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Abstract

This paper presents a new method for endocardial (inner) and epicardial (outer) con-

tour estimation from sequences of echocardiographic images. The framework herein

introduced is �ne-tuned for parasternal short axis views at the papillary muscle level.

The underlying model is probabilistic; it captures the relevant features of the image

generation physical mechanisms and of the heart morphology. Contour sequences

are assumed two-dimensional noncausal �rst order Markov random processes; each

variable has a spatial index and a temporal index. The image pixels are modelled as

Rayleigh distributed random variables with means depending on their positions (in-

side endocardium, between endocardium and pericardium, or outside pericardium).

The complete probabilistic model is built under the Bayesian framework. As estima-

tion criterion the maximum a posteriori (MAP) is adopted. To solve the optimization

problem one is led to (joint estimation of contours and distributions' parameters), we

introduce an algorithm herein named iterative multigrid dynamic programming (IMDP).

It is a fully data driven scheme with no ad-hoc parameters. The method is imple-

mented on an ordinary workstation, leading to computation times compatible with

operational use. Experiments with simulated and real images are presented.
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1Refererence [1] is a short version of this work.



Two-dimensional echocardiography, when compared with other imaging techniques, exhibits

attractive characteristics such as absence of an invasive agent, low cost, portability, real time

processing, and direct three-dimensional acquisition (tomographic slices). These attributes justify

the wide use of this image modality in the assessment of left ventricular function [2], [3], [4], [5].

Feature extraction from echocardiographic data is of major importance for quantitative anal-

ysis of the heart function [5], [6]. Examples of such features are: ventricular contours, volume

of chambers, ejection fraction, thickness of myocardium, ventricular mass, and three-dimensional

reconstruction/modeling throughout the cardiac cycle. Partial or total automation of this task,

leading to reliable, objective, and reproducible analysis, is strongly desirable.

An echocardiographic expert is readily able to identify and retrieve information from video

images or even from M-mode data. This is so, not only due to the ability of the human eye to

integrate information, but also due to the inherent three-dimensional acquisition and real time

characteristics of echocardiography. However, any automatic processing is hampered by the poor

quality of echocardiographic images. Main degradation mechanisms include [7], [8], [9], [10]:

1. Sidelobes and grating lobes: the dynamic range of detected echoes is about 115 dB. With

such a huge range, a low sidelobe level is crucial. Acoustic phased array transducers have had

great improvements since their �rst days. For example, the sidelobes level of a modern transducer

can be as low as �60 dB [9]; nevertheless, some weak echoes can still be masked by stronger echoes

not coming from the point being imaged.

2. Blur: the dynamic focusing technique maintains the received wave focused. However, the

transmitted pulse can only be focused for a �xed point (typically half of maximum range); this

originates images having stronger blur near the transducer and near the maximum range than at

middle range.

3. Acquisition on polar coordinates: data acquisition on polar coordinates leads to a nonuni-

form inter-sampling space. Due to the sparseness of samples, for large ranges, some kind of

interpolation is necessary. This confers a nonhomogeneous characteristic to the echocardiographic

image.

4. Poor contrast: little contrast between blood and myocardium (due to the similar acoustic

characteristics) makes the determination of the endocardium border di�cult. This is also true in

some parts of the pericardium where there is no contrast at all.

5. Artifacts: artifacts like papillary muscles, valves, and chordae should be previously detected

not to interfere with posterior processing. This task can be hard to attain since artifacts themselves
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6. Speckle noise: speckle noise is the major di�culty concerning echocardiographic image

processing; it is inherent to coherent illumination and Rayleigh scattering caused by tissue mi-

crostructures. The echo from a resolution volume, con�ned by the lateral and the range transducer

resolutions, is the sum of all echoes from the scatterers (tissue cells, tissue �bers, and small in-

ternal structural details) in that resolution volume. Each particular con�guration of scatterers

produces constructive or destructive interference of the backscattered echoes. Assuming that, in

each element of volume, the number of scatterers is large and their positions are randomly dis-

tributed within the wave length, then the echo amplitude is characterized by a Rayleigh random

variable [11]. Under these conditions, the signal to noise ratio (SNR) associated with an image

pixel, de�ned as its mean value divided by its standard deviation, amounts to 1.91 (see [7]). The

high-contrast high-spatial-frequency noise, masking acoustic images, is a consequence of this poor

SNR.

A. Previous work on contour estimation

Contour estimation (from a frame or from a sequence of frames) has been the main objective of

most works on semi-automatic or automatic feature extraction from echocardiographic data [10],

[12], [13], [14], [15], [16], [17]; this is a consequence of the huge amount of structural information

carried by boundaries. Moreover, contours are the base of most quantitative procedures.

The many noisy e�ects plaguing two-dimensional echocardiographic data (the most important

being the speckle noise) make conventional techniques based on edge enhancement (e.g., gradient,

compass, threshold, and Laplace operators) inappropriate to contour estimation. An example

illustrating the inadequacy of this operators in echocardiographic data is given in [10]: a 4-chamber

image is processed by a Sobel edge detector with an interactively de�ned optimal thresholding

level; as a result \... no continuous contour can be drawn and therefore edges of myocardial wall

are ill-de�ned." A similar conclusion can also be found in [12]. More elaborated approaches such

as the Canny [18] step edge detectors or algorithms emerging from using compound Gauss-Markov

random �elds [19], [20], [21], [22] are not suited to echocardiographic data, as well, since they are

not designed to cope with speckle noise.

In face of this, di�erent ad hoc contour estimation algorithms have been proposed. Adam et al.

[10] present a scheme to semiautomatically track ventricular endocardial and epicardial borders.

Their approach includes nonlinear Median �ltering (size 9 � 9) of whole images, debiasing of

gray levels, and location-dependent contrast stretching. The algorithms tracks the movement

of a small number of predetermined points, which are manually de�ned on the two myocardial

borders. Chu et al. [12] proposed a three steps algorithm (edge detection, radial search for initial
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epicardial boundaries. The edge detector includes a by a 41 � 41 Gaussian �lter followed by a

Laplacian operator. Joseph et al. [13] applied mathematical morphology to semiautomatically

detecting the left ventricular endocardial border. Temporal smoothing (10 frames) is implemented.

Friedland et al. [14], proposed a fully automatic ventricular boundary detection from sequential

images using simulated annealing. Before contour estimation, images undergo low pass �ltering

to (7 � 7 FIR) followed by a 4 : 1 � 4 : 1 decimation. Unser et al. [15] introduced a method for

automated extraction of myocardial borders in M-mode echocardiograms using suitable matched

�lters. Steen et al. [17] developed a boundary detection scheme based on anisotropic di�usion.

Anisotropic di�usion implements low pass �ltering within homogeneous regions and preserves or

enhances the region boundaries.

We would like to call the attention to the smoothing (typically the �rst step) implemented

in the above referred works. A common argument justifying the spatial smoothing is that the

relevant spatial information remains almost unchanged, as it resides at low frequencies. Since the

speckle sizes are of the order of the spatial resolution of the imaging system, this argument is

doubtful [23].

B. Proposed approach to contour estimation

The present work aims at endocardial and epicardial contour estimation in the parasternal

short axis view. Since both contours are estimated, the thickness of the myocardium is a spin-o�

result. The following aspects play a crucial role in the proposed approach:

1. Image characterization: given a tissue con�guration, the respective image is assumed pix-

elwise independent; each pixel is Rayleigh distributed with its parameter being a function of the

correspondent acoustic characteristics.

2. Heart morphology: the image formed by the parameters (a parameter per pixel) has a

structure that should be taken into account. For example, if parameters are scanned along a path

from inside to outside the heart, their value are likely to exhibit a rectangular type shape.

3. Contour model: contour sequences are assumed samples of two-dimensional noncausal �rst

order Markov random processes: each random variable has a spatial index and a temporal index.

Therefore, in each image, contours are represented in an one-dimensional coordinate system.

4. Bayesian formulation and MAP criterion: by using the Bayesian formulation, the a

posteriori probability, which includes the a priori probability of contours, is built. The MAP

criterion is then applied to estimate the contours.
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one is led to (joint estimation of contours and distributions' parameters), we conceive an algorithm

herein named iterative multigrid dynamic programming (IMDP). According to its name it embodies

iterative, dynamic progamming and multigrid concepts.

The developed approach is new in the sense that we build a probabilistic model based on the

relevant features of the image generation physical mechanisms and of the heart morphology (items

1,2, and 3); underlying the contour estimates is a new edge detector (emerging from the proposed

framework); it is a long range operator (matched �lter type) which is quite di�erent from the local

edge detectors used in [10], [12], [13], [14], [16].

As mentioned before, the IMDP algorithm encompasses iterative, dynamic programming, and

multigrid concepts. Dynamic programming has already been used in other image modalities (see

[24], [25], [26], [27], [28]) as a tool to estimate contours. However, the scenario herein considered

is di�erent; namely, it includes two contours (inner and outer) and temporal dimension.

The paper organization is now brie
y presented. Section II introduces notation, the coordi-

nate system, and the adopted contour spatial prior. Section III develops the image generation

mechanism. In section IV, a one-dimensional causal �rst-order Markov random process is intro-

duced to describe the temporal sequence of contours; a probabilistic model including temporal

and spatial dimensions is then presented. Section V describes the IMDP algorithm. Section VI

presents results from simulated and real data.

II. Probabilistic Model of Endocardial and Epicardial Contours

Fig. 1 schematizes the adopted (one-dimensional) polar coordinate system. The endocardial

contour is represented by the M -dimensional vector r1 = [r10; : : : ; r
1
M�1]

T . The epicardial contour

r2 is de�ned in the same way, replacing index 1 by 2. Both vectors are collected in r = [r1; r2]. We

also de�ne ri = [r1i ; r
2
i ], a vector holding both contour positions at the i-th scan-line. The angle

of each scan-line is �i = (2�i)=M , with i = 0; : : : ;M � 1.

Since we are dealing with digital images, de�ned on a rectangular lattice, each coordinate rki

(with k 2 f1; 2g) can only take values in the discrete set �k
i which has Ni elements:

�1
i = �2

i = fdi(1); di(2); � � � ; di(Ni)g; di 2 <
+: (1)

Notice that for each r1i 2 �1
i there is one and only one k1i 2 f1; � � � ; Nig such that r1i = di(k

1
i ).

Along the text, we sometimes refer to the integers k1i and/or k2i , instead of contour positions

r1i and/or r2i . For the same reason, the entities k1 = [k10; : : : ; k
1
M�1]

T , k2 = [k20; : : : ; k
2
M�1]

T ,

k = [k1;k2], and ki = [k1i ; k
2
i ] are also introduced. It should be stressed that the mapping from

the r-entities (r, r1, r2, ri) to the k-entities (k, k
1, k2, ki) is one-to-one, thus, being equivalent to
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� =
Qi=M�1;k=2
i=0;k=1 �k

i is introduced to be used in due course.

The only human intervention in the boundary extraction process is the selection of a point

inside the inner contour. If this point is selected above the latitude de�ned by the papillary

muscles, the polar coordinate system adopted is able to describe most of the contours in the short

axis view. Moreover, if this image is acquired at the end-systole (or in its neighborhood) the

same polar coordinate system can be used for the whole sequence. There are, however, some

pathological contours for which the choice of this point is critical or even impossible (the contour

cannot be represented in polar coordinates). These situations are not considered in this work.

The polar (one-dimensional) coordinate system has been frequently used in contour estimation

problems (e.g., [12], [14], [25], [29]). Other one-dimensional coordinate systems have also been

adopted; relevant examples are reported in [30] and [31], for endocardial contour estimation from

angiographic images, and [32] for coronary artery estimation from angiograms.

Two-dimensional coordinate systems (as proposed in [27] and [33]), when compared with one-

dimensional coordinate systems, are able to describe a wider class of contours. On the other

hand, one-dimensional coordinate systems are easier to deal with, from the computational and

analytical standpoints. One-dimensional coordinate systems can be viewed as two-dimensional

ones with constraints. This is not always a disadvantage: for example, in adopting a polar

coordinate system we are solely interested in contours de�ning a function in the (�; r) plane. In a

certain sense, this is a form of inserting a priori information about contours.

A. Prior contour model

Heart contours are continuous: given vectors ri�1 and ri+1, vector ri must be close. In the

probabilistic framework, this property is modelled by assuming that contours in a frame are one-

dimensional noncausal �rst order Markov random �elds (to our knowledge, describing echographic

contours with Markovian models was �rstly proposed in [14]). This property is expressed as

P (rijrj; j 6= i) = P (rijrj; j 2 Gi); (2)

for i 2 S = f0; : : : ;M�1g. Sets Gi = fi�1; i+1g and G = fGi; i 2 Sg are termed the neighborhood

of i and the neighborhood system, respectively [34], [35]. Given the cyclic nature of contours, we

impose G0 = fM � 1; 1g and GM�1 = fM � 2; 0g (the so-called periodic or cyclic boundary).

The Hammersley-Cli�ord result, proved in [35], assures that if P (r) > 0, 8r 2 �, the joint

probability P (r) is uniquely determined by the conditional probabilities (2). The concept of clique

plays a central role in this result. A clique C is a set of either a single element j 2 S, or

of mutually neighbor sites. The set of cliques C associated to the neighborhood system G is
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as

p(r) =
1

Z
exp

(
�

X
C2C

VC(r)

)
; (3)

where Z is a normalizing constant and VC(r) = VC(ri; i 2 C) are functions termed clique potentials.

The conditional probabilities (2) are derived from (3) by applying the Bayes law [34], yielding

P (rijrj; j 2 Gi) =
1

Zi

exp

(
�

X
C:i2C

VC(r)

)
; (4)

with Zi denoting a normalizing constant.

Probability P (r) is to be tailored according to prior knowledge about the contours by specifying

the clique potentials VC(r).

III. Image Generation Model

As referred in Section I, the echo amplitude generated by tissues is Rayleigh distributed. This

assumption has been experimentally and theoretically con�rmed [7], [36], [37].

The echo signal, even after the time gain compensation2, exhibits, roughly, 55 dB of dynamic

range [38]. On the other hand, our visual system is only able to distinguish about 200 levels, i.e. 23

dB. For this reason, the receiver usually includes nonlinear signal compression. This nonlinearity

is known for each equipment and should be taken into account, since it changes the Rayleigh

distribution of the pixels at the acoustic transducer output.

The data used in this work was acquired by a system using as compressing nonlinearity a blend

between a linear component and a logarithmic component. The logarithmic component was set

to almost zero. In face of this, we still assume that the pixel amplitudes are Rayleigh distributed.

We take as hypothesis that pixels in a frame, conditioned on their mean values, are indepen-

dent. It is the so-called conditional independence property [34]. This is a correct assumption if

the resolution volumes contributing to di�erent pixels are disjoint. Resolution volume depends on

the lateral transducer resolution and on the pulse length. Despite the great resolution of phased

array transducers, the independence hypothesis is hardly veri�ed for every image pixel. This is

mainly due to the nonhomogeneous nature of echographic data: for large ranges the process of

converting polar coordinates into cartesian coordinates introduces correlation. Nonetheless, we

still use the independence hypothesis since it is true for a large part of image pixels and leads to

good contour estimates with an acceptable model complexity.

Let the pair of indexes (i; j), with j = 1; : : : ; Ni and i = 0; : : : ;M � 1, denote the j-th pixel

along the i-th radial scan-line. The gray-level of pixel (i; j) is denoted by xij. If the inner contour

2Correction of the geometric factor 1=(range).
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same applies to the outer contour.

De�ne �ij �
q

2
�
E[xij] as a quantity called re
ectivity. We assume that the re
ectivity �ij,

along a scan-line, is piecewise constant:

�ij =

8>>><>>>:
�0
i 1 � j � k1i

�1
i k1i < j � k2i

�2
i k2i < j � Ni:

(5)

Hypothesis (5) is equivalent to stating that re
ectivity is constant inside each type of tissue (blood,

myocardium, and outside heart) along a scan-line.

We are now in position to come out with the probability P (Ijr). The conditional independence

implies that

P (Ijr) =
i=M�1Y
i=0

P (Iijri); (6)

where Ii = [xi1; : : : ; xiNi
]T contains the observed image gray-levels along the i-th scan-line. Using

the Rayleigh distribution hypothesis, one obtains:

P (Iijri;�i) =

k1
iY

j=1

xij

(�0
i )

2
exp

24�1

2

 
xij

�0
i

!2
35

k2
iY

j=k1
i
+1

xij

(�1
i )

2
exp

24�1

2

 
xij

�1
i

!2
35

NiY
j=k2

i
+1

xij

(�2
i )

2
exp

24�1

2

 
xij

�2
i

!2
35 ; (7)

with �i = [�0
i ; �

1
i ; �

2
i ].

Applying logarithm to (7) and after some simple manipulation, one is led to the log-likelihood

function of a scan-line as

L(Iijri;�i) = lnP (Iijri;�i)

= k1i ln

 
�1
i

�0
i

!2

+ k2i ln

 
�2
i

�1
i

!2

�Ni ln
�
�2
i

�2
�

1

2
ITi [A(ri;�i)]

�1Ii + ct; (8)

where A(ri;�i) is a diagonal matrix whose entries are the squared re
ectivities according to (5).

Fig. 2 plots the echo along a radial line from the blood, inside the heart, towards the lungs.

Roughly, it can be said that the endocardium is near r = 45 and the pericardium is near r = 80.

Between r = 0 and r = 44 there is blood with re
ectivity �0; between r = 45 and r = 79 there is

myocardium with re
ectivity �1; �nally, for r > 79 there is lung tissue with re
ectivity �2. The

high value of �2 is caused by the lungs, and saturates the receiver between r = 80 and r = 90,

approximately.
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position r1. The parameters r2 = 77, �0 = 14:6, �1 = 58:1, �2 = 161:5, and r1 = 47 maximize

this log-likelihood function.

The observation model just presented has some similarities with the one proposed in [29].

In both models, the physical aspects of image generation yield probability P (Ijr). However, the

latter applies to X-ray angiographic image modality, where the underlying statistic model is quite

di�erent.

IV. The Complete Model

We are now in position to expand the posterior probability P (rjI) / P (Ijr)P (r) in terms of

the prior P (r) and of the image generation model P (Ijr). From equations (6) and (3), it follows

that

	(rjI;�) = lnP (rjI;�)

=
i=M�1X
i=0

L(Iijri;�i)�
X
C2C

VC(r) + ct; (9)

with � = [�0;�1;�2] and �
j = [�

j
0; � � � ; �

j
M�1]

T , for j = 1; 2; 3. The MAP estimate is then

brMAP = argmax
r

	(rjI;�): (10)

De�ne �i(r) as

�i(r) � Vfig(r) + Vfi�1;ig(r); (11)

where Vfig(r) and Vfi�1;ig(r) are the potentials of cliques fig and fi� 1; ig, respectively. Function

�i(r) is intended to model prior knowledge about the contour. In this work we consider the linear

composition

�i(r) =
k=4X
k=1

�ki (r); (12)

which includes:

1. A constraining term

�1i (r) =

8<: 0 Rmin < r2i � r1i < Rmax

1 Rmin � r2i � r1i � Rmax;
(13)

which restricts the displacement between endocardial and epicardial borders to the interval

(Rmin; Rmax). These limits were set to 10 and 100, respectively3.

3All the distance measures are given in units of length. In the present setup 1 unit of length = 0.27 mm.



�2i (r) = �1(r
1
i � r1i�1)

2; (14)

penalizing large steps on two consecutive radial border positions. The parameter �1 is set to

102

M2 (this value was estimated from synthetic data).

3. A pericardial smoothness term

�3i (r) = �2(r
2
i � r2i�1)

2; (15)

playing a role similar to �2. The parameter �2 is set to
5�102

M2 (again, this value was estimated

from synthetic data). Notice that �2 is �ve times greater than �1. This makes sense since,

in the short axis view, the pericardial contour, is expected to be much smoother than the

endocardial contour.

4. An endocardium maximum volume term

�4i (r) = �1
1

r1i
; (16)

which pushes the estimated endocardial contour outowards allowing it to pass over artifacts

inside the heart. However, in some cases the attraction strength originated by artifacts is so

strong that the maximum volume element is not enough to solve the problem. Parameter �1

is set to 1000.

A. Modeling image sequences

Typically, echographic systems output a 25 frames per second video signal. Considering a

maximum tissue velocity of 30 mm/s, the maximum displacement between two consecutive frames

is of 1.2 mm. This means that the structures being imaged in two consecutive frames are spatially

very close. On the other hand, it is likely that a missed or unclear detail in a frame appears

clearer displayed on a neighbor frame. A specialist explores this temporal information by looking

at the temporal neighbors of a given frame. Likewise, we will include temporal information into

our order aiming at better estimates.

Denote the n-th frame of a temporal sequence by I(n). Suppose that frames I(n� 1) and I(n)

are observed. Assuming the observation model presented in Section III, and applying the Bayes

law, the joint probability of r(n), r(n� 1), I(n� 1) and I(n) can be expanded as

P (r(n); I(n); r(n� 1); I(n� 1))

= P (I(n)jr(n))P (r(n); r(n� 1); I(n� 1))

= P (I(n)jr(n))P (I(n� 1)jr(n� 1))P (r(n� 1); r(n))

= P (I(n)jr(n))P (I(n� 1)jr(n� 1))P (r(n� 1)jr(n))P (r(n)): (17)
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r(n) = r(n� 1) + "(n); (18)

with "(n) being a zero mean white Gaussian noise vector whose elements have variances �2["i].

Roughly, hypothesis (18) states that contour r(n) lies within a cloud of size4 3� around r(n� 1).

In fact, we should have assumed a mean a(n) 6= 0 for vector "(n), in order to prevent bias from

happening. However, mean a(n), is not a priori known, and it would have to be estimated. This

would introduce complexity in the model beyond a reasonable limit. On the other hand, our

main intention in introducing the temporal dimension in the model is to de�ne a region of high

probability where to �nd r(n) given r(n� 1). This prevents estimated borders from getting stuck

on artifacts lying far from the true borders.

The maximum border displacement between two consecutive frames is rarely greater than

1 mm. Variance �2 was set to 1 mm2. This value guarantees almost no bias, and, on the other

hand, it con�nes consecutive borders to a relatively small uncertainty cloud.

The a posteriori objective function, including two consecutive frames, is given by

	n(r(n); r(n� 1)j�(n);�(n� 1))

= lnP (r(n); r(n� 1)jI(n); I(n� 1);�(n);�(n� 1))

=
nX

t=n�1

i=M�1X
i=0

L(Ii(t)jri(t);�i(t))�
M�1X
i=0

5X
k=1

�ki (r(n); r(n� 1))+ ct; (19)

with �ki (r(n); r(n� 1)) = �ki (r(n)) for k = 1; : : : ; 4 , and

�5i (r(n); r(n� 1)) =
1

2�
kri(n)� ri(n� 1)k2; (20)

where k(�)k stands for Euclidian norm.

V. The Optimization Algorithm

A. Introduction

The MAP estimates of endocardial and epicardial borders are given by

(brMAP (n); brMAP (n� 1)) = arg max
r(n);r(n�1)

	n: (21)

Objective function 	n given by (19) is nonconvex and depends on 2M radii variables and 3M

re
ectivity parameters. Even assuming that the vector of parameters � is known, an exhaustive

search over the set � would lead to, approximately,
Q2M
i=1(N

2
i =2) evaluations of 	n. With M = 32

4The set Ak

i (n) = frki (n) : jr
k

i (n)� rki (n� 1)j � 3�g has probability P (Ak

i (n)) = 0:99.
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optimization algorithm should be looked for.

Simulated annealing, a stochastic relaxation technique [39], [34], was applied in [14]. The

estimates provided by this technique might converge in probability (if a slow enough temperature

schedule is chosen), but at the expense of an intolerable computational burden. Coordinate de-

scendent or gradient based methods [40] do not yield good estimates, as well, since the objective

function 	n is highly nonconvex.

B. The adopted criterion

Re
ectivity vectors �(n) and �(n � 1) are unknown; within the Bayesian framework, we

assume they are uniformly distributed. Like vector r(n) and r(n�1), they must also be estimated

from 	n:

(brMAP (n); brMAP (n� 1); b�MAP (n); b�MAP (n� 1)) = arg max
r(n);r(n�1);�(n);�(n�1)

	n: (22)

If the joint estimation of (r(n); r(n� 1)) is, by itself, extremely demanding, the joint estimation

of (r(n); r(n� 1);�(n);�(n� 1)) is unfeasible.

Let the observed sequence I(0); : : : ; I(n) of images and the initial estimate br(0) be given.

Consider the following recursive criterion:

(br(n); b�(n)) = argmax
r;�

	n(r; br(n� 1)j�; b�(n� 1)) (23)

All solutions of (22) are also solutions of (23), however, the converse is not true. Thus, the criterion

(23) is weaker than (22). Anyway, (23) is going to be applied, since the solutions it provides are

very close to the ones provided by (22). In the case of � =1 (absence of temporal cliques) both

criteria would lead to the same set of solutions. Since a weak temporal energy was chosen, the

solutions one is led to in both cases have to be close.

To achieve the solution according to criterion (23), we apply the following iterative scheme:

brt+1(n) = argmax
r

	n(r; br(n� 1)jb�t(n); b�(n� 1)) (24)

b�t+1(n) = argmax
�

	n(brt(n); br(n� 1)j�; b�(n� 1)): (25)

It is straightforward to show that the solutions of (23) are the only stationary points of (24)-(25).

Equation (25) is derived in a simple way from (8). One obtains

b�0t
i (n) =

"
ITi (n)D

0
i (brti)Ii(n)
2k1ti

# 1

2

(26)

b�1t
i (n) =

"
ITi (n)D

1
i (brti)Ii(n)

2(k2ti � k1ti )

# 1

2

(27)

b�2t
i (n) =

"
ITi (n)D

2
i (brti)Ii(n)

2(Ni � k2ti )

# 1

2

; (28)
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1 � j � k1ti (notation Xst stands for the entity Xs at the t-th iteration). Matrices D1
i and D

2
i are

de�ned in the same way for k1ti < j � k2ti and k2ti < j � Ni, respectively. Notice that estimates

b�0t
i (n), b�1t

i (n), and b�2t
i (n) are nothing but sample second moments of xij.

Contrarily to the easiness of (25), each step of iteration (24) is very demanding since 	n is a

nonconvex function of r(n). A Bellman-Ford type [41] algorithm, herein termed iterative multigrid

dynamic programming (IMDP) algorithm, is proposed to achieve the solution br(n).
C. The IMDP algorithm

Function 	n in equation (24) is to be maximized with respect to r. Let 	n(r) = 	n(r
1; r2)

denote 	n, with r(n� 1), �(n), and �(n� 1) �xed.

Having in mind the de�nition of vectors k1 and k2, one can write

	n(r
1; r2) =

i=M�1X
i=0

ai(k
1
i�1; k

1
i ; k

2
i�1; k

2
i ); (29)

where

ai(k
1
i�1; k

1
i ; k

2
i�1; k

2
i ) = L(Ii(n)jri(n);�i(n))�

5X
k=1

�ki (r(n); r(n� 1)): (30)

For a while admit also r2 �xed. This is equivalent to assuming k2i and k2i�1 �xed. In this case

we denote the term ai(�) in (30) as ai(k
1
i�1; k

1
i ), and function 	n(r

1; r2) as 	n(r
1).

Maximization of 	n(r
1) is equivalent to �nding the high cost path on a directed graph with

the set of nodes N = f(i; k)ji = 0; : : : ;M � 1; k = 1; : : : ; Nig. The cost between node (i; n) and

the node (i � 1; m), is ai(m;n); otherwise costs are �1. Notice that due the cyclic nature of

graph, cost a0 is also de�ned.

Fig. 4 schematizes the graph and the costs corresponding to the function 	n(r
1). It is a

layered graph (each layer corresponds to a scan-line), with connections only between pairs of

nodes in successive layers. The starting and ending nodes (which are the same given the the cyclic

topology of the problem) are chosen from scan-line i = 0.

Suppose, for a while, that we want to �nd the high cost path starting and ending at node

(0; n0). This is a dynamic programming problem whose solution is given by Algorithm A0

(Bellman-Ford algorithm [41] tailored to the problem at hand). Therefore, Algorithm A0 pro-

vides the contour r1 that maximizes 	n(r
1), constrained to r10 = d0(n0).

The high cost path, without any constraint, can be achieved by running the algorithm N0

times, considering that in each run the solution path starts and ends at node (0; k), with k =

1; : : : ; N0. The greatest high cost path is the wanted solution. This approach increases the

Bellman-Ford algorithm complexity by a factor of N0.



Algorithm A0: Let reals bik and integers nik be associated to nodes (i; k) 2 N . The next

recursive scheme provides, the high cost path between any node at any layer and node (0; n0):

Initialization: i := 0; b0k := �1, k = 0; � � � ; N0; b0n0 := 0, s := n0

For i = 1; � � � ;M � 1; 0

For k = 1; � � � ; Ni

jmax := arg max
j=1;:::;Ni�1

(ai(j; k) + bi�1;j)

bik := (ai(jmax; k) + bi�1;jmax
)

nik := jmax

The solution r1 = [r10; � � � ; r
1
M�1]

T is given by:

(1) retrieve solution at node 0 (r10):

r10 := d0(n0)

s := n0s

(2) retrieve solutions at nodes i = M � 1; � � � ; 1 (r1i ):

For i =M � 1; � � � ; 1

r1i := di(s)

s := nis

Instead of the previous approach, we adopt a suboptimal scheme which is based on the fol-

lowing informal argument: the solution components r1i corresponding to scan-lines far from to

scan-line i = 0 depend very little on the constraint r10 = d0(n0). Hence, we run Algorithm A0

twice: (1) in the �rst run the solution is constrained to be r10 = d0(n0), for a given n0; (2) in

the second run the component r1
bM=2c (e.g., diagonally opposed to r10) is constrained to be that

obtained in (1). This scheme takes only 2 runs (instead of N0) of Algorithm A0. Although sup-

ported a di�erent argument, the strategy just presented was proposed in [33] and therein named

two-loop method.

For referencing purposes, we present below Algorithm A1 which implements the two-loop

method. Notation r1 := Out(A0[i; a]) means the solution contour r1 delivered by Algorithm A0

constrained to r1i = a.

Algorithm A1: Implement the two-loop scheme.

r1 := Out(A0[0; r10])
r1 := Out(A0[bM=2c; r1

bM=2c])

Algorithm A1 searches for r1i over its complete domain. This is not very e�cient, since contour

r1 lies in the neighborhood of r1(n � 1) with great probability. On the other hand, we know in



IMDP algorithm: Assume known r(n 1), let be given an integer m0 specifying the coarsest

resolution, an integer L specifying the number of searches per layer, and a real � > 0:

Initialize: t := 0, r = br(n� 1)

For t = 1; 2; : : : ;br(n) = r

Compute b�t using (26), (27), and (28)

For m = m0; m0 � 1; � � � ; 0

r1 := Out(A1[r1; m; L])
r2 := Out(A1[r2; m; L])

If kr� br(n)k > �

continue loop t

Otherwise

br(n) = r

break loop t

advance that heart walls are surely larger than the intersample distance (in the present case the

intersample distance is less than 0.3 mm). Thus, one can run algorithm A1 in a multigrid type

fashion, �rstly with a coarse resolution and covering completely the high probability zone, and

next re�ning the estimate by searching in a smaller range, using a thinner resolution.

All the above ideas are implemented simply by constraining the search space to the set of

nodes

N [k1; m; L] = f(i; k)jk = k1i + 2m t; t = �L; : : : ; L; i = 0; : : : ;M � 1g \N ; (31)

where 1 � k1i � Ni. Set N [k1; m; L] contains at most (2L + 1) nodes corresponding to each

scan-line, centered at k1i (r1i = di(k
1
i )) and 2m apart. The maximum and the minimum attainable

ranges are min [di(k
1
i +2mL; di(Ni)] and max [1; di(k

1
i �2mL)], respectively. Concerning Algorithm

A1, 2m denotes the coarseness of search, and 2L+ 1 denotes the number of searches per layer.

De�ne r1 := Out(A1[r1; m; L]) as the output r1 of algorithm A1 constrained to the set

N [k1(r1); m; L]. All the de�nitions and concepts supporting algorithm A1 concern the contour

r1. They apply equally to contours r2, replacing index 1 by index 2, whenever necessary.

Algorithm IMDP, presented below, aims at the e�cient determination of estimate br(n) given
by criterion (23), using the iterative scheme (24)-(25).

We could have considered various iterations for each value of m. However, this proved not to

be necessary, since for each t, the solution r provided by the inner For loop in the IMDP algorithm

is, practically, the wanted one (the maximum of 	(r) with respect to r). This fact relies on the

relatively high degree of independence (in the statistical sense) between r1 and r2.
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(we are assuming that N = N0 = N1 =; : : : ;= NM�1). Given a constrained search with 2L + 1

levels, 	n(r
1) has to be computed (2L+1)2�M times. In the present work we adopt L = 5. For

N ' 150 this means that the nonconstrained search demands a 185 times larger computational

e�ort compared with the constrained search, what is quite a di�erence.

VI. Results

In all examples presented the number of scan-linesM is set to 32. We have chosen this number

based on experimental results. Indeed, larger values of M would increase the computational e�ort

(which is proportional to M), and would not lead to noticeable improvements on the contour

estimates.

The IMDP algorithm was implemented on a NeXT DIMENSION workstation. It was parame-

trized with L = 5 and m = 2. These values will be kept along all experiments since they proved

to be wise choices while leading to a mild amount of computation.

The stopping criterion of the IMDP algorithm depends on the parameter �. Instead of speci-

fying it, the iteration is stopped when the estimated contours display no more visual changes. In

all examples studied, this was accomplished with no more than 4 iterations (t = 4).

A. Simulated data

We �rst consider a set of simulated images of size 260 � 185. The pixel values are indepen-

dent samples of a Rayleigh distribution. Pixel mean values were chosen according to the model

presented in section III. Fig. 5(c) plots the estimated contours over the corresponding image.

Re
ectivities have values �0
i = 10, �1

i = 30, and �2
i = 100 for all scan-lines. These contours were

estimated from only one image. The starting estimate br(0), necessary to initialize the iterative

algorithm (24)-(25), was obtained by maximizing the log-likelihood of each scan-line L(Iijri; �i)

with respect to ri given by expression (8). Since vector �i is not a priori known, a crude estimate

was computed: a Canny [18] type �lter of width 20 was applied to the data along each scan-line.

The inner contour position br1i and the outer contour position br2i were set to the positions corre-

sponding to the two greatest maxima. Re
ectivities b�0
i were then computed according to (26),

(27), and (28). In the sequel, the estimate br(0) will be called the ML estimate. Fig. 5(b) plots

the ML estimate associated with data of Fig. 5(a) over each scan-line. Fig. 6 shows the estimated

re
ectivities associated to each scan-line of Fig. 5. Since the estimated contours exhibit almost

no error, the variance of each b�ki is only the one attributed to the sample power estimation.

The performance of the contour estimator depends only on the ratios �1
i =�

0
i and �2

i =�
1
i (see

log-likelihood function (8)). The relative contrast of image in Fig. 5 is �1
i =�

0
i ' �2

i =�
1
i ' 3, for all
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In order to have some insight on the trade-o� between re
ectivity contrast and estimation

error, Fig. 7(a) considers a di�erent pattern of re
ectivity. It is generated with �1
i =�

0
i = 2 and

�2
i =�

1
i = 2 for i = 8; � � � ; 23 and �2

i =�
1
i = 0:5 for i = 24; � � � ; 7. Thus, compared with the image of

Fig. 5(a), there is not only a decrease in the relative contrast from 3 to 2, but also an inversion in

the variation of re
ectivity in the right side of the outer simulated tissue. This situation occurs

frequently with real data. One can say that the estimated contour is a little worse than the one in

Fig. 5(c). We have chosen a value of 2 (witch is equivalent to 0.5)5 for the relative contrast �2
i =�

1
i ,

since, with �2 = 5�102

M2 , that value is the limit below which the outer contour becomes biased.

Indeed, for �2
i =�

1
i < 2 the data does not produce enough strength to compete with the smoothness

term. The net result is a biased outer contour estimate.

Concerning the inner contour, it is possible to have relative contrasts �1
i =�

0
i < 2 and still have

acceptable estimates. Fig. 8 illustrate this situation. The relative contrasts �1
i =�

0
i and �

2
i =�

1
i were

set to 1.5. The outer estimate is biased, mainly near the points were the exterior ellipse shows the

greatest curvature. The inner contour estimate is not as good as the one in Fig. 7(b). Roughly,

one can say that it is a slightly smoothed version of the estimate plotted in Fig. 7(b). However,

it is still good for many quantitative purposes.

The obvious conclusion of the example just presented is that the model parameters (in this

case �2) are not truly describing the data they were supposed to describe. For each example

those parameters should be estimated. This is not, however, the perspective in which we place

ourselves: we assume that parameters describing prior knowledge (�1,�2, and �1) are constant,

given the view from which data is acquired. This is also in accordance with the meaning of prior

knowledge as the one not coming from the observed data.

B. Real data

The data set was obtained by a SIEMENS echocardiographic system, recorded on a video

tape, and �nally acquired with a NeXT DIMENSION video acquisition system. An ultrasound

frequency of 2.5 MHz was used. A higher frequency would lead to higher contrast: the Rayleigh

scattering (scatterers with linear dimensions D such that D < �=20) is proportional to ��4D6,

[42]. Thus, by improving the acquisition process and using a higher frequency, a better data set

could have been chosen. However, we use the present one in order to test the robustness of the

proposed method.

Fig. 9(b) plots the ML solution over the frame 9(a) acquired at end-systole. The high contrast

between myocardium and tissue outside heart on the southern hemisphere (inferior, posterior, and

5In fact, we have �2

i =�
1

i = 2 for i = 8; � � � ; 23 and �2

i =�
1

i = 0:5 for i = 24; � � � ; 7. However, concerning the contour

estimator performance, contrasts c and 1

c
are equivalents.
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hemisphere (septum, anterior septum, and anterior wall) there is almost no contrast, this leading

to a very poor quality ML estimate. The endocardial estimate, although not very far from the

true endocardial contour, needs to be improved.

Figures 10 to 12 and 14 to 16 are subsets of a set with 25 frames to which the IMDP algorithm

was applied (part (a) displays the original frame; part (b) overlays the estimated contours; part (c)

overlays the hand traced contours). Actually, given the periodic heart movements, the algorithm

was recursively and cyclicly applied: assuming an initial estimate br(0) (which can be, for example,

the ML solution of frame 1) the estimates from 1 to 25 and from 25 to 10 are produced. Frames

1 to 10 are processed twice. The second time frame 1 is processed, the estimate br(25), instead of

br(0), is used to initialize the algorithm. Thus, the undesirable impact of a rough estimate br(0) on
the initial frames is removed. This scheme shares the spirit of the two-loop method proposed in

[33].

Estimates plotted on Figures 11, 10, and 12 correspond to the end-systole frame, the previous

one, and the next one, respectively. Estimates plotted in Figures 15, 14, and 16 correspond to the

end-diastole frame, the previous one , and the next one, respectively.

Fig. 13 plots the estimated re
ectivities b�i of the image in Fig. 10(b). Blood re
ectivity

is systematically around b�0
i ' 10. Myocardium re
ectivity is, in most of scan-lines, above 20,

this leading to relative contrasts b�1
i =b�0

i greater than 2. Re
ectivity outside the heart has two

di�erent patterns: (a) in the northern hemisphere there is almost no contrast between myocardium

and tissues outside the heart; (b) in the southern hemisphere, there is a high contrast between

myocardium and tissue outside the heart. The poor contrast in the northern hemisphere leads to

an estimate with greater variance. This is, in some degree, compensated by the higher smoothness

of the outer contour. This can also be visually con�rmed by comparing the automatic estimated

contours 10(b), 11(b), 12(b) with the hand traced ones 10(c), 11(c), 12(c); the closeness between

the hand traced and the automatic estimated contours is great even for the outer contour in

northern hemisphere.

The remarks just presented concerning systolic frames shown in Figures 10, 11, and 12, apply

equally to diastolic frames shown in Figures 14, 15, and 16.

Figures 14, 15, and 16 display the tips of mitral valve and/or the chordae tendinae near the

papillary muscles, which is not considered in the model developed in this work. Nevertheless, we

point out that the inner contour estimate was able to pass over these artifacts, whenever they are

not touching the myocardium. This was made possible by implementing a preprocessing scheme

for artifact detection and remotion. This procedure explores a simple fact: if a scan-line crosses

an artifact inside the cavity and it is not touching the myocardium, then, the re
ectivity pro�le

exihibits a pulse-like pattern having the value �0 (blood re
ectivity) in the lower level. Notice
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re
ectivity pattern, without artifacts, is always from a given value (blood re
ectivity) to a higher

value (myocardium re
ectivity). Based on these arguments, the preprocessing scheme implements,

for each scan-line, the following steps: (1) obtain a crude re
ectivity estimate for each pixel; (2)

for each pixel, compare, with hysteresis, the estimated re
ectivity with the estimate of blood

re
ectivity; (3) if a path is marked as artifact, replace the correspondent pixels by the estimated

blood re
ectivity. Notice that the hysteresis referred in point (2) accommodates the estimate

variance. This preprocessing scheme works reasonably well, given that artifacts and blood have

very di�erent re
ectivities. This is evident concerning the artifact present in the neighborhood of

the left papillary muscle, in Figures 14, 15, and 16.

Fig. 17 plots the evolution (from diastole to systole) of the quantity Vol 3
4c
; symbol Vol

stands for volume of left ventricle de�ned by epicardial and endocardial walls and c denotes the

major hemiaxis (which can be determined from a long axis in the apical four-chamber echographic

view). The volume was computed according to the ellipsoid model [5]. The concordance between

the results using automatic contours estimation and manual contour tracing is evident.

The ejection fraction is given by the ratio between the stroke volume (di�erence between

end-diastolic and end-systolic volumes) and the end diastolic volume. Assuming that the major

hemiaxis c remains constant along the cardiac cycle, the ejection fraction is 0.70 when determined

from the manual contours tracing and 0.68 when determined from automatic contours estimation.

Again, there is a good agreement between automatic and manual based �gures.

Finally, Fig. 18 plots the septum thickness evolution. Given the extremely poor contrast of

echographic data in the septum and in its neighborhood, the results can be considered acceptable.

VII. Concluding Remarks

In this paper a method for endocardial and epicardial contour estimation in sequences of

echocardiographic images is presented. The problem was formulated under the Bayesian setup.

Contours are assumed two-dimensional, i.e. they have spatial and temporal indexes. For each

temporal index, the contour is modelled as a noncausal �rst-order Markov random process. For

each spatial index the resulting process is assumed as a causal �rst-order Markov random process.

The physics of image generation and the heart morphology play a key role in building the im-

age generation model; namely, the observed image pixels were modelled as Rayleigh distributed

random variables with means depending on their positions relatively to the contours. The MAP

criterion is then applied to derive the contour estimates. To solve the huge optimization problem

one is led to, an algorithm embodying dynamic programming and multigrid aspects, which we

named iterative multigrid dynamic programming (IMDP) was introduced. The IMDP algorithm
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domain would have about 50 the IMDP complexity. The method is implemented and tested on

a conventional workstation, and it takes less than 4 seconds to determine contours from a single

image. Estimating the contours of a complete cardiac cycle takes, roughly, 1 minute.
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Figure 1: Adopted polar coordinate system.
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Figure 2: Echo along a radial scan-line from the heart center towards lung tissue.
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Figure 3: Log-likelihood of the endocardial border.
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Figure 4: Layered graph associated to the function 	n(r
1).
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Figure 5: Simulated image with �
1

i
=�

0

i
= 3 and �

2

i
=�

1

i
= 3:33 (i = 0; : : : ;M � 1): (a) Original image; (b) ML

solution br(0) associated with image (a) used to initialize IMDP algorithm; (c) Estimated contours.
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Figure 6: Estimated re
ectivities b�0
i
, b�1
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, and b�2

i
associated to each scan-line of Fig. 5(c), for i = 0; � � � ;M � 1.
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Figure 7: (a) Simulated image with �
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= 2 and �

2
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1

i
= 2 on the left hand size and �
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1
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= 0:5 on the right

hand side; (b) Estimated contours.
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Figure 8: (a) Image simulating faint data (�1
i
=�

0

i
= �

2

i
=�

1

i
= 1:5 for all scan-lines); (b) Estimated contours.
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Figure 9: (a) Frame at end-systole; (b) ML estimate.
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Figure 10: Frame immediately before end-systole: (a) Original frame; (b) Original frame with automatic contours

overlaid; (c) Original frame with hand traced contours overlaid.
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Figure 11: End-systole frame: (a) Original frame; (b) Original frame with automatic contours overlaid; (c) Original

frame with hand traced contours overlaid.
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Figure 12: Frame immediately after end-systole: (a) Original frame; (b) Original frame with automatic contours

overlaid; (c) Original frame with hand traced contours overlaid.
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Figure 13: Estimated re
ectivities b�i of image in Fig. 10(b) for i = 0; � � � ;M � 1.
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Figure 14: Frame immediately before end-diastole: (a) Original frame; (b) Original frame with automatic contours

overlaid; (c) Original frame with hand traced contours overlaid.
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Figure 15: End-diastole frame : (a) Original frame; (b) Original frame with automatic contours overlaid; (c)

Original frame with hand traced contours overlaid.
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Figure 16: Frame immediately after end-diastole: (a) Original frame; (b) Original frame with automatic contours

overlaid; (c) Original frame with hand traced contours overlaid.
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Figure 17: Estimated volumes de�ned by the endocardium and pericardium.
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Figure 18: Estimated thickness of septum.


