
question is, of course, what is the degradation introduced by
the ROM approach. In [36], experiments comparing both fil-
ters produced comparable visual results as well as comparable
mean-square errors. This issue is, however, beyond the scope of
this paper. For a deeper treatment, see [26], [29], [36], and [37].
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III. STOCHASTIC FILTERING SOLUTION

In the previous section, we derived the observation (9) and
proposed the ROM representation (13) of the AR-GMREF (10)
and (11) as prior for the clutter parameters. In summary, we have
(16)
(17)

Xn+1 :Anxn +u, +wy,
Yn =h(xn) + v

where h(x,) = 7, is given by (5), and {v, } is a zero-mean
white Gaussian sequence of variance azn given by (6).

Stochastic recursive filtering is a Bayesian estimation
technique that, based on a state-space recursive model (not
necessarily linear) and on an observation equation, recursively
propagates the pdf p(x,|Y ) (the so-called filtering density),
where Y,, = {yn,Yn_1,--.,y1}. It is worth noting that, from
a Bayesian point of view, the filtering density conveys all the
information about x,,, the entity to be estimated.

The recursive propagation of the filtering density is accom-
plished by implementing the following steps (for a detailed
explanation, see [24]).

1) Prediction

P(Xnt1]Yn) = /W P(Xnt1[%0) (X0 Y0 ) dXye. (18)
2) Filtering
P(Xn+1|Ynt1) o€ p(Ynt11Xn+1)p(Xn+1[Yn) (19)

where p(Xn41|Xn) and p(Ynt1|Xn41) are the so-called
convolution kernel and observation factor, respectively.

When both the state equation and the observation equation are
linear, the state and observation noises are independent of the
state-vector and Gaussian, and the initial filtering density p(xo)
is also Gaussian, the recursive propagation of the filtering den-
sity is computed by the Kalman—Bucy filter [38]. This filter ex-
ploits the fact that the convolution and the product of Gaussian
pdfs (prediction and filtering steps) yields Gaussian shapes [24].
Therefore, the prediction and filtering steps are given by simple
linear operations involving mean vectors and covariance ma-
trices (the first two moments).

When any of the above conditions fails, at least one of the
pdfs involved is not Gaussian, and the problem falls into the gen-
eral setup of stochastic nonlinear filtering [23], [24], [31], [32],
[38]-[41]. In this case, a second-order representation might be
far from optimal.

In the problem we are addressing, the observation (17) and the
variance 012,” of the observation noise v,, are nonlinear functions
of the state-vector x,,. Accordingly, the problem is nonlinear. A
solution for the problem at hand has been developed and tested
within the nonlinear framework in [19] using a point mass filter
[42]. This solution consists, basically, in approximating the pdfs
involved in the filtering process with point mass densities.

Although the point mass filter might produce results close
to the exact ones (providing that the sampling interval used in
representing the pdfs is small), it exhibits quite often complexity
unbearable to most applications.

In the remaining part of this section, we develop a suboptimal
linear filtering scheme exhibiting far less complexity than the
exact nonlinear filter, and nevertheless able to produce results

close to the optimal ones. The goodness of the estimates is il-
lustrated in Section IV, by comparing results obtained with the
standard particle filter (e.g., see [31] and [32]).

A. Extended Kalman—Bucy-Type Filter

According to the rationale developed in Section II-A,
the observation factor p(y,|x,) is the Gaussian density
N(yn — yn,oiz). As stated above, the problem at hand is
nonlinear, since: 1) the function P,(x,), given by (7), is
nonlinear; and 2) the shape of p(y, | P, ) as function of P, is not
Gaussian. To lighthen the filtering complexity of the problem
at hand, we derive in the Appendix, a Gaussian approximation
to p(yn| Py ) interpretable,? as the filtering step is concerned, in
terms of the observation equation

Zn = h(%y) + Uy (20)

where z, = |yn + 02 /b], h(x) = P(x) — b+ vq + 0% /b, and
v, is a zero-mean white Gaussian sequence of variance 0721 =
b(2b + z,,), independent of the state noise w,.

The EKBF for the nonlinear model (16) and (20) is the

Kalman—Bucy filter for the linear model

2n
(22)

Xn+1 =A,x, +u, +w,

Zn :E(i’rﬂn—l) + Hn(xn - §n|n—1) + ﬁn

where (22) is the observation equation linearized about the state
prediction X,,|,,_1 and H,, = V(X|,,—1) is given by [see ex-
pression of P given by (7)]

H, = P(Xpn_1) {%,0, —2,0} : (23)

Ap|n—1

As in the nonlinear case, the Kalman—Bucy filter implements,
in a recursive fashion, a prediction step and a filtering step (for
a detailed explanation, see [24]).

1) Prediction

Xn|n—1 :Anflxn—1|n—1 +upg

2n|n—1 :Anflzn—ﬂn—lAgfl + Qn71~ (24)
2) Filtering
Kn :En|n71HZ(HnEn\n71HZ + Ug,)_l

where X,|n_1 Exp|Zn 1], Xppn =~ ElXa|Zy),
Y n—1 and 3,,),, are approximations’ of the conditional
error covariance matrixes of in|n_1 and of ’)En‘n, respec-
tively, 02 = b(2b + 2,), and Z,, = {zn,...,21}.
The filter is initialized with Xoo = FE[xo] and
20‘0 = COV(X()).

2We stress that this_interpretation is only symbolic. It just means that
p(yn|Prn) ~ N (2, — h(P,)), both as functions of P,,. See the Appendix for
details.

3The estimates )Acn‘n,l and )A(n‘n are approximations (possibly poor)
of E[Xn|Zn-1] and E[x,|Z,], respectively, as linearization (22) is an
approximation to z,, and noise v,, is not Gaussian. The same rationale applies
alsoto X, |,—1 and X, .
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B. Backward Filtering

In Section II, we have introduced the lexicographical ordering
n = j 4+ N(i — 1), where j refers to the range z; = 2o + j
(20 and 6 are known constants), and ¢ refers to the ith pulse.
The proposed filter evolves forward, from the closest range z
toward the farthest range z,,. In this section, we assume that
zj = zm—(j—1),1.e., the filter evolves backward, from the far-
thest range z,,, toward the closest range zg. To distinguish both
filters, we term the former forward filter and the latter backward
filter.

Assume that the mean power F; n and the extinction coeffi-
cient c; v, both corresponding to the <th time-pulse and to the
farthest range IV, are available. Dividing the observation (39)
derived in the Appendix by the the mean power P; x corre-
sponding to the farthest range, we get

o2
zon = Po(x5) — bo + voq + —22 —vp, |
b ~——

~ v
-~

ho (%)

(26)

Von

where the subscript O refers to the same entities of (39) (see
the Appendix) normalized by the mean power. The normalized
power P, is given by

P; z 2 aii \°©
PO(xi,j) = P I]]\r = <—N> (—]> exp (2’71,]) (27)

zZj Q5 N

with y; ; being now defined as

zZN
Yij = / a;(r)dr.

J

(28)

The derivation of the backward filter parallels the forward one
with the exception of gradient (23), which is now given by

C

H, = Po(Rpn_1) {A 29)

an|n—1

70,2,0].

Therefore, the backward filter is also implemented according to
the recursive steps (24) and (25).

From (27) and (29), we see that the backward filter does
not depend neither on the system constant C' nor on the
backscatter-to-extinction ratio Bg. In addition, the backward
filter is more robust to numerical errors, particularly for large
values of both the optical thickness and the SNR. The reason is
basically the same underlying the advantage of the backward
implementation of deterministic solution (3) over the forward
one.

C. Parameter Identification

The filter parameters are unknown and must be estimated.
The forward filter is parameterized with the prior parameters 61,
02, 04, 0+, the constitutive parameters By, ¢, and the receiver
parameter C, whereas the backward filter is parameterized only
with the prior parameters 61, 02, 04, 04 and the constitutive
parameter c. Notice that, in the case of the forward filter, we
need only to identify the product C By.

The partitioned filter [43], [44] is a possible line of attack to
stochastic filtering with unknown parameters. This method was
already applied to lidar return power and log power estimation
[45]. In order to apply the partitioning scheme, one has to build a

bank of EKBFs, each one matched to an appropriate member of
the parameters set. In the present setup, any reasonable number
of filters would lead to a computational complexity much higher
than we wish.

Aiming at parameter identification, we propose a
simple scheme based on the expected properties of the
pseudoinnovations process {Z, =z, — E(En‘n_l)}.
Assuming that the filter operation is optimum, i.e.,
7L(§n|n_1) = FElzn|zn-1,%n-2,...,21], then the variance
o2 of %, underbounds the variance of the innovation process
generated by any suboptimal filter [46, chap. 10]. Based on
this rationale and on the assumption that the optical parameters
are quasi-stationary on the time coordinate, we propose the
following procedure:

0 = arg main J(6) (30)
with
1 M, N;
0) = 2.0 31
( ) 1\41]\[1 ;;’le( ) ( )

where 8 = (61,02,04,0,,CBy) for the forward filter and
0 = (01,62,04,0,) for the backward filter. Minimization (30)
should take into account the constraints 61,65 > 0,60 + 6, = 1,
and oo,0, > 0.

Notice that parameter ¢ is not included in €. The reason is
that it is not identifiable: the inversion of (7) with respect to
(Bo, ¢, ay,), form = 1,..., M N, is not one-to-one: there are
many triplets (By, ¢, a,) yielding the same mean power P,,. We
cope with this difficulty by setting ¢ = 1 and identifying the
product C'By that best explains the observed data. This setting
is justified by the following.

* The extinction coefficient «,, exhibits low sensitivity to
c. This can be drawn from (3), and it is illustrated in
Section IV-B.

* Theoretical and experimental studies have led to the con-
clusion that ¢ € [0.67,1] when Mie scattering is domi-
nant over Rayleigh scattering, and the multiple scattering
is negligible [22] (e.g., for hazy, clouds, or foggy condi-
tions or generally for IR wavelengths). The exact value
depends on the laser wavelength an on the aerosol.

The computation of [ given by (30) is done using a coordi-
nate descent technique. We have found that minimizations with
respect to (61, 62), CBy, and 0, 0, are practically decoupled.
This greatly simplifies the inference of vector 6.

IV. EXPERIMENTAL RESULTS

The backward recursive stochastic filter derived in the pre-
vious section is now applied to simulated data. The robustness
of this filter to model mismatches, referred to in Section II1-B,
underlies this choice.

To apply the backward filter one needs the mean power P; x
and the extinction coefficient a; n, both at the farthest range NV,
for: =1,..., M. We have computed estimates of these entities
based on the set {y; j,i=1,...,.M,j=N—-9,...,N}, ie,
based on a small number of columns of y; ; close to the farthest
range. Concerning the power P; , we averaged these columns
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and then applied a lowpass Gaussian filter in the time direction.
Concerning the extinction coefficient c;, v, we applied the slope
method to {y; ;, ¢ = 1,... M, j = N —9,...,N}. The esti-
mates of P; v and «;, n are, of course rough and might contain
larger errors. Nevertheless, as it is next illustrated, the backward
filter is able to recover from them most of the times.

Fig. 3(a) shows contour plots of a simulated extinction co-
efficient surface. It consists of a random component generated
according to the recursive model [(10)—(11)] plus two Gaussian
elevations with their major axes parallel to the time coordinate.
This orientation reflects quasi stationarity of the optical parame-
ters on the time dimension, a typical situation on pulsed remote
sensing systems. Fig. 3(b) shows cross sections of the extinc-
tion coefficient profile at times ¢ = 10 and 2 = 200. Since
we set 6 = 1 m, the range index j is associated with range
z = j m. The noise standard deviations and the AR parameters
of model (10) and (11) were set to (0, = 0.07, 0, = 0) and
(01 = 0.1, B2 = 0.9), respectively. The value o, = 0 means
that we are neglecting the error in computing the optical thick-
ness from discrete samples of the extinction coefficient, what
is acceptable assuming a small sampling interval. The values
6, = 0.1, 83 = 0.9 account for the above-referred quasi sta-
tionarity of the optical parameters.

For the extinction coefficient shown in Fig. 3, the maximum
optical thickness is Ymax = 1.25 and occurs at time ¢+ = 200.
In order to study the behavior of the proposed method with re-
spect to the optical thickness, we also present estimation results
for a more severe attenuation scenario with a maximum optical
thickness of y,ax = 2.5. The extinction coefficient data for this
experiment is the image shown in Fig. 3 scaled by a factor of 2.

The extinction coefficient shown in Fig. 3 is not exactly gen-
erated according to the recursive model [(10)—(11)], since we
are adding a deterministic component. Our aim in doing this
is to illustrate the robustness of the proposed filters against the
presence of deterministic components, as long as the magnitude
of their increasing/decreasing rates is not much higher than the
standard deviation o, of the white noise driving the AR-GMRF
(10).

Table I summarizes the simulation parameters. Constant b de-
termines the magnitude of the observed data for a given SNR;
we set it to b = 1, since it does not affect the filter performance.
The system parameter C is selected in order to have a given SNR
at a given range.
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TABLE 1
SIMULATION PARAMETERS
Constitutive Model System
By(st™') ¢ 6 0, C o3 (Wkm®) b wy
5x1072 1.0 0.1 09 - 100 10

TABLE 1II
IDENTIFIED PARAMETERS

Yomaz = 1.25 Ymae = 2.5
Simul. Estim. | Simul. Estim.
oy 3.5 4.0 7.5 7.7
0, 0.1 0.11 0.1 0.12
o, 0.07 0.09 0.14 0.16

The forecoming simulation results are divided into four parts.
In Section IV-A, we conduct experiments to show how the fil-
ters are affected by the optical thickness magnitude and by the
SNR. In Section IV-B, we study the filter robustness to model
mismatches. In Section IV-C, we present comparisons of the
proposed filters with the deterministic method, and finally, in
Section IV-D, we compare the proposed stochastic approach
with the sampling importance resampling (SIR) filter proposed
in [47].

A. Attenuation Degree and SNR

Table II displays, for two attenuation scenarios, the parame-
ters used in the simulation and their estimated values according
to the methodology proposed in Section III-C. In order to
speed up the identification procedure, we have computed the
pseudoinnovation and its covariance only in the set of sites
{(4,)]i=1,...,M,j =1,...,50}, a small subset of Z.

Fig. 4 shows filtering results. The underlying observed data
were generated with basis on the attenuation map shown in
Fig. 3. The maximum optical thickness is ynax = 1.25. Fig. 4(a)
plots a cross section at time index : = 200; Fig. 4(b) and (d)
plots cross sections at range indexes 50 and 120, respectively;
and Fig. 4(c) plots the sample square estimation error of the ex-
tinction coefficient shown in Fig. 4(a). This sample error is of
course a rough estimate of the mean square error, since the suc-
cessive time estimate errors for a given range are not stationary.
However, given that the optical parameters vary smoothly along
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Fig. 4. Filtering results (maximum optical thickness Ymax = 1.25). (a), (b), and (d) plot cross sections of the extinction coefficient. (c) Plot of the SNR and the

sample mean square error of the estimate shown in (a).

the time coordinate, one can expect that the sample square esti-
mation error be indicative of the mean square error (letting alone
the finite sample size issue). We have also plotted the SNR evo-
lution at time index ¢« = 200.

The backward filter was initialized with

xg = [@p,0,0,0]" 3o = diag([10,0,0,0]).

Thus, the optical thickness and its error covariance are correctly
initialized with 0, while the extinction coefficient and its covari-
ance are initialized with &g and 10, respectively. In order to get
good filter performance at the farthest ranges, it is mandatory to
have good estimates of cg. Nevertheless, if the optical thickness
is large, the filter is able to recover even from large errors in the
estimates of «q. This is illustrated in the next section.

The estimates are very close to the simulated data. As ex-
pected, the filter performance degrades along range as the SNR
decreases. The larger mean square error occurs in the neighbor-
hood of range j = 200, this being due to estimation errors of
ag (error of g is 12.5%).

Fig. 5 shows estimation results obtained by applying the pro-
posed filter to data generated with basis on the attenuation map
shown in Fig. 3 scaled by a factor of 2. The maximum optical
thickness is now ypax = 2.5. Fig. 5(a)—(d) is as in Fig. 4(a)—(d).
Comparing Figs. 4(c) and 5(c), we conclude that the filter per-
formance tends to be better where the SNR is higher, regardless
of the attenuation scenario. The exceptions occur about range
7 = 60, as it can be read from Fig. 5(c), which is is due to
strong model mismatches.

B. Model Mismatch Robustness

Fig. 6 illustrates the robustness of the proposed scheme to
mismatches on the filter parameters. Solid and dotted curves
represent estimated and simulated data, respectively. Estimates
are obtained with filter parameters given in the box. Parameter (3
parameterizes the error on the initial extinction coefficient «, .
The maximum optical thickness is Ynax = 2.5, and the minimal
SNR is SNR,;;, = 10 dB.

The proposed filter is robust with respect to errors on the prior
parameters ¢, 1, and o,. Notice that errors of, respectively,
10%, 100%, and 100% on these parameters do not lead to visible
errors on the estimates, as it can be read from the curve param-
eterized with 3 = 1.0. This is not the case with respect to the
parameter «,,,. At ranges near z,,, the estimate of the backscat-
tering coefficient is close to @,,,. Therefore, large errors on @,
imply large error on the estimates of «,, in the neighborhood
of z,,. However, the filter sensitivity to errors on &, decreases
as the range decreases. For example, an error of 50% on «,,
causes practically no impact on filter estimates for ranges less
than 100 m.

The explanation for the filter behavior with respect to errors
on «,, can be found in the deterministic solution (3). In the
backward solution, the function of z

Y N CCAEES) PR

which is present in the denominator of (3), is positive and in-
creasing. Therefore, if it takes values much larger than a;,,' for
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some 2, then the dependency of a(z) on «,! is very small for
z =< z'. As a rule of thumb, we conclude, therefore, that the
larger the optical thickness is, the more robust the filter esti-
mates are at a given range.

C. Comparison With the Deterministic Method

Fig. 7 shows the extinction coefficient estimates generated
by the proposed backward filter (gray solid curves) and by the
deterministic method (black solid curve), for yp.x = 1.25,

Signal to noise ratio (dB)
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SNRax = 50 dB, SNR,i,, = —5 dB, and oy, = 1000. These
values were selected in order to have SNR < 10 dB, approxi-
mately, for 7 > 100 m. Note that we wish to compare both filters
at low SNR, for the stochastic filter estimates tends to the deter-
ministic solution (3) as SNR — oo. Both filters were initialized
with the correct value of o, = ;N

In Fig. 7(a), the solution (3) was applied directly to the ob-
served data at time index « = 200, whereas in Fig. 7(b), it
was applied to lowpass filtered data obtained with a rectangular
sliding window of size 20(time) x 1(range). Fig. 7(c) and (d) is
as Fig. 7(b) and (c), but for range index 5 = 50.

The stochastic approach produces much better results than the
deterministic one, even when the former is applied to smoothed
data. Of course one could argue that if the data smoothness was
increased, the deterministic solution would improve; but how
much smoothness should be imposed in order not to bias the
solution? And how? Should it be space-invariant or not? These
questions do not arise in the proposed stochastic solution be-
cause it adapts the amount of smoothness depending on the the
observed data SNR and on the prior strength controlled by the
variance o, .

As the SNR,,;, increases the differences between the deter-
ministic and the stochastic solutions vanishes, as the weight of
the prior vanishes.

D. Comparison With the SIR Filter

In this section, we compare the proposed stochastic approach
with the SIR filter proposed in [47]. The SIR algorithm is a
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and gray solid curves represent estimates obtained by the proposed backward filter.

sequential Monte Carlo technique aimed at the computation
of the posterior p(x,|Y ). This density is approximated by a
set of random samples, the so-called particles, with associated
weights. As the number of particles goes to infinity, the
information content in the particles and respective weights is
equivalent to that of density p(x,|Y,). Therefore, we use a
large number of particles in the SIR filter and compare the
estimates based on the particles with those provided by the
proposed filter. An example of application of particle filters in
refractivity estimation from sea clutter radar returns, roughly
similar to the lidar problem herein considered, may be found
in [48].

The SIR filter is a particularization of the sequential im-
portance sampling algorithm, also known as bootstrap filter,
condensation algorithm, particle filter, interacting particle ap-
proximations, and survival of the fittest (see [32] and references
therein). Herein, we have implemented the SIR filter according
to [32, Alg. 4]. The sampling step of the :th particle at time n,
x! ~ p(xi|x! 1), has been performed according to the state
(21); as in the proposed stochastic filter, u,, is the conditional
mean estimate of [0, 42—, 0, ’yn+2_N]T [see (13)], already
available at time n.

Fig. 8(a) shows the extinction coefficient estimates generated
by the proposed forward filter (gray solid curves) and by the SIR

filter using 100 particles (black solid curve), for yax = 1.25,
SNR,.x = 50 dB, SNR,in = 5 dB, and o¢;, = 100. In both
filters, the constitutive parameters, the prior parameters, and the
initial extinction coefficient were set to their true values.*

Both estimates are close to the true data. The square root of
the sample mean square error is 0.15 km ™" for the proposed
filter and 0.2 km ! for the SIR filter with ten particles. For 100
particles or more (we have tested up to 1000 particles), the error
achieves the lower bound of 0.16 km™". As for complexity, the
particle filter implementation with 100 particles needs, roughly,
40 times the number of floating-point operations used by the
proposed filter.

One could argue that a more sophisticated particle filter could
lead to better estimates. That might be the case. Better schemes
to combat the so-called degeneracy phenomenon are the optimal
importance sampling introduced in [50] and the auxiliary par-
ticle filters introduced in [51]. Particle impoverishment can also
be minimized by using better resampling schemes, such as the
systematic resampling proposed in [52], and the resample-move
introduced in [53]. These approaches achieve the performance

4We note that it is also possible to jointly estimate the sequence of hidden state
vectors and the unknown model parameters in a true Bayesian fashion (e.g., see
[49]).
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Fig. 8. Comparison with the SIR filter for 7max = 1.25. (a) Cross section
of the filtering results. Dotted curve represents true data. The black solid
curves represents estimates given by SIR filter using 100 particles, and gray
solid curves represent estimates given by the proposed forward filter. Part
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of SIR filter with fewer particles and consequently with lower
computational complexity. We call the attention, however, for
Fig. 8(b), where it is plotted, in gray levels and for range indexes
j=1,...,200, the histogram associated with p(X200,;]1Y200,;)
obtained with 1000 particles. We see that the particle impover-
ishement effect is not severe, indicating that the estimates are not
compromised by this effect. We conclude then that the perfor-
mance of proposed filter is nearly optimal. Since its complexity
is comparable with that of a SIR filter with roughly three parti-
cles, it would be very difficult for any sort of particle filter with
this low number of particles to achieve the performance of the
proposed adaptive extended Kalman filter.

We call the attention to the detailed histograms presented
in Fig. 8(b), for j = 50,125, and 190; they are unimodal and
exhibit roughly a Gaussian shape. This fact justifies, at least
partially, the direction we have followed: approximating the
posterior density with a Gaussian shaped function.

V. CONCLUDING REMARKS

A new stochastic filtering technique for lidar reconstruction
of the backscatering and the extinction coefficients was devel-
oped; we adopted a first-order autoregressive Gauss—Markov
random field as Bayesian prior model for the observed image of
extinction coefficients. In order to derive an extended Kalman
type filtering structure, we adopted the following strategy.

1) Approximate the space-state equation with the reduced-
order model description of a causal first-order autoregres-
sive Gauss—Markov random field. For this to be possible,
we chose the extinction coefficient and the optical thick-
ness as state variables.

2) Approximate the observed data random variable with a
Gaussian one, using the Kullback divergency criterion.

After these approximations, we ended up with a linear state-
space equation and with a nonlinear observation equation.
Extended Kalman filtering was then applied. Since the state-
vector has only four components (due to the reduced-order model
description of the GMRF), the complexity of this filter is low.
For example, an image of size 400(time samples) x 200(range
samples) was processed in a few seconds, using an ordinary
personal computer.

In deriving the stochastic filter, we considered two variants:
the forward filter, which evolves toward the farthest range, and
the backward filter, which evolves toward the nearest range.
The latter is more robust to initialization and numerical errors
and does not depend neither on the backscatter-to-extinction
ratio nor on the system constant. These advantages underlay the
choice of the backward filter in Section IV.

The filter was applied to simulated data generated according
to the adopted GMREF to which a deterministic component con-
sisting of two Gaussian elevations was added. The performance
of the proposed method was studied with respect to the atten-
uation degree and SNR, to model mismatch robustness, and to
the deterministic model and to the sampling importance resam-
pling filter (SIR) comparisons. Roughly, the proposed stochastic
filter yielded effective estimates if SNR > 5 dB. The list below
points out the main findings relative to the filter robustness with
respect to the model parameters.

1) The filter sensitivity to the parameter backscatter-to-ex-
tinction ratio By is zero and is moderate to the power-law
parameter c. For example, a model mismatch of 10% on
¢ produced a marginal increment on the error estimates.

2) The filter sensitivity to prior parameters (i.e., to 1, 2,
04, and o) is very small. For example, a model mismatch
100% on 6 and on ¢, produced marginal increments on
the error estimates.

3) The filter sensitivity to the initial extinction at the far-
thest range is high, decreasing as the filter evolves toward
the closest range. The sensitivity decreases faster on sce-
narios with large optical thickness.

Concerning the comparison with the deterministic method,
we concluded that the stochastic approach yielded much better
results than the deterministic solution. On the basis of this be-
havior is the adaptive nature of the proposed algorithm: the
amount of smoothness depends on the the observed data SNR
and on the prior strength controlled by variance of the extinction
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approximation, respectively. (a) Low SNR. (b) Medium SNR.

coefficient. As the SNR,,;, increases, the differences between
the deterministic and the stochastic solutions vanishes, as the
weight of the prior vanishes.

Concerning the comparison with the SIR filter, we concluded
that the proposed algorithm yields similar results with far less
computational burden. The approximated Gaussian shape of the
posterior density underlies this scenario, i.e., since the posterior
is well approximated by a Gaussian shape, there is no point in
applying Monte Carlo techniques to propagate the posterior pdf.

Regarding future work, we foresee the replacement of the
proposed causal Gauss—Markov random field with a noncausal
one. In this way, all data image (past and future) is used to infer
the optical parameters at a given site, thus obtaining better esti-
mates. This can be achieved by writing the prior density of the
complete image in terms of the so-called clique potentials (see
[54]) and then maximizing the posterior pdf.

APPENDIX
APPROXIMATING THE OBSERVATION FACTOR
WITH A GAUSSIAN DENSITY

Consider the pdf ¢(P|y) « p(y|P) defined as (to ease the
exposition, subindexes were dropped)

p(y|P)
q(Ply) = = p(Ply)dP (32)
where p(y|P) N(y—4,07),5=P+wq,and o] = b(P +

v4) + o2, . Given that the denomlnator of (32) does not depend
on P, finding a Gaussian shape that best fits p(y|P) or ¢(P|y),
as functions of P, are equivalent problems.

Let us define ¢(P|lmp,0%) = N (P — mp,0%). Parameters
mp and op are to be chosen such that g(P|mp, %) approxi-
mates ¢(Ply). As in [55], we adopt the minimum Kullback di-
vergency [30] criterion

2 : - a(Ply)
(mp,op) = arg min, /_Oo q(Ply)In WP, o) dp (33)
D(qlla)

where D(q||q) is the Kullback divergency [30], which measures
the dissimilarity between density functions ¢ and q. The solution
to the minimization (33) is (e.g., see [30])

?m:@m

0% = Ey[(P —mp)?] Gd

which applied to pdf ¢(P|y) leads to

0% =b(2b+ z2)

where 2z = |y + o2, /b|.

In (35), the mean value m p and the variance 0123 depend on
z = |y + o2, /b|. Although not immediately evident, this is a
consequence of ¢(P|z) = q(P| — z).

Fig. 9(a) shows the shape of ¢(P|y) and q(P|y) for o3, = 0,
z = 10, and b = 1; Fig. 9(b) shows the same functions for
0%, = 0,z = 100 and b = 1. The Kullback divergencies
are D(ql|g) = 0.065 for Fig. 9(a) and D(q||qg) = 0.0065 for
Fig. 9(b).

Defining the SNR as

E[y] _ (P + va)

o2 b4 od(P+va)!

SNR = (36)
we can loosely refer to Fig. 9(a) and (b) as a low SNR scenario
and a medium SNR scenarios, respectively. Note that shape of
the observation factor tends to Gaussian as z/b increases, what
is in accordance with the ten times lower Kullback divergency
of scenario Fig. 9(b).

The Gaussian approximation to p(y|P) is then given by

a(Ply) = \/ﬁa e (Pmme) 20k (37)
P
I e e (38)

V2rwop

where l:L = P—b+wvy+03, /b. From (38), we see that ¢( Ply) =
N(z—h,c%). Thus, one might tempt to interpret z as a Gaussian
random vector with mean A and variance o%. In an equivalent
form

2

P(x)—b+vg+ gh+~ (39)

~~

h(x)

z =

~

where © is zero-mean Gaussian noise of variance o%. This in-
terpretation is, however, incorrect because N'(z — h. 0%) is not
Gaussian as function z. We adopted it, however, as a symbolic
representation of the density (38). It plays the the role of the
observation equation in our stochastic filtering problem. Notice
that it is still nonlinear on x,,, but the variance of the additive
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noise does not depend now on the state-vector, but rather on the
observation z.

The methodology proposed to approximate the observation
factor with a Gaussian density may be applied to any density
p(y|P). For example, if the speckle noise is dominant and
assuming that the thermal noise is negligible, the observation
factor is Gamma distributed, thus given by

L ()" et
I(m) \ P
where E[y] = P and 0} = P?/m, and m is the speckle
count. The solution to the minimization (33), assuming that m
is greater than 3, is now given by

p(y|P) =

m
mp =1
Sm =2
2
o2 =y? Pm
P (m —2)(m — 3)
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