FAST HYPERSPECTRAL IMAGE DENOISING
BASED ON LOW RANK AND SPARSE REPRESENTATIONS

Lina Zhuang and José M. Bioucas-Dias

Instituto de Telecomunicagdes, Instituto Superior Técnico,
Universidade de Lisboa, 1900-118, Lisbon, Portugal.

ABSTRACT

The very high spectral resolution of Hyperspectral Images
(HSIs) enables the identification of materials with subtle dif-
ferences and the extraction subpixel information. However,
the increasing of spectral resolution often implies an increas-
ing in the noise linked with the image formation process. This
degradation mechanism limits the quality of extracted infor-
mation and its potential applications. This paper presents a
new HSI denoising approach developed under the assumption
that the clean HSI is low-rank and self-similar. Under these
assumptions, the clean HSI admits extremely compact and
sparse representations, which are exploited to derive a very
fast and competitive denoising algorithm, named Fast Hyper-
spectral Denoising (FastHyDe), able to cope with Gaussian
and Poissonian noise. In a series of experiments, the pro-
posed approach competes with state-of-the-art methods, with
much lower computational complexity.

Index Terms— Denoising, hyperspectral image, signal
subspace, low rank structure, non-local patch(cube), sparse
representation, BM3D, BM4D.

1. INTRODUCTION

Hyperspectral remote sensing images have been widely used
in countless applications, (e.g., earth observation, environ-
mental protection and natural disaster monitoring), since they
provide remarkably high spectral resolution (hundreds or
thousands spectral channels), which enables material identi-
fication with precision via spectroscopic analysis. However,
the precise identification (e.g., precision farming) requires
high quality of hyperspectral image (HSI), whereas the HSIs
acquired by imaging instruments are often noisy owing to a
number of degradation mechanisms such as electronic noise,
Poissonian noise, quatization noise, and atmostheric effects.
Large research efforts have been devoted to image denois-
ing, which is still a challenging problem in image process-
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ing. Among the recent developments, patch-based image de-
noising holds the state-of-the-art, e.g., BM3D [1] and BM4D
[2, 3]. This line of research make full use of the self-similarity
property of real world images, meaning that, given an image,
there are similar patches at different locations and scales.

Besides exploiting the spatial information, the high corre-
lation in spectral domain has been widely investigated for hy-
perspectral data. The works spectral-spatial adaptive hyper-
spectral TV (SSAHTV)[4] and hybrid spatial-spectral noise
reduction (HSSNR) [5] are two paradigmatic examples of this
line of research. The usual band dependent noise statistics
of HSIs have also been considered, for example in the noise-
adjusted PCs transform (NAPCs) method [6] and in the hyper-
spectral imagery denoising based on oblique subspace projec-
tion (DOBSP) [7].

HSIs have very high spectral correlation and spatial self-
similarity. As a consequence, this class of images has low-
rank structure and admit sparse reprentations on suitable
frames. These characteristics of HSIs have received increas-
ing attention, namely in spectral unmixing, classification, and
denoising. In the case of denoising, we refer the noise ad-
justed iterative low-rank matrix approximation (NAILRMA)
[8] and the structured tensor TV-based regularization [4].

1.1. Contribution

Most of the published hyperspectral denoising algorithms are
time-consuming, namely due to the large sizes of HSIs and
due to iterative estimation procedures both in the spatial and
the spectral domains. In an effort to mitigate these shortcom-
ings, this paper introduces FastHyDe, a very fast HSI denos-
ing algorithm, which takes full advantage of the HSIs’ low
rank structure and self-similarity above referred to.

The paper is organized as follows. Section 2 introduces
formaly FastHyDe, a denosing approach based on low rank
and sparse representations. Section 3 and Section 4 present
experimental results including comparisons with the state-of-
the-art. Section 5 concludes the paper.

2. PROPOSED FASTHYDE DENOISING

Let X := [xq,...X,] € R™*™ denote a HSI with n spec-
tral vectors (the columns of X) of size n; (the number of



bands of the sensor). In hyperspectral denoising problems
under the additive noise assumption, the observation model
may be written as

Y=X+N, @))

where Y, N € R™*" represent the observed HSI data and
noise, respectively.

We assume that the spectral vectors x;, fori = 1,...,n,
live in a k—dimensional subspace Sy, with and n;, > k. This
is a very good approximation in most real HSIs [9]. There-
fore, we may write

X = EZ, )

where the columns of E = [ey, ..., ex] € R™** holds a ba-
sis for S, and matrix Z € R¥*™ holds the representation co-
efficients of X with respect to (w.r.t.) E. We assume, without
loss of generality, that E is orthogonal, that is ETE = I with
I representing the identity matrix of appropriate size. Matrix
E may be learned from the data using, e.g., the HySime al-
gorithm [10] or singular value decomposition (SVD) of Y in
the case the noise is independent and identically distributed
(i.i.d.). We will herein term the rows of Z eigen-images.

This paper explores two main characteristics of hyper-
spectral data: 1) HSIs live in low dimensional subspaces,
which opens the door to remove the bulk of the noise using
projection-based methods [9]; 2) the eigen-images are self-
similar and, therefore, they may be denoised with non-local
patch-based methods such as BM3D [1], BM4D [2, 3].

Below we start by considering that the noise is additive
and i.i.d. Later, we consider non-i.i.d and non-additive sce-
narios.

2.1. Additive i.i.d. noise

In the first case, we consider that the noise is additive and
ii.d. over all components of N. Therefore, assuming that
the subspace E has been learned from observated data Y, the
eigen-images denoising problem is formulated as

- 1

Z = argmin ||EZ — Y% + \p(Z)
i 3

=argmin || Z — E'Y|} + A\6(2),

where || X||2 = trace(XX") is the Frobenius norm of X.
The first term on the right-hand side represents the data fi-
delity and accounts for the fact that the noise is i.i.d., while
the second term is a regularizer expressing prior information
tailored to self-similar images. We assume that the function
¢ is decouple w.r.t. the eigen-images, that is

$(Z) = Z 6i(Z") )

where Z? is the i-th eigen-image, i.e., the i-th row of Z. An
informal justification for (4) is that the components of Z tend
to be decorrelated. Although decorrelation does not imply

statistical independence, it is a necessary condition for it. In
practice, this assumption leads to excellent results as shown
in Section 3.

Under the hypothesis (4), the solution of (3) is decoupled
w.r.t. Z* and may be written as

- Uag, (€1Y)
Z = y(ETY) = : ; (5)

Uag, (€L Y)

where
1 2
g, (y) = argmin S ly — wl[i + Adi(w)

is the so-called denoising operator, or Moreau proximity op-
erator of ¢ [11].

The proposed algorithm for HSI denoising, termed Fast
Hyperspectral denoising (FastHyDe), is summarized in Algo-
rithm 1. Step 2 learns E, e.g., using HySime, step 3 denoises
the eigen-images, and step 4 reconstructs the estimate of the
original data. In this paper we use the BM3D as denoising
operator, as it is the state-of-the-art denoiser for self-similar
images [1].

Algorithm 1 FastHyDe denoising algorithm for i.i.d. noise
1: Input: Noisy HSI data Y
2: Learn the subspace E from Y
3: Denoise the eigen-images Z = 1, 4(ETY)
4: Reconstruct the denoising HSI: X = EZ
5: Qutput: Denoisy HSI X

2.2. non-i.i.d. noise

Consider that in the observation model (1), N is zero-mean,
additive, Gaussian, pixelwise independent with spectral co-
variance Cy = E[n;n’], where n; is any column of N. No-
tice that in the i.i.d. case C, = oI, which is not the case in
the non-i.i.d. scenario. We assume that C) is positive definite
and therefore non-singular. In order to reconvert the non-i.i.d.
scenario into the i.i.d. one, we whiten the observed data, that
is

Y :=4,/C'Y, (6)

where 4/ C;l is a matrix denoting the square root of C;\l and
v/C, denotes its inverse. Then the observation model of Y

becomes
Y =/C'X +4/Cy'N=X+N, (7)

whose noise covariance matrix is
pt ~ ~T
C)=FEmnn;]| =1, (8)

where n; is any column of N



Since the noise in (8) is i.i.d., we may again formulate the
denoising problem as

~

1~ =T ~
Z=argmin J|Z-E Y[} +20(2), O
Z

where E holds an orthonormal basis learned from Y. The
solution of (9) can be found following the same steps de-
scribed in Algorithm 1. The clean data of Y is estimated as

X = EZ, followed by recovering original clean data X from
X (namely, X = \/CA)NC).

3. EVALUATION WITH SIMULATED DATA

In order to compare the proposed method with the state-of-
the-art denoising algorithms, the experiments were conducted
using the same data simulated in the same way as described
in [8]. Two datasets, including a subimage of Washington DC
Mall dataset (of size 256 x 256 x 191) and a subset of Pavia
city center dataset (of size 200 x 200 x 80), are used and each
band is normalized to [0, 1] in advance. These subimage of
high quality are considered as clean images in this experiment
section. Three kinds of additive noise are added to simulate
the noisy images as follows:

Case 1 (Gaussian i.i.d. noise): n; ~ N(0,02{I}) with
o € {0.02,0.04,0.06,0.08,0.1}.

Case 2 (Gaussian non-i.i.d. noise): n; ~ A (0,D) where
D is a diagonal matrix with diagonal elements sampled from
a Uniform distribution U (0, 1).

Case 3 (Poissonian noise): N ~ P(aX), where A =
[a;j], with a;; > 0, P(A) stands for a matrix of size(A) of
independent Poisson random variables whose parameters are
given by the corresponding element of A. The parameter « is
such that SNR= «(37, ; aZ;)/(35;; aij) was set 15dB.

Before being denoised by FastHyDe, the simulated im-
ages in Case 2 and 3 were preprocessed in order to to have
additive i.i.d. noise. In case 2, we applied the transforma-
tion (6). In case 3, we applied the Anscombe transform

Y = 24/Y + %, which converts Poissonion noise into ap-
proximately additive noise [12], before the FasHyDe and the
remaining algorithms.

The proposed FastHyDe is compared with BM3D [1], ap-
plied band by band, BM4D [2], “PCA+BM4D” [13], and
NAILRMA [8]. For quantitative assessment, the peak signal-
to-noise (PSNR) index and the structural similarity (SSIM)
index of each band are calculated. The corresponding mean
PSNR (MPSNR) and mean SSIM (MSSIM) in Washington
DC Mall are reported in Table 1. Dealing with different kinds
of noise, FastHyDe yields almost uniformly the best perfor-
mance with gains increasing as the noise increases, as it may
be concluded from those results. The quality of the FastHyDe
reconstruction may also be inferred from Figs. 1-2. The de-
noising results for Pavia city center dataset exhibit a similar
pattern. They are not reported for lack of space.
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Fig. 1. Denoising band 11 of the Washington DC Mall image

in Case 2.

The non-local patch-based BM3D suits very well the
eigen-images, which are self-similar. In addition, the fact
the that denoising is applied only to the eigen-images, which
are much less than the number of bands, significantly re-
duces the FastHyDe complexity (see Table 2), relative to the
competitors. The algorithms were implemented using MAT-
LAB R2010 on a desktop PC equipped with eight Intel Core
17-4970 CPU (at 3.60 GHz) and 16 GB of RAM memory.
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Fig. 2. A denoised spectral signature of the Washington DC
Mall image in Case 2.

4. EVALUATION WITH REAL DATA

In this section we apply FastHyde to the AVIRIS (airborne
visible/infrared imaging spectrometer) Indian Pines scene.
This image, recorded over North- western Indiana in June
1992, has 145 x 145 pixels, with a spatial resolution of 20
meters per pixel and 220 spectral channels. The image dis-
plays strong noise in a number of bands. Fig. 3(a) shows a
color image by combining three of these, namely bands 1,



Table 1. Quantitative assessment of different denosing algorithms applied to Wahsington DC Mall.

o Index Noisy Image BM3D BM4D PCA+BM4D NAILRMA FastHyDe
0.02  MPSNR(dB) 33.98 28.78 42.70 45.14 46.59 46.26
MSSIM 0.9234 0.7981 0.9901 0.9933 0.9936™ 0.9957
0.04 MPSNR(dB) 27.96 28.31 38.34 40.8758 42.64 42.73
: MSSIM 0.7775 0.7786  0.9746 0.9830 0.9864* 0.9913
Case 1 0.06 MPSNR(dB) 24.44 27.77 35.83 38.31 40.12* 40.56
’ MSSIM 0.6408 0.7546  0.9562 0.9709 0.973* 0.9863
0.08 MPSNR(dB) 21.94 27.27 34.09 35.99 38.21" 39.28
’ MSSIM 0.5286 0.7313  0.9365 0.9525 0.9588™ 0.9817
0.1 MPSNR(dB) 20.00 26.79 32.76 34.72 36.92% 38.05
MSSIM 0.4396 0.7090  0.9160 0.9379 0.9425* 0.9762
Case 2 MPSNR(dB) 28.18 27.95 35.81 37.12 42.05* 45.46
MSSIM 0.6971 0.7615  0.9523 0.9500 0.9882* 0.9949
Case 3 MPSNR(dB) 28.17 29.41 38.86 41.08 - 41.83
MSSIM 0.8073 0.8285  0.9778 0.9850 - 0.9895

Note: the numbers with * are cited from [8]

Table 2. Computational time (seconds) of different denoisng
algorithms applied to Washington DC Mall.

PCA+
o BM3D  BM4D BMA4D FastHyDe
0.02 106 647 601 12
0.04 112 651 608 9
Case 1  0.06 117 669 634 7
0.08 116 640 609 7
0.1 120 640 645 6
Case 2 112 644 613 12
Case 3 114 654 628 8

103, and 220 [8]. Indian Pine image was denoised by BM3D,
BM4D, ‘PCA+BM4D’ and FastHyDe, under the assumption
of non-i.i.d. noise. The results are exhibited in Fig. 3 (b-e)
and corresponding computational times are reported in figure
caption. Qualitatively, FastHyDe yields the best result, in the
shortest time.
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Fig. 3. Denoising results in the real data experiment: (a)
original false-color image (R: 1, G: 103, and B: 220); (b)
BM3D (40s); (c) BM4D (2225s); (d) PCA+BM4D (202s); (e)
FastHyDe (9s).

5. CONCLUSIONS

In this paper, we have proposed a new denoising method for
HSIs, termed Fast Hyperspectral denoising (FastHyDe). The
new method exploits two characteristics of HSIs: a) they
live in low dimensional subspaces, and b) their images of

subspace representation coefficients, herein termed eigen-
images, are self-similar and thus suitable to be denoised with
non-local patch-based methods. A comparison of FastHyDe
with the state-of-the-art algorithms is conducted, leading to
the conclusion that FastHyDe yields similar of better perfor-
mance for additive and Poissonian noise with much lower
computational complexity. This characteristics put FastHyDe
in a privileged position to be used as an HSI denoiser.
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