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Asymptotically Efficient Estimation of Spectral Moments 

Jost M. B. Dias and Jok M. N. Leit2o 

Abstmet-This correspondence studies parametric estimatioll of spec- 
tral moments of a zero-mean complex Gaussian stationary pmcess im- 
mersed in independent Gaussian noise. With the merit of the maximum- 
likelihood @lL) approach as motivation, this work exploits a Whittle's 
type objective function that is able to capture the relevant feabues 
of the log-likelihmdfunction while b e i i  much more manageable. The 
resultiag estimates are strongly consistent and aq~~ptotically eUicient. 
As an example, application to Doppler weather radar data is considered. 

I. INTRODUCTION 

In general, spectral estimation addresses the problem of power 
spectral densify (PSD) inference from a finite observation of the 
underlying process. There are situations, however, in which the goal 
is the determination of PSD functionals, rather than the PSD itself; 
a relevant example is spectral moments (SM) estimation, which is 
the main theme of this correspondence. The motivation stems from 
our previous work on Doppler weather radar [1]-[3], where the 
goal is the determination of the three first SM within the so-called 
resolution volume [4]. These moments are closely related to physical 
entities of interest: the zeroth moment (mean power) is related to the 
water content, the first moment (meanfrequency) is related to the 
hydrometeors mean radial velocity, and the square root of the second 
centered moment (spectral width) is a measure of the hydrometeor's 
velocity dispersion. Besides Doppler weather radar, SM estimation 
finds application on clear-air turbulence measurement, ultrasound 
imaging in medicine, and synthetic aperture radar, to name a few. 

Well-known nonparametric SM estimation techniques are the pulse 
pair (PP) [5] and the periodogram-based (PB) estimate [4]. For ban- 
dlimited processes, exact ML nonparametric estimates were derived 
in [2]. 

Concerning parametric approaches, the optimality characteristics 
of the ML criterion (at least asymptotically) have fostered its study 
in several fields. However, determining the ML solution is often 
cumbersome (both in analytical and computational senses) [6]. As 
a consequence, the ML criterion has been put aside where SM is 
concemed. 

Our objective in this work is to come out with a parametric 
SM estimator that asymptotically exhibits ML properties having a 
tolerable complexity. This is attained by replacing the log-likelihood 
function with a close Whittle's-type objective function [7]. By 
hypothesis, the parametric model is known up to a multiplicative 
constant, a frequency shift, and a scale factor. 

The main contributions presented in this work are the following: 
a) a criterion yielding asymptotically efficient SM estimates 
b) a result stating the strong consistency of the proposed estimates 
c) an approximate expression for the estimate's bias 
d) a procedure of moderate complexity providing the SM esti- 

mates. 
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The paper is organized as follows: Section II introduces notation 
and hypotheses about the underlying process, formulates the problem, 
and derives the approximate ML estimator; statistical characterization 
is also provided. Section III specializes the previous concepts to 
Doppler-spread data. Section IV presents an application using weather 
radar data. 

n. PROBLEM FORMULATION AND APPROXIMATE ML ESTIMATOR 

Let X = {z( t ) ,  t E 92) and N = { n ( t ) ,  t E 92) be independent 
zero-mean complex Gaussian strictly stationary processes, with co- 
variance functions (CF's) R,(T) and R,(T), respectively. The PSD 
associated with R, ( T )  is denoted by S, (f ). We assume that Rn (T) 
is known in advance (notice that, in many applications, Rn(7) can 
be measured/estimated with arbitrary precision). Since our approach 
is parametric, we write R,(T, 0) and S,(f,O) with 1'9 E 0 C Rp 
andp  2 1. 

The problem of SM estimation is then stated as follows: given 
M consecutive samples Y = [ Y ~ , . . . , Y M ] ~ ,  with Y ,  = y ( i ~ , )  = 
z(iT,) + n(iT,), design estimators of the spectral moments (which 
are assumed to exist) given by 

where ( j  G) and Rik)(0,8)  stands for the kth derivative of 
R,(O,B) with respect to T, at T = 0. Besides m k ,  we are also 
interested in the spectral width 

Let Jml be the ML estimate of parameter e. The-invariance of 
ML estimation [8] implies that rhpl = mk[S,(f,@)] and that 
d" = o[S,(f,8"')], i.e., ML estimation of SM reduces to ML 
estimation of parameter B .  Therefore, we will focus our attention on 

E[YYH] = {R,[(i-j)T,,e], i , j  = l , - - - , M )  
(where ( . ) H  stands for transpose conjugate), with Ry(7,e) = 
RZ(7, e )  + R, (T). Recalling that X and N are zero-mean complex 
Gaussian strictly stationary processes and assuming that Ryl(0) 
exists for 0 E 0, it follows that the probability density function 
of Y is 

Jml 

DefineR,(O) 

Let 00 be the true parameter; its ML estimate is given by 

8m1 = argmaxA(Y I e )  where A(Y 16') = ln[fy(Y I e) ] .  (4) 
O€Q 

Finding em' demands explicit expressions for IRy(6')l and Ryl (e) .  
In most cases, these expressions are very difficult to obtain [6]. It 
is thus natural to apply iterative schemes to compute 8"'; relevant 
examples are the estimation of structured covariance matrices [9], 
[lo] and the estimation of ARMA parameters [ll]; the expectation 
maximization algorithm has also been applied to iteratively solve 
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ML maximization problems [12]. Regarding SM, the computational 
burden of these methods is unbearable in most practical applications. 

Seeking for an estimator with ML (or nearly ML) features but with 
lighter complexity, we exploit an objective function L(Y 1 e) having 
the same structure of A(Y I e) but where Ry(B) is replaced with 

Cz- R, (7 + k MT, ,e). Assuming that R, (iT,, 8) is negligible 
for (iJ 2 m and M > 2m + 1, then Rcy(7, e) is a periodic extension 
of R,(7,8).  Observe that Rcy(0) is a right circulant matrix; with 
exception of the upper right and lower left comers, matrices R,, (8) 
and Ry(e) are equal. Thus, if M >> 2m, it can be expected that 
estimates based on Rcy(e) and on Ry(e) are close. 

Consider the eigendecomposition Rcy(8) = FE,(8)FH. 
Since Rcy(e) is right circulant, the eigenvector matrix is F = 
M - 1 1 2 { e - - 3 s a k ,  i,j = O , . . . , M  - 1) and the eigenvalue matrix 
E,(@) = diag[Ao(O),. . . , AM-l(e)] isthediscreteFouriertransform 
of the first row of Rcy(8) [81. 

Replacing R, (e) with R,, (8) in A( Y I e), the objective function 
L(Y I e) is equivalent to 

Rcy(0) = {Rc,[(i -j)Ts,8], i , j  = l , . . . ,M},  and Rcy(7,8) = 

L(Y 18) = const - M-l[ln lRcy(0)l + YHR,-,'(8)Y] (5) 
= const - M-'[ln IXy(8)l+ {FHY)" 

= const - M-1 (E lnA,(e) + 
x E;'(8){FHY}] (6) 

M-l ,=o A, L ( 8 )  ) (7) 

M-1 
- 

where x, is the periodogram of the observed sequence {x} izy  
ComputedatF, =i/Mfori=O,--- ,M-l ,andA,(B) =A(F, ,8 )  
with (we assume that M > 2m + 1) 

M-1 

W 

= R,(kT,,0)e-'2"Fk. (8) 
k=--m 

The last sum in (8) is, by definition, the discrete time Fourier 
transform ( D m )  of R, (kT, , e). 

The estimation criterion (4) with h(Y I 8) replaced by L(Y 1 0) 
leads to an estimate herein denoted by 0 and termed the approximate 
maximum likelihood (AML). It corresponds to a generalization of 
Whittle's ML approximation method [7] and is significantly more 
manageable than the exact log-likelihood function while behaving 
(asymptotically) in the same way. Related results are found in [6].  
This work proposes the application of the concepts just stated to 
SM estimation; this makes sense if the AML estimate f3 is a good 
substitute for 8". Results presented ahead provide insight into this 
matter. 

A. Asymptotic Properties 

Result I :  Let {Y , }  be a strictly stationary zero-mean complex 
Gaussian sequence with covariance E[K+ky,*] = R,(kT,,Oo) such 
that 00 belongs to the compact set 0 contained in an open set 
S C SP, and C;F=-,lkl (R,(kTs,8)(2 < c < 00 for 8 E S. 
In addition, let the partial derivatives ax-' (F,  @)/a@, be continuous 
for all components 8, E 0 with (F,  e) E [-1/2,1/2] x S. Assume 
that if B1,& E S and 81 # 82, then A(F,Ol) # A(:,&) for almost 
all F. Unde: these conditions, the AML estimate B(M) is strongly 
consistent: 8 ( M )  

Result 2: Assume the hypotheses of Result 1 and that a2A ( F ,  8) 
/(ae,ae,) is continuous for all components 8, of 8 with (F,!) E 
[-1/2,1/2] x S. Hence, the random vector [ ( M )  = m ( 8 ( M )  

00 with probability one (w.p.l), as M -+ 00. 

-eo) is asymptotically zero-mean Gaussian with covariance matrix 
r-l(e0), where 

is the normulized asymptotic information matrix. 
~ 

B. Bias 

Result 3: Assume the hypotheses of Result 2 and that E:=-, lkl 
[ R, (kT,, e)( < 00 for 8 E S. Under these conditions, the estimator 
bias verifies 

M{r;,(Bo) - M-'Eii(8o)}E[(6(JW - e011 
= { E i ( e 0 ) )  + O ( M )  (10) 

with 

m 

p(F,8) = 1kIR,(kTs,8)e-'2"Fk 
k = - w  

where O ( M )  is proportional to M - l  and I' is the asymptotic 
information matrix given by (9). 

Proofs of Results 1 and 3 are carried out in [3]. Result 2 is proved 
in [6, Ch. n]. 

III. APPLICATION TO DOPPLER-SPREAD TARGETS 
We are interested in the SM of a process with CF 

R=(T, e) = eo ~ ~ ( 0 2 7 )  e x p ( j 2 d h ~ )  (13) 

where ~ ~ ( 0 )  = 1, T = ( T )  is a priori known, Bo > 0, and 82 > 0. The 
CF (13) is typical offrequency-spread targets, as it is the case in all 
the applications mentioned in the introduction. 

For the CF (13), the objective function (7) becomes 

L(Y 1 e) = const - M-' 
M-1 M-1 ) (14) 

A, (z lnAo(F')+ *=O Xo(F, -01T.) 

where h ( F )  is the DTFT of R,[kT,, (Bo,O, &)I. To maximize (14), 
we propose the Newton-type iteration 

(15) 

Compared with the Newton-Raphson iterative scheme, expression 
(15) uses matrix - I ' ( O k )  instead of H(Y I Ok), which is the Hessian 
of L(Y I ek) .  An informal justification for (15) is the following: 
Under regularity conditions as those of Result 2, HLY I 80)  = 
-r(O0)+A, where E !All2 = O i M )  [31. Hence, for Ilek-c%ll = 0, 
it follows that H(Y I O k )  N -r(Ok) +A' with E IlA'((' = O ( M ) .  
It should be noted, however, that H(Y ! e k )  may largely diverge 
from r(ek) as greater displacements liek - e,ll are considered. 
Nevertheless, the iterative scheme (15) has shown to be much more 
robust than the pure Newton-Raphson. The reason is that, even for 
moderate displacements of - O O I I ,  L(Y I 8k) exhibits lafpe 
deviations from the parabolic shape; it often happens that H(Y I ! k )  

has very small (negative) or even positive eigenvalues, whereas r(ek) 
keeps close to I'(Oo). Another advantage of (15) is that r-'(ek) can 
be computed off line. 

The choice of the starting- point 6' is crucial; notice that (14) 
depends on the periodogram A,, on which the PB estimate is built: 

e k + l  = d k  + r-l(ek)vqY 1 e k ) .  
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Fig. 1. Solid lines plot the normalized asymptotic CRB (standard deviation) 
of the first spectral moment (mean frequency). The points inside the circles 
show the sample standard deviation (100 Monte Carlo runs per point) of the 
AML estimator. 

where M is assumed even, and N ,  is the DTFT of R, (7). Further- 
more, by applying (1) to (13), we obtain 

60 = mo, (17) 
-1/2 

02 = 2~a,(S,)  [ - rp) (O)  - ( ~ ! " ( 0 ) ) ~ ]  , (18) 

where ~ ~ ( 7 )  and ~ ~ ( 7 )  are the real and imaginary partspf T , ( T ) ,  

respectively. Therefore, concerning the starting point 8' of the 
Newton-type algorithm, we proceed as follows: 

a) Compute ( T ? $ ' , ~ , T ? Z ~ ~ , T ? Z ~ ~ )  according to (16). 
b) Use (17H19) to obtain 8' = ( @ , O ~ , e ~ ) .  

IV. EXAMPLE: DOPPLER WEATHER RADAR DATA 
In this section, we take T , ( T )  = e x p ( - 2 ~ ~ 7 ~ )  and R,(iT,) 

= N06( i ) .  This is typical of weather radar data [13]. Hence, it 
follows that 

In all the results presented, the sample size is M = 128. For 
each value of 8, the iterative scheme (15) was applied over 100 
independent data sets, using the stop rule I(O; - ok-l)/etl < 
10-~,l(e: < ~ o - ~ T , - ' ,  and I(o,"-e,"-l)/e,"l < The 
Newton-type scheme converged for all runs (2100), thus confirming 
the robustness that was stated previously. The mean number of 
iterations, although it is a function of 0o/No and 192, was never greater 
than five, leading to O( M) log M mean floating-point operations per 
estimate. 

The solid lines in Figs. 1 and 3 plot the normalized asymptotic 
CRB (standard deviation) of parameters @IT, and 02Ts as a function 
of &TS. The curves are parameterized by the SNR. The points inside 
the circles represent sample standard deviations obtained by running 
the proposed procedure. Within the uncertainty associated with the 
sample standard deviation (roughly 0.1%), these estimates exhibit a 
standard deviation that is very close to the asymptotic CRB. 

Fig. 2 plots the ratio between the sample variance and the normal- 
ized asymptotic CRB (V&) of @IT, resulting from Monte Carlo 
simulation (100 runs per point) for five different estimators. The 
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Fig. 2. Ratio between the sample variance (100 Monte Carlo runs per point) 
and the normalized asymptotic CRB (V&) of the first spectral " e n t  
(mean frequency) for five different estimators. 
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Fig. 3. Solid lines plot the normalized asymptotic CRB (standard deviation) 
of the second centered spectral moment (spectral width). The points inside 
the circles show the sample standard deviation (100 Monte Carlo runs per 
point) of the AML estimator. 

AR(i) estimatyr is implemented by applying the SM definition to 
the spectrum S, estimated by assuming an autoregressive process of 
order i. The first thing to note is that the PP and AR(1) estimators 
have the same performance (roughly 1.5 times the CRB); this is 
shown in [3]. The AR(3) and PB estimators seriously degrade their 
performance for 02Ts > 0.175. It is interesting to note that the 
AR(3) estimator, compared with the AR(l), yields higher variance 
for 82T. > 0.175. The justification is that the spectrum associated 
with the AR(1) estimator is symmetric around OlT,, whereas this is 
not true for the AR(3). Therefore, the AR(1) conveys more a priori 
information about the underlying spectral shape. 

Concerning bias: Resul! 3 led us to the conclusion that 61 is 
unbiased, whereas 00 and 02 are biased. Fig. 4 plots the relative bias 
of 82 given by (10) for different SNR's. The points inside the circles 
show the relative sample bias obtained by Monte Carlo simulations. 
The accordance between the theoretical curve and the simulation 
results is evident. 

Fig. 5 plots the relative sample bias of &Ts for SNR equal to 10 
dB, drawn from the Monte Carlo simulation, showing that the AML 
estimator is clearly the best. The PB estimator exhibits two kinds of 
bias: a) bias due to the mean value of the periodogram, which is the 
convolution of the true spectrum with a Bartlet window (this bias, 
which tends asymptotically to zero, affects only the estimates at low 
spectral widths and can be minimized by convolving the periodogram 
with an appropriate window); b) bias due to aliasing and independent 
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Fig. 4. Solid lines plot the relative bias of the second centered spectral 
moment (spectral width) according to Result 3. The points inside the circles 
represent the sample bias (100 Monte Carlo runs per point) of the AML 
estimator for S N R  equal to 10 dB. 
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Fig. 5.  Relative sample bias (100 Monte Carlo runs per point) of the second 
centered spectral moment (spectral width) for five estimators. 

of the sample size. The bias pointed in b), which can only be avoided 
by choosing a correct value of T,, also affects the AR(i) estimators 
regardless of i. On the contrary, the AML presents no bias at high 
SNR, despite the referred aliasing. 

V. CONCLUSION 
This correspondence addressed the estimation of spectral moments 

of Gaussian processes immersed in Gaussian noise. An estimator 
exploiting a Whittle’s-type objective function, herein termed approx- 
imate maximum likelihood (AML), was introduced. Results stating 
its strong consistency and asymptotical efficiency were presented. 
A relevant feature of the AML. estimator is that it depends on the 
periodogram, upon which the well-known periodogram-based (PB) 
estimator is built. This fact was exploited, yielding a Newton-type 
iterative algorithm initialized with the PB estimate. Furthermore, the 
Hessian matrix, which is necessary in the Newton-Raphson method, 
was replaced with the asymptotic Fisher information (which can be 
computed offline), leading to a highly robust scheme. As  a practical 
example, a Gaussian-shaped spectrum, which is typical of weather 
radar data, was considered. For a sample size M = 128, S N R  < 10 
dE3, and spectral width BZT, E [0.05,0.3], the proposed estimators 
are nearly unbiased and efficient. Comparisons with the periodogram- 
based, pulse pair, and autoregressive-based estimators are, in all cases, 
favorable to the AML. 
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Incoherent Receivers in Alpha-Stable Impulsive Noise 

George A. Tsihrintzis and Chrysostomos L. Nikias 

Abstract-We compute an incoherent reeeiver for demodulation of 
signals with random phase in additive impulsive noise modeled as a 
bivariate isotropic Cauchy process. Monte-Carlo simulation clearly shows 
that the proposed Cauchy receiver has sigdicantly improved operating 
characteristic over the corresponding Gaussian receiver. Moreover, the 
Cauchy receiver is very robust in the entire class of bivariate isotropic 
symmetric alpha-stable impulsive noises. 

I. INTRODUCTION 

Communication links are very often corrupted by a clearly non- 
Gaussian interference, termed “impulsive” and characterized by high 
probability of large amplitudes (e.g., [11-[51 and [6, ch. 91). Many 
natural, as well as man-made, sources of impulsive interference exist, 
including lightning in the atmosphere, switching transients in power 
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