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Efficient Computation ofir{TR 1}
for Toeplitz Matrices

José M. B. Dias and José M. N. Leitdo

Abstract—An efficient algorithm for the computation of WhenN — ~o, and under adequate hypothesis on sequences
tr{TR ™'}, where T and R. are Toeplitz matrices andR. is also {t;, 7 € Z} and{r., 7 € Z} (Z denotes the integer set), we
symmetric positive definite, is presented. The method exploits the have (see, e.g., [7, p. 140])
fact that the trace of TR ™ depends only on the sum of the diag- oI R
onals of R, and not on the whole matrix R—. To obtain this
sum, a fast efficient technique, built upon the Trench algorithm lim N_ltr{TR_l} =
for computing the inverse of a Toeplitz matrix, is developed. The N—oo
complexity of the algorithm depends on the generation function of
matrix R and is O(N In N) for generic functions andO(plnp)  where S,(w) and S,.(w) are the discrete Fourier transform
for AR (p) functions. of sequenceqt,, 7 € 7} and{r,, 7 € Z}, respectively.

Index Terms—Fast algorithm, fast Fourier transform, Toeplitz ~ Asymptotical result (1) is the basis of Whittle’s formula [10],
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matrix, trace, Trench algorithm. for the asymptotic normalized Fisher information matrix of a
zero-mean normal process. This formula (1), despite leading
| INTRODUCTION to closed and simple expressions with light complexity, yields

frequently a poor approximation famall sample sizes (see
HE NEED for computingr{TR™"}, whereT andR ¢ g. [11]).
are Toeplitz matrices anR is also symmetric and pos- T our knowledge, there is no general technique for the
itive definite (SPD), appears in many signal processing proetermination oftr{TR™'} with complexity lower than
lems. Relevant examples are estimation of Toeplitz constrair@@\ﬂ)' In this letter, we introduce a faster technique. We
covariance matrices [1], [2], matrix approximation under thSegin by noting thatr{TR_l} depends only on the sum of
Frobenius nornf3], functional approximation of Gaussian denthe diagonals oR~! (which we refer to as thdiagonal sum
sities usingKullback divergencd4], channel estimation [5], of R—1). With this fact in mind, it is then proved, based on
pulse time-of-arrival analysis [6], and computation of E&her  the Trench algorithm for determining the inverse of a Toeplitz
information matrixof zero-mean Gaussian processes [7]. In th@arix, that the diagonal sum of the referred matrix can be
latter case, one has to compute terms of the faffféR *},  computed with O(N In N) complexity. In computing the
wheresR~" denotes the derivative & ~" with respect to a giagonal sum, it is necessary to solve a Toeplitz system. By
given parameter. These terms can be determined numericgiiyng the preconditioned conjugate gradient technique (see
from the knowledge ofr {TR ™"}, [12]-[15]), this step ha®(V In N) complexity. If matrixR. is
Given the Toepliz matrice¥ = [ti—;] andR = [ri_;], for ~ generated by a rational function of order, ¢), the methods
i,j=1,..., N, the obvious way of computing{TR "} is [16], [17] solve the system with complexityax(p, ¢)O(N).

to invertR and then determine the trace BR™'; by using the Therefore, the total complexity in computing{TR '} does
Trench algorithm (see, e.g., [8]) to compilRe™!, the total com- ot exceed(N In V)

plexity in computingr{TR.~'}, measured in floating point op-
erations, i5(9/4)N? + (3/2)N (R~! takes(7/4)N? and the
remaining operations tak&2/2 + (3/2)N).

Porat and Friedlander [9], based on the Levinson-Durbin al-Let T, R € RY*" be Toeplitz matricesof real elements,
gorithm for computing the orthogonal polynomials of a Toepli¢hereR is SPD andR~" = [c;;]. Noting thatt;; = ¢,, where

Il. EFFICIENT COMPUTATION OF tr{ TR *}

matrix, proposed an algorithm for the exact computation of the= ¢ — j forz, j = 1, ..., IV, it follows that
Fisher information matrix. This algorithm can be easily adapted N N1
to computetr{TR '}. The complexity of the method is still =) : —
oy py WTR = ) tyei= ) D e
’ i,j=1 r=—N+1 iCS,
N-1
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TABLE |
SUMMARY OF THE PROPOSEDSCHEME FOR THEDETERMINATION OF THE
DIAGONAL SUM OF R ;!

wheree, = ZiES,_ ¢i+r,¢ 1S therth diagonal sum oR~!
(= > 0 denotes south-west diagonals), and

1+7,..., N 72>0
S; = 1 N—|r| r<0 (3) Computation of ¢,
s s .
Step Complexity
. —1 _
According to (2)'t_ri{TR }_depends o, and onc, (sum of 1. Solve Ry — —r O(N'In N)
the elements oR.~* along diagonat).
2. Compute [¢T, 4] according (5) N
A. Sum of Diagonals dR~* 3. Compute DF[u; v;] and DF[y;]  2N1Ing 2N
Toeplitz matrices belong to the larger class m#rsym- 4. Compute Z, according (14) Ning 2N
metric matrices[18]: matrix Ry is persymmetric if it is
symmetric about its northeast-southwest diagonal, i.e., if .
Tij = TN—j4+1, N—it+1 for ,[:7 j — 17 . N.In an equ|valent Va“d fOI’ |T| S N -2 and'L = 1’ ey N —7— 1, WhenT Z 0,

form Ry = EyRLEy, whereEy = [Sx_iq1,,] is the andi = 1 —7,..., N_— 1, whent < 0. Expressions (9)
N x N exchange matrixNote thatE;} = Ey. Thus, the in- OF (10) generate recursively, from vectarelements:;; along
verse of a persymmetric matrix is, if it exits, also persymmetri€ach diagonal dR™*. The diagonal sur. is, after simple but

Consider the partition

-1
Ry' = R EN—I‘”} = [Rl "} @)
r’Exn_; 70 vT ¥
withr = [r_1, ..., r—n41]*. Vector[p?, 4]7, the last column

of R;}, and matrixR’ are given by (see, e.g., [18, p. 130])

v =7Ex
_ 1
70 +rTox (5)
T
1 vv
R =R, ,+ T

wheree is the solution of the Yule—Walker equati®y_ e =
—r.

Matrix R! | exists and is persymmetric; thiB ' | ]; ; =
[Ry" 1~ n—i and therefore

1
Cij = I:R]_\rl_l] i + ; vivy (6)
= [R_l ] —‘rll/‘l/,' @)
N—1lN—j N—i y iy
for i, j = 1,...,N — 1. From (6) we see that

[erl—l]]\‘r_j: N—; = C]\T_j’ N—i — (1/’}/)1/]\f_jl/]\f_7j. USIng thIS
equality in (7), we are led to

Cij = cN—j, N—i + ; (rivy — VNN =) (8)
Since [¢;;] = R~! is persymmetric, element;; satisfies
CN—j N—i = Cit1,441 fOr, j = 1,..., N — 1; replacing

CN—j, N—i by Cit1,j+1 in (8), it follows that

1
Citt, g1 = G (UN—juN—i = ViV)) €))
fori,j =1,..., N — 1. Definingj =i+ 7, vy = v, and

noting thatc, ; = vyy1—; fore, j =1, ..., N, it follows that

1

Citl,itl4r = Ci,itr T 5 (UN_icr¥N—i — ViVigyrs)  (10)

lengthy manipulation of (10), given by

N-—1

YCr = Z [tvivier + vivig (0 +7) — Nvjvgr]. (11)
=1

The determination of, forr = 1, ..., N — 1, according

to (11), hasD(N?) complexity. Notice, however, that each term
in the sum (11) defines a convolution, which can be computed
using thefast Fourier transform(FFT) with O(N ln N) com-
plexity. For this purpose, defin@ as a zero row vector of di-
mensionV and the sequencés;, } and{+/}, with¢ € Z, as pe-
riodic extensions, of perio2lV, of sequence$l, ..., N, 0%
and{v, ..., vn, 0%}, respectively. Sum (11), using entities
u; andv], assumes the form

2N

-

ver = Z (Wit + vl — Nvivi, ) (22)
i=1
= (u_/y) * v+ x (Vi) =N vV x v (13)
——

v

AN, - By, ~

where symbolx means circular convolution of lengtaN.
Denoting DF[x] as the 2/N-vector containing the dis-
crete time Fourier series of and DF ! its inverse (i.e.,

T, = DF ' DF[z]](n), and using the discrete time Fourier
series properties (convolution, time symmetry, and conjuga-
tion), expression (13) is given by

ver = DF T {Re(DF [(ufv)] @ DF* [} _,,  (14)
whereu? = 2u} — N and symbol® denotes element-wise
multiplication.

The number of floating point operations needed to implement
(14) is, approximatel\3 N In 2N (corresponding to three FFTs
of size2N). Table | summarizes the proposed algorithm.

In the next section, we show that K is the covariance ma-
trix of an AR(p) process, then the terms Ay - and By, - of
expression (13) are constant fyr > p.

Ill. A UTOREGRESSIVEPROCESSES

Suppose thaR. is a covariance matrix of an AR) process
with coefficients{as, 0 < k < p} whereag = 1 anda, # 0,
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By hypothesis, filter(~) = Y- _, arz~* is stable [i.e.a(z) IV. CONCLUDING REMARKS
does not have zeros fof| > 1]. In theses conditions, we have

forp > N +1(see, eg. [7, ch. 6] We presented an efficient algorithm for computing

tr{TR™'}, where T and R are Toeplitz matrices an®
(15) is also symmetric and positive definite. The complexity of

the algorithm depends on the generation function of matrix
any =(a1, az, ..., ap, 0, ..., 0). (16) R and isO(NIn N) for generic functions and(plunp) for
AR(p) functions. We have also presented an approximated
extrapolation formula withO(NyIn Ny) complexity, thus
independent ofV.
(17) The central idea exploited is tha{ TR. "'} depends only on

the sum of diagonals @& ! and not on each single element of
Replacing (17) into (13), assuming th&t > p, and after this matrix. The computation of the referred sum is carried out

YN+1 =TIN

From the expression far given in (5), we conclude that, for
N>p

(v, ooy n—1, ) =9(0, ..., 0, ap, ..., a1, ag).

some manipulation, we get efficiently by using the fast Fourier transform.
p—7 p—7
YCr = — Z 10, i r + Z CLZ‘CLH_T(i + 7') REFERENCES
i=0 i=0 [1] D. Fuhrmann and M. Miller, “On the existence of positive-definite
~ maximum likelihood estimates of structured covariance matrices,”
Awn, - IEEE Trans. Inform. Theoryol. 34, pp. 722-729, 1988.

[2] M. Miller and D. Snyder, “The role of likelihood and entropy in in-
by complete data problems: Application to estimating point processes in-
+N Z a;ai4r | . (18) tensity and Toeplitz constrained covariance®dc. IEEE vol. 75, pp.
i—0 892-907, July 1987.
[3] L. Scharf,Statistical Signal Processing. Detection, Estimation and Time

By, - Series Analysis Reading, MA: Addison-Wesley, 1991.
[4] S. Kullback, Information Theory and Statistics New York: Wiley,
We conclude then that termg, Ax . and By . do not 1978.

depend onN for N > p. Therefore, the computation of [5] C. Tellambura, Y. Guo, and S. Barton, “Channel estimation using aperi-

tr{TRfl}, whereR. is the covariance matrix of an A(B) cl)gg:sbmary sequencesEEE Commun. Lettvol. 2, pp. 140-142, May

process, according to the proposed method, &&gln p) [6] S.Ray, “Anovel pulse TOA analysis technique for radar identification,”
complexity forN > p. IEEE Trans. Aerosp. Electron. Systol. 34, pp. 716-721, July 1998.
For generic processes, formula (18) does not apply. Howeverl”) P Sﬁgﬁt%gfﬁglrrfggismg of Random SignaisEnglewood CIiffs,
termsyy, An, -, andBN,‘r converge to a constant as values of [8] w. F. Trench, “An algorithm for the inversion of finite Toeplitz ma-
N — oo. This is a consequence of the Levison—Durbin recur- _ trices,”J. SIAM vol. 12, pp. 515-522, 1964. _ _
sions [9] B. Poratand B. Friedlander, “Computation of the exact information ma-
trix of Gaussian time series with stationary random componeligE
Trans. Acoust., Speech, Signal Processimd ASSP-34, pp. 118-130,
ay = [ay_1, 0] — cy [0, Exay] 1986.
[10] P. Whittle, “Estimation and information in stationary time seriégKiv
wherecy is the Nth-order reflection coefficient, which satisfy Matematick vol. B-2, no. 23, pp. 423-434, 1953.
(see e.g [9]) [11] B. Porat and B. Friedlander, “The exact Cramér—Rao bound for
T Gaussian autoregressive processeEEE Trans. Aerosp. Electron.

o Syst, vol. AES-23, pp. 537-542, 1987.
lim Z 2 =0 [12] T.F. Chan, “Circulant preconditioners for Hermitian Toeplitz systems,”
N oo v T SIAM J. Matrix Anal. Applicat.vol. 10, pp. 542-550, 1989.

i=N+1 [13] ——, “Toeplitz equations by conjugate gradients with circulant precon-

.. ditioner,” SIAM J. Sci. Statist. Computol. 10, pp. 104-119, 1989.
Hence, forV, sufficiently large we have, falV > Ny [14] T. Ku and C. Kuo, “Design and analysis of optimal Toeplitz precon-

L ditioners,” IEEE Trans. Signal Processingol. 40, pp. 129-141, Jan.

cr = Yy, (ANy, 7 + NBny, 7)- 1992. _ N _ _ _

[15] ——, “Spectral properties of preconditioned rational Toeplitz matrices,”

The problem in applying the above extrapolation is, of course, _ SIAM J. Matrix Anal. Applicat.vol. 14, pp. 146165, 1993.
[16] W. E. Trench, “Solution of systems with Toeplitz matrices generated by

how to determineVy, in order to obtain a gOOd approximation rational functions,’Lin. Algeb. Applicat.vol. 74, pp. 191-211, 1986.
for ¢-. A rule of thumb is to determiney, Ax, -, andBy_ - [17] ——, “Toeplitz systems associated with the product of a formal Laurent
for an increasing sequendé, N, ..., for exampleN; = 21" series and a Laurent polynomiaBIAM J. Matrix Anal. Applicat.vol.
: . i . 9, pp. 181-193, 1988.
fori = L2 ... and estimate an integeY; above which the [18] G. H. Golub and C. F. LoarMatrix Computations Baltimore, MD:

former terms are practically constant. Johns Hopkins Univ. Press, 1983.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


