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Abstract— Segmentation of dark patches in SAR images is an 
important step in any oil spill detection system. Segmentation 
methods used so far include ‘Adaptive Image Thresholding’, 
‘Hysteresis Thresholding’, ‘Edge Detection’ (see [1] and 
references therein) and entropy methods like the ‘Maximum 
Descriptive Length’ technique [2]. This paper extends and 
generalizes a previously proposed Bayesian semi-supervised 
segmentation algorithm [3] oriented to oil spill detection using 
SAR images. In the base algorithm on which we build on, the 
data term is modeled by a finite mixture of Gamma distributions, 
with a given predefined number of components, for modeling 
each one of two classes (oil and water). To estimate the 
parameters of the class conditional densities, an expectation 
maximization (EM) algorithm was developed.  The prior is an M-
level logistic (MLL) Markov Random Field enforcing local 
continuity in a statistical sense. The methodology proposed in [3] 
assumes two classes and known smoothness parameter. The 
present work removes these restrictions. The smoothness 
parameter controlling the degree of homogeneity imposed on the 
scene is automatically estimated and the number of used classes is 
optional. To extend the algorithm to an optional number of 
classes, the so-called α-expansion algorithm [4] has been 
implemented. This algorithm is a graph-cut based technique that 
finds efficiently (polynomial complexity) the local minimum of 
the energy, (i.e, a labeling) within a known factor of the global 
minimum. In order to estimate the smoothness parameter of the 
MLL prior, two different techniques have been tested, namely 
the Least Squares (LS) Fit and the Coding Method (CD) [5]. 
Semi-automatic estimation of the class parameters is also 
implemented. This represents an improvement over the base 
algorithm [3], where parameter estimation is performed on a 
supervised way by requesting user defined regions of interest 
representing the water and the oil. The effectiveness of the 
proposed approach is illustrated with simulated SAR images and 
real ERS and ENVISAT images.  

Index Terms -  segmentationg; bayesian; oil spill detection; 
SAR; MERIS.  

I.  INTRODUCTION 
Segmentation of dark patches in SAR images is an 

important step in any oil spill detection system and many 
different approaches to the problem have been proposed so far. 
These approaches are built on off-the-shelf segmentation 
algorithms such as ‘Adaptive Image Thresholding’, ‘Hysteresis 

Thresholding’, ‘Edge Detection’ (see [1] and references 
therein) and entropy based methods like the ‘Maximum 
Descriptive Length’ technique [2]. 

Work [3] introduces a Bayesian segmentation algorithm 
where the observed data (oil and water) data is modeled by a 
finite Gamma mixture, with a given predefined number of 
components. To estimate the parameters of the class 
conditional densities, an expectation maximization (EM) 
algorithm was developed. The used prior is a second order 
Markov Random Field (MRF), more specifically an MLL 
(Multi-Level Logistic) model. To estimate the labels, the 
posterior distribution is maximized (MAP) via graph-cut 
techniques [4]. 

Notwithstanding the promising results provided by the 
above described segmentation method, it has restrictions that 
the present work overcomes. The first restriction concerns the 
number of classes that is limited to two. The second restriction 
concerns the smoothness parameter that has to be manually 
tuned. Furthermore, the class parameters estimation process is 
completely supervised, requiring an interaction with the user in 
order to manually select a region containing oil pixels and a 
region containing water pixels. 

In the present work we generalize [3] by: (1) extending the 
number of segmented classes to a predefined optional number 
c, (2) automatically estimating the smoothness parameter β in 
the MRF, and (3) automatically estimating the class parameters 
θ. To extend [3] to an optional number of classes, the so-called 
α-expansion algorithm [4] is implemented. In order to estimate 
the smoothness parameter β, two different techniques are 
tested, namely the Least Squares (LS) Fit and the Coding 
Method (CD) [5]. A first attempt is carried out to implement 
unsupervised segmentation using a semi-supervised 
initialization.  

Two algorithms are proposed in this work: ‘Algorithm 1’, 
implements the extension to an optional number of classes and 
the extension to the smoothness parameter estimation; 
‘Algorithm 2’ implements also the unsupervised class 
parameters estimation. 

To evaluate the accuracy of the proposed algorithms, 
different simulations have been carried out. For details on the 
simulations results, addressing both the Gaussian and the 
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Gamma model and both algorithms, please refer to [7]. In the 
present work, one simulation of ‘Algorithm 1’ using the 
Gamma data model is given. Furthermore, results of 
segmenting real SAR and MERIS images using ‘Algorithm 1’ 
are also provided. Hereby the Gamma mixture data model 
proposed in [3] is adopted to model the observed SAR intensity 
values. For the MERIS image, a multivariate Gaussian 
distribution is used. 

The article is organized as follows: Section II gives a short 
overview of the original algorithm that builds the base to this 
work; Section III describes, in pseudo-code, the main steps of 
the proposed segmentation methods; Section IV presents 
simulation and real results, and finally Section V contains 
concluding and future work remarks 

II. OVERVIEW OF BAYESIAN ALGORITHM 
The algorithm proposed in [3] finds a labeling f for a set of 

N pixels P := {1, 2, …, N}. A labeling f := {f1,f2,…fN} is a 
mapping from P to L, where L := {1,2,…,c} is the set of labels. 
The vector y:={y1,y2,…yN} stands for the observed data, 
corresponding to the image intensity measurements at the 
pixels.  

In order to infer f̂ , we adopt the MAP criterion. This 
amounts to maximize the posterior density of the labeling 
given the observed data. As described in [3] in detail, this is 
equivalent to minimizing the objective function 
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where p,  j ∈ P are pixel locations, pE is the negative likelihood 
given by 
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when p(yp|fp,θfp) is the conditional density of yp given fp and 
given the class parameters θfp, called data model or sensor 
function, and jpE ,  is the negative likelihood of the prior. Since 
we have adopted a MLL,i.e.,  
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where (p,j) is a 2-pixel clique. In expression (3), δ is the 
discrete delta function and β controls the degree of 
homogeneity we wish to impose on the scene. Please note that 
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where n(fi) is the number of neighbors in neighborhood Ni 
having the same label as pixel i. 

As demonstrated in [3], E(f1,…fN) is graph representable 
for c = 2 and, in these circumstances, the global minimum of 
the objective function may be computed by applying the graph-
cut algorithm described in [4]. 

When applying the described Bayesian algorithm to a 
MERIS image, the adopted data model p(yp|fp,θfp) changes 
from a Gamma mixture to a multivariate Gaussian distribution 
described by: 
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In equation (6), yp = [yp1,…ypN] are the values of the 
MERIS channels (N = 13, for level 2 processing) and θfp = 
[µp,∑p] are the data model parameters. For the MERIS 
segmentation described in this article, the model parameters 
have been learned in a supervised way by defining regions 
representing the classes and computing ML estimators. 

III. PROPOSED SEGMENTATION METHODS 
In the next sections we propose supervised and 

unsupervised approaches to the segmentation. The first 
approach assumes known class parameters, whereas the second 
does not. In both methods the smoothness parameter is 
assumed unknown. 

A. Supervised Segmentation with Beta Unknown 
In the first segmentation method, we have adopted iterative 

labeling-estimation, with the two steps (step 2.1 corresponding 
to the labeling and step 2.2 corresponding to the estimation) 
being performed alternately. The EM algorithm provides a 
justifiable formalism for such a scheme [5]. The initial values 
for the labeling and the parameter estimator are optional and 
don’t seem to have a relevant influence in the final 
performance. Since the class parameters θ have been estimated 
as described in [3], they are assumed known and are omitted 
from the pseudo-code. 

The algorithm may be run with the LS or with the CD 
estimation technique. 

 

Algorithm-1: 

1. Start with an arbitrary initial labeling 0f  

and arbitrary parameter β̂ =β0 

2. While δβ ≤∆ ˆ  or nrIter < ItMaxNr do 

2.1 Find f̂ = α_Expansion( 0f , β̂ ) 

2.2 Find β̂ = LS_Estimation( f̂ )or 
CodingMethod( f̂ ) 

3. Return ( f̂ , β̂ ) 

 

B. Unsupervised Segmentation with Semi-Supervised 
Initialization  
In this second method, we have also adopted iterative 

labeling-estimation as in ‘Algorithm-1’, but now the class 
parameters are also iteratively estimated. The initialization of 
the class parameters θ is performed in a semi-automatic way: 
the user provides a region of pixels corresponding to one (for 



example the most frequent: water) of the classes (class1). This 
region is then used to estimate the ML (Maximum Likelihood) 
parameters of the class1 distribution. In a second step, pixels 
are clustered in two sets, class1 and not-class1, by applying a 
simple threshold to the estimated distribution. Then, the 
parameters of the remaining classes are initialized by applying 
an EM mixture estimation procedure to the pixels clustered in 
the not-class1 set. 

 
Algorithm-2: 

1. Start with an arbitrary parameter β̂ =β0 and 

arbitrary initial labeling 0f  
2. Provide initial class parameter estimations 

θ̂ =θ0 

3. Provide initial f̂ =α_Expansion( 0f ,β0,θ0) 

4. While δβ ≤∆ ˆ  or nrIterations < ItMaxNr do 

 4.1 Find θ̂  = ML_Estimation( f̂ ) 

 4.2 Find f̂ = α_Expansion( 0f , β̂ ,θ̂ ) 

 4.3 Find β̂ = LS_Estimation( f̂ ,θ̂ )or 
CodingMethod( f̂ ,θ̂ ) 

5. Return ( f̂ , β̂ ,θ̂ ) 

IV. RESULTS: SIMULATED AND REAL IMAGES 
This Section presents results for simulated and for real 

SAR images. For simulated images, a Gamma data term is 
used. Although the presented results are restricted to one 
Gamma mode per class, the developed procedure also works 
with Gamma mixtures as developed in [3]. 

 

A. Simulated Images 
A simulated image of three classes corrupted by Gamma 

noise (θl = (al ,λl), al and λl  being the Gamma distribution 
parameters, with l∈L) is used.  The ground-truth is ‘hand-
made’ and contains structures resembling those that may be 
found in oil-spill scenarios. ‘Algorithm 1’ as described in 
Section II is used, both with the LS and the CD estimation 
methods. The algorithm segmentation is compared with the 
results given by the best achievable segmentation using α-
expansion, corresponding to tuning the β parameter manually. 

Each test is run three times and the mean values of the 
overall accuracies (OA) corresponding to the percentage of 
correct label are computed. To assess the segmentation 
performance, we compare the algorithm OA with that obtained 
without the MRF prior, i.e., OAno prior for β=0. Figure 1 shows 
the obtained results. 

          
(a)    (b) 

           
(c)    (d) 

Figure 1.   (a) Ground-truth (b) Simulated image (c) Segmentation result 
using ‘Algorithm-1’: LS estimated β = 0.4213, OA = 95.3%. Best achievable 
OA for this image = 95.4%. OAno prior is 83.2% (d) Probability functions used 

to generate the image with superimposed histogram of generated data set. 

B. Real Images 
The ‘Algorithm-1’ has been applied to a real ERS-1 SAR 

image fragment. The scene (frame 2367, orbit 17211) 
containing the fragment has been acquired on 30 October 1994, 
and covers several oil platforms in the Norwegian and British 
sector of the North Sea. The image has been radiometric 
calibrated and corrected for the incidence angle effect. We 
have assigned a class to ‘oil’, a class to ‘water’ and a class to 
‘platform’ and learned the class parameters using the 
supervised method described in [3]. Figure 2 displays the 
obtained results after applying ‘Algorithm-1’. The image has 
also been segmented by applying the method described in [6] 
for comparison. Following the described method, an image 
pyramid of two levels was created and the threshold was set 
adaptively based on the PMR value calculated in a local 
window of 100 pixels x 100 pixels. After the thresholding, 
morphological operators have been applied in order to remove 
segmented patches with area less than 50 pixels. 

‘Algorithm-1’ has also been applied to a pair of 
simultaneously acquired Envisat MERIS/ASAR images 
containing an oil spill.  

The image pair, a MERIS Full Resolution level2 and an 
ASAR Image Mode image has been acquired on 19 July 2004, 
in the ocean between Cyprus and Lebanon. The occurrence of 
the oil spill (centered on ≈ 33ºN, 33º39’E) was documented on 
the Oceanides project database and it was expected to find 
evidence of the circa 10 km long dark patch in the cloud-free 
MERIS image. In fact, a dark patch of the expected size, form 
and orientation was detected on the MERIS image but centered 
on ≈ 34º28’N, 35ºE. The pixels flagged as clouds have been 
masked before the segmentation process. Although we can not 
conclude that the segmented patch is the oil spill due to the 
location difference, the segmentation results are reported in 
Figure 3. 



  
        (a)                (b) 

  
                      (c)                 (d) 

Figure. 2. (a) ERS image: intensity values (b) Segmentation with LS; (c) 
Segmentation using ‘Adaptive Thresholding’ followed by morphological 

operations (d) Segmentation with CD. 
 

V. CONCLUSIONS 
The first results of applying the proposed methodology to 

simulated images with Gamma data models and to real SAR 
data are promising. With ‘Algorithm-1’, high OA accuracies 
have been achieved for simulated images.  

By applying ‘Algorithm-1’ to a real ERS image, we have 
been able to successfully segment a platform of reduced size, 
the water and the oil. No post-processing to remove small areas 
has been applied to the results. Hereby, the CD estimation 
method seems to provide a better segmentation than the LS 
method, contrarily to what happened for simulated images, 
where the LS method provided slightly better results (see [7]). 
The segmentation of the three regions was not possible to 
achieve with ‘Adaptive Thresholding’, where post-processing 
was needed to remove small false segmented areas.  

The Envisat ASAR Image has also been successfully 
segmented with ‘Algorithm-1’ (see Figure 3 (c)). Regarding 
the MERIS image, although we have no ground-truth, the 
methodology seems to be applicable for segmenting 
homogeneous regions in general, e.g. algae patches. 

These are preliminary results and more tests, with more 
trials per test, are required to fully determine the accuracy of 
the proposed methods. The algorithms should be tested with 
more real SAR and MERIS images containing validated oil 
spills. Furthermore, tests addressing the case of more than three 
classes should be performed and ‘Algorithm-2’ should be 
tested on real images. More recent parameter estimation 
techniques should be considered for the smoothness parameter 
estimation step. 

 

 

 
Figure. 3. (a) Image location (b) MERIS Segmentation with ‘Algorithm-1’ 

(c) ASAR Segmentation with ‘Algorithm 1’  
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