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Efficient Computation oftr TR 1

for Toeplitz Matrices
José M. B. Dias and José M. N. Leitão

Abstract—An efficient algorithm for the computation of
tr TR 1 , whereT and R are Toeplitz matrices andR is also
symmetric positive definite, is presented. The method exploits the
fact that the trace of TR 1 depends only on the sum of the diag-
onals ofR 1, and not on the whole matrixR 1. To obtain this
sum, a fast efficient technique, built upon the Trench algorithm
for computing the inverse of a Toeplitz matrix, is developed. The
complexity of the algorithm depends on the generation function of
matrix R and is ( ln ) for generic functions and ( ln )
for AR ( ) functions.

Index Terms—Fast algorithm, fast Fourier transform, Toeplitz
matrix, trace, Trench algorithm.

I. INTRODUCTION

T HE NEED for computing , where and
are Toeplitz matrices and is also symmetric and pos-

itive definite (SPD), appears in many signal processing prob-
lems. Relevant examples are estimation of Toeplitz constrained
covariance matrices [1], [2], matrix approximation under the
Frobenius norm[3], functional approximation of Gaussian den-
sities usingKullback divergence[4], channel estimation [5],
pulse time-of-arrival analysis [6], and computation of theFisher
information matrixof zero-mean Gaussian processes [7]. In the
latter case, one has to compute terms of the form ,
where denotes the derivative of with respect to a
given parameter. These terms can be determined numerically
from the knowledge of .

Given the Toepliz matrices and , for
, the obvious way of computing is

to invert and then determine the trace of ; by using the
Trench algorithm (see, e.g., [8]) to compute , the total com-
plexity in computing , measured in floating point op-
erations, is ( takes and the
remaining operations take ).

Porat and Friedlander [9], based on the Levinson–Durbin al-
gorithm for computing the orthogonal polynomials of a Toepliz
matrix, proposed an algorithm for the exact computation of the
Fisher information matrix. This algorithm can be easily adapted
to compute . The complexity of the method is still

.
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When , and under adequate hypothesis on sequences
and ( denotes the integer set), we

have (see, e.g., [7, p. 140])

(1)

where and are the discrete Fourier transform
of sequences and , respectively.
Asymptotical result (1) is the basis of Whittle’s formula [10],
for the asymptotic normalized Fisher information matrix of a
zero-mean normal process. This formula (1), despite leading
to closed and simple expressions with light complexity, yields
frequently a poor approximation forsmall sample sizes (see
e.g., [11]).

To our knowledge, there is no general technique for the
determination of with complexity lower than

. In this letter, we introduce a faster technique. We
begin by noting that depends only on the sum of
the diagonals of (which we refer to as thediagonal sum
of ). With this fact in mind, it is then proved, based on
the Trench algorithm for determining the inverse of a Toeplitz
matrix, that the diagonal sum of the referred matrix can be
computed with complexity. In computing the
diagonal sum, it is necessary to solve a Toeplitz system. By
using the preconditioned conjugate gradient technique (see
[12]–[15]), this step has complexity. If matrix is
generated by a rational function of order , the methods
[16], [17] solve the system with complexity .
Therefore, the total complexity in computing does
not exceed .

II. EFFICIENT COMPUTATION OF

Let be Toeplitz matrices1 of real elements,
where is SPD and . Noting that , where

for , it follows that

(2)

1Sometimes, we use the subscriptN meaning that matricesT andR are
of dimensionN � N .
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where is the th diagonal sum of
( denotes south-west diagonals), and

.
(3)

According to (2), depends on and on (sum of
the elements of along diagonal ).

A. Sum of Diagonals of

Toeplitz matrices belong to the larger class ofpersym-
metric matrices[18]: matrix is persymmetric if it is
symmetric about its northeast–southwest diagonal, i.e., if

for . In an equivalent
form , where is the

exchange matrix. Note that . Thus, the in-
verse of a persymmetric matrix is, if it exits, also persymmetric.

Consider the partition

(4)

with . Vector , the last column
of , and matrix are given by (see, e.g., [18, p. 130])

(5)

where is the solution of the Yule–Walker equation
.
Matrix exists and is persymmetric; thus

and therefore

(6)

(7)

for . From (6) we see that
. Using this

equality in (7), we are led to

(8)

Since is persymmetric, element satisfies
for ; replacing

by in (8), it follows that

(9)

for . Defining , , and
noting that for , it follows that

(10)

TABLE I
SUMMARY OF THE PROPOSEDSCHEME FOR THEDETERMINATION OF THE

DIAGONAL SUM OFR

valid for and , when ,
and , when . Expressions (9)
or (10) generate recursively, from vector, elements along
each diagonal of . The diagonal sum is, after simple but
lengthy manipulation of (10), given by

(11)

The determination of , for , according
to (11), has complexity. Notice, however, that each term
in the sum (11) defines a convolution, which can be computed
using thefast Fourier transform(FFT) with com-
plexity. For this purpose, define as a zero row vector of di-
mension and the sequences and , with , as pe-
riodic extensions, of period , of sequences
and , respectively. Sum (11), using entities

and , assumes the form

(12)

(13)

where symbol means circular convolution of length .
Denoting as the -vector containing the dis-
crete time Fourier series of and its inverse (i.e.,

), and using the discrete time Fourier
series properties (convolution, time symmetry, and conjuga-
tion), expression (13) is given by

(14)

where and symbol denotes element-wise
multiplication.

The number of floating point operations needed to implement
(14) is, approximately, (corresponding to three FFTs
of size ). Table I summarizes the proposed algorithm.

In the next section, we show that, if is the covariance ma-
trix of an AR process, then the terms, and of
expression (13) are constant for .

III. A UTOREGRESSIVEPROCESSES

Suppose that is a covariance matrix of an AR process
with coefficients where and ,
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By hypothesis, filter is stable [i.e.,
does not have zeros for ]. In theses conditions, we have
for (see, e.g., [7, ch. 6])

(15)

(16)

From the expression for given in (5), we conclude that, for

(17)

Replacing (17) into (13), assuming that , and after
some manipulation, we get

(18)

We conclude then that terms, and do not
depend on for . Therefore, the computation of

, where is the covariance matrix of an AR
process, according to the proposed method, has
complexity for .

For generic processes, formula (18) does not apply. However,
terms , , and converge to a constant as values of

. This is a consequence of the Levison–Durbin recur-
sions

where is the th-order reflection coefficient, which satisfy
(see, e.g., [9])

Hence, for sufficiently large we have, for

The problem in applying the above extrapolation is, of course,
how to determine , in order to obtain a good approximation
for . A rule of thumb is to determine , , and
for an increasing sequence , for example ,
for , and estimate an integer above which the
former terms are practically constant.

IV. CONCLUDING REMARKS

We presented an efficient algorithm for computing
, where and are Toeplitz matrices and

is also symmetric and positive definite. The complexity of
the algorithm depends on the generation function of matrix

and is for generic functions and for
AR functions. We have also presented an approximated
extrapolation formula with complexity, thus
independent of .

The central idea exploited is that depends only on
the sum of diagonals of and not on each single element of
this matrix. The computation of the referred sum is carried out
efficiently by using the fast Fourier transform.
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