
InSAR Phase Unwrapping: A Bayesian Approach
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Abstract— The paper proposes a Bayesian approach to
absolute phase (not simply modulo-2π) estimation in inter-
ferometric aperture radar (InSAR). The observation den-
sity is 2π-periodic and accounts for the interferometric pair
decorrelation and the system noise; the a priori probability
of the absolute phase is modeled by a compound Gauss Markov
random field (CGMRF). To compute the absolute phase es-
timate we propose an iterative scheme aiming at the com-
putation of the maximum a posteriori probability (MAP) es-
timate. Each iteration embodies a discrete optimization
step (Z-step), implemented by network programming tech-
niques, and an iterative conditional modes (ICM) step (π-step).
According to the terms Z-step and π-step, we term our al-
gorithm ZπM, where the letter M stands for maximization.
Experimental results, comparing the proposed algorithm
with classical approaches, illustrates the effectiveness of the
ZπM algorithm.

I. Introduction

In a SAR system, as in any coherent system, only noisy
versions of the principal phase values (modulo-2π) are
available, as they are computed from the argument of the
received wave. However, in InSAR applications, the objec-
tive is the estimation of the absolute phase (phase unwrap-
ping in the InSAR jargon), and not simply its modulo-2π.
Classical phase unwrapping methods are either of path

following type or of minimum-norm type [1]. In the path
following schemes phase is unwrapped through selected
image paths. In the presence of discontinuities or noise,
different paths between two points may lead to different
absolute phase values. To resolve or mitigate theses in-
consistencies, heuristic rules are applied to provide path
independent integration. The minimum-norm phase un-
wrapping methods cast the unwrapping problem into the
minimization of a Lp norm.
The mainstream of absolute phase estimation research

in InSAR takes a two step approach: in the first step
the so-called interferogram (principal phase values) is in-
ferred from noisy InSAR image pairs; in the second step
the phase is unwrapped by determining the 2π multiples.
The book [1] and the algorithms therein presented and
compared are representative of this approach. Along this
paper we use the term unwrapping to designate the latter
step.
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The smoothness step applied by most classical phase
unwrapping algorithms assumes that phase is practically
constant within small windows, this not being true for
high phase rate regions. Therefore in these regions the
smooth principal phase values exhibits inconsistency and
are a source of error in any unwrapping algorithm that
does not take them into account.

A. Proposed Approach

We adopt the Bayesian viewpoint. The likelihood func-
tion, which models the observation mechanism given the
absolute phase, is 2π-periodic and accounts for the in-
terferometric pair decorrelation and the system noise.
The a priori probability of the absolute phase is mod-
eled by a first order compound Gauss Markov random
field (CGMRF) [2]. The CGMRFs are suited to piecewise
smooth fields, and, therefore, to model discontinuities be-
tween smooth regions.
Papers [3], and [4] have also adopted the Bayesian ap-

proach, where the prior is a first order causal GMRF.
Taking advantage of this prior and using the reduced or-
der model (ROM) approximation of the GMRF, the ab-
solute phase is estimated with a nonlinear recursive fil-
tering technique. Compared with the present approach,
the main difference concerns the prior: we use a first or-
der noncausal CGMRF prior. In terms of estimation, the
noncausal prior has implicit a batch perspective, whereas
the causal prior has implicit a recursive perspective.
To compute the MAP estimate we propose an iterative

procedure made of two steps per iteration: the first step,
termed Z-step, maximizes the posterior density with re-
spect to the field of 2π phase multiples; the second step,
termed π-step, maximizes the posterior density with re-
spect to the phase principal values. According to the
terms Z-step and π-step, we term our algorithm ZπM,
where the letter M stands for maximization.

II. Proposed Models

A. Observation Model

Let x1 and x2 be the complex amplitudes read by two
SAR sensors from a given site. The height h of a given
terrain element is a function g(φ) of the phase φ = φ1−φ2,



where φ1 and φ2 are the propagation path phases associ-
ated to sensor 1 and sensor 2, respectively. Phase φ is to
be inferred from x1 and x2. These complex amplitudes
are given by

x1 = z1e
−jφ1 + n1 (1)

x2 = z2e
−jφ2 + n2, (2)

where z1 and z2 are the complex amplitudes originated by
the scatterers illuminated by apertures 1 and 2, respec-
tively, and n1 and n2 are the electronic noise of sensor 1
and sensor 2, respectively.
Assuming that the surface being illuminated is rough

compared to the wavelength, that there is no strong spec-
ular reflectors, and that there is a large number of scat-
terers per resolution cell, then the complex amplitude z1
is complex zero-mean circular Gaussian distributed [5, ch.
5]. Noises n1 and n2 are also independent (correspond to
different sensors) and complex zero-mean circular Gaus-
sian distributed. Furthermore, we assume that n1 and n2

are independent of z1 and z2. Complex amplitudes z1 and
z2 are different due to decorrelation (spatial, temporal,
and geometric) and focusing errors.
Defining θ2 ≡ E[|z1|2] = E[|z2|2], α ≡ E[z1z∗2 ]/θ

2, x ≡
[x1 x2]T , σ2

n ≡ E[|n1|2], and assuming that E[|n1|2] =
E[|n2|2], the probability density function1 of x is [6, ch.
3]

px|φ(x|φ) = 1
π2|Q|e

−xHQ−1x, (3)

where Q ≡ E[xxH ] is given by

Q =
[
θ2 + σ2

n αθ2ejφ

αθ2e−jφ θ2 + σ2
n

]
. (4)

Developing the quadratic form in (3), one is led to

px|φ(x|φ) = ceλ cos(φ− η), (5)

where c = c(x, θ, α) and

η = arg(x1x
∗
2) (6)

λ =
2αθ2|x1x2|

|Q| . (7)

The likelihood function px|φ(x|φ) is 2π-periodic with
respect to φ with maxima at φ = 2πk + η, for k ∈ Z (Z
denotes the integer set). Parameter η is a maximum like-
lihood estimate of φ. The peakiness of (5) about 2πk+ η,
controlled by parameter λ, is an indication, in a statistical
sense, of how trustful data is.
Let φ ≡ {φij | (i, j) ∈ Z} and x ≡ {xij | (i, j) ∈ Zo} de-
note the absolute phase and complex amplitude associated
to sites Z ≡ {(i, j)| i, j = 1, . . . , N} (we assume without

1For compactness, lowercase letters will denote random variables
and their values as well.

lack of generality that images are squared) and Zo ⊂ Z,
respectively. Assuming that the components of x are con-
ditionally independent, then

px|φ(x|φ) =
∏

ij∈Zo

pxij |φij
(xij |φij). (8)

As stated before, we assume that the observation set of
sites Z0 is a subset of the absolute phase sites Z. Sites
Z − Z0 are either not observed or belong to inconsistent
phase regions.

B. Prior Model

Image φ is assumed to be piecewise smooth, with abrupt
variations between neighboring regions. This variations
are due to undersampling in areas with high fringe rates,
mainly due to the presence of layover phenomena and/or
abrupt feature or objects. Independently of its origin,
discontinuities of the absolute phase φ are the principal
source of error in any unwrapping algorithm that does
not take them into account.
Gauss-Markov random fields [7], [8] are both mathemat-

ically and computationally suitable for representing local
interactions, and particularly continuity between neigh-
boring pixels. However, the continuity constraint must be
discarded for those pixels in the neighborhood of disconti-
nuities. For this purpose we take the first order noncausal
CGMRF [2], whose density is

pφ|l(φ|l) ∝ exp
−µ

2

∑
ij∈Z1

(∆φh
ij)

2v̄ij + (∆φv
ij)

2h̄ij

 ,

(9)
where l ≡ {vij , hij | (i, j) ∈ Z} is the so-called line field
process, v̄ij ≡ (1 − vij), h̄ij ≡ (1 − hij), ∆φh

ij ≡
(φij − φi,j−1), ∆φv

ij ≡ (φij − φi−1,j), Z1 ≡ {(i, j)| i, j =
2, . . . , N}, and µ−1 means the variance of increments ∆φh

ij

and ∆φv
ij . Variables vij , hij ∈ {0, 1} serve the purpose of

signaling discontinuities. Notice that the continuity con-
straint between sites (i, j) and (i, j−1) is removed if vari-
able vij is set to one; similarly, the continuity constraint
between sites (i, j) and (i− 1, j) is removed if variable vij

is set to one.

C. Posterior Density

Consider that the line field process l is known. Invoking
the Bayes rule, and noting that px|φ,l(x|φ, l) = px|φ(x|φ),
we obtain the posterior probability density function of φ,
given (x, l), as

pφ|x,l(φ|x, l) ∝ px|φ(x|φ)pφ|l(φ|l), (10)



where the factors not depending on φ were discarded. In-
troducing (8) and (9) into (10), we obtain

pφ|x,l(φ|x, l) ∝ e

∑
ij∈Z0

λij cos(φij − ηij)

× e

−µ

2

∑
ij∈Z1

(
(∆φh

ij)
2v̄ij + (∆φv

ij)
2h̄ij

)
. (11)

The posterior distribution (11) is assumed to contain
all information one needs to compute the absolute phase
estimate φ̂.

III. Estimation Procedure

The MAP criterion is adopted for computing φ̂. Ac-
cordingly

φ̂MAP = argmax
φ

pφ|x,l(φ|x, l). (12)

Due to the periodic structure of px|φ(x|φ), computing
the MAP solution leads to a huge non-convex optimization
problem, with unbearable computation burden. Instead
of computing the exact estimate φ̂MAP , we resort to a
suboptimal scheme that delivers nearly optimal estimates,
with a far less computational load.
Consider, for a while, that Zo = Z, i.e., all sites are

observed. Let the image φij be uniquely decomposed as

φij = ψij + 2πkij , (13)

where kij = 
(φij + π)/(2π)� ∈ Z is the so-called wrap-
count component of φij and ψij ∈ [−π, π[ is the principal
value of φij . The MAP estimate (12) can be rewritten in
terms of ψ ≡ {ψij | (i, j) ∈ Z} and k ≡ {kij | (i, j) ∈ Z}
as

(ψ̂MAP , k̂MAP ) =
= argmax

ψ,k
pφ|x,l(ψ + 2πk|x, l) (14)

= arg

{
max
ψ

{
max

k
pφ|x,l(ψ + 2πk|x, l)

}}
. (15)

Instead of computing (15), we propose a procedure that
successively and iteratively maximizes pφ|x,l(ψ+2πk|x, l)
with respect to k ∈ Z

N2
and ψ ∈ [−π, π[N2

. We term this
maximization on sets Z and [−π, π[ as the ZπM algorithm;
Fig. 1 shows the corresponding pseudo-code.
The unwrapping step (16) finds the maximum of the

posterior density pφ|x,l(φ|x, l) on a mesh obtained by dis-
cretizing each coordinate φij according to (13). The first
estimate k̂(1) delivered by the unwrapping step is based
on the maximum likelihood estimate η ≡ {ηij | (i, j) ∈ Z}.
Smoothing is next implemented by the π-step (17). This
is in contrast with the scheme followed by most phase un-
wrapping algorithms, where the phase is estimated with

Initialization: ψ̂
(0)
= η

For t = 1, 2, . . . ,

Unwrapping step:
k̂(t) = argmax

k
pφ|x,l(ψ

(t−1) + 2πk|x, l) (16)

Smoothing step:

ψ̂
(t)
= argmax

ψ
pφ|x,l(ψ + 2πk

(t)|x, l) (17)

Termination test:

If [pφ|x,l(φ̂
(t)|x, l)− pφ|x,l(φ̂

(t−1)|x, l)] < ξ

break loop for

Fig. 1. ZπM Algorithm.

basis on on a smooth version of η, under the assumption
that the phase φ is constant within windows of given size.
This assumption leads to strong errors in areas of high
phase rate.

A. Z-Step

Since the logarithm is strictly increasing and cos(ψij +
2πkij−ηij) does not depend on kij , solving the maximiza-
tion step (16) is equivalent to solve

k̂ = argmin
k

E(k|ψ), (18)

where the energy E(k|ψ) is given by

E(k|ψ) ≡
∑

ij∈Z1

(∆φh
ij)

2v̄ij + (∆φv
ij)

2h̄ij . (19)

Minimization (18) is a nearest lattice vector problem and
it is NP-hard [9]. In our case, energy E(k|ψ) is a sum of
quadratic functions of (kij − ki−1,j) and (kij − ki,j−1).
This is a special case of a nearest lattice vector problem,
for which we propose a network programming algorithm
that finds the exact solution in polynomial time. The
algorithm is inspired in the Flyn’s minimum discontinuity
approach [10], which minimizes the sum of |
∆φh

ij + π�|
and |
∆φv

ij + π�|, where 
x� denotes the hightest integer
lower than x. Flyn’s objective function is, therefore, quite
different from ours. However, both objective functions are
the sum of first order click potentials depending only on
∆φh

ij , and ∆φ
v
ij . This structural similarity allows us to

adapt the above ideas to our problem.

The detailed description of the Z-step are out of the
scope of this paper and can be found in [11].
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Fig. 2. Interfergram (η-image) of a Gaussian elevation of height 14π
rad and standard deviations σi = 10 and σj = 15 pixels. The
correlation coefficient of the associated InSAR pair is α = 0.8.

B. Smoothing Step

The smoothing step (17) amounts to compute ψ̂ given
by

ψ̂ = arg max
ψ∈[−π,π[N2

∑
ij∈Z

λij cos(φij − ηij)

−
∑

ij∈Z1

µ

2
(
(∆φh

ij)
2v̄ij + (∆φv

ij)
2h̄ij

)
, (20)

where φij = 2πkij + ψij . The function to be maximized
in (20) is not convex due to terms λij cos(φij −ηij). Com-
puting ψ̂ is therefore a hard problem. Herein, we adopt
the ICM approach [7], which, in spite of being suboptimal,
yields good results for the problem at hand.
ICM is a coordinatewise ascent technique where all co-

ordinates are visited according to a given schedule. After
some simple algebraic manipulation of the objective func-
tion (20), we conclude that its maximum with respect to
ψij is given by

ψ̂ij = arg max
ψij∈[−π,π[

{
βij cos(ψij − ηij)− (ψij − ψ̄ij)2

}
,

(21)
with βij = 2

λij

µl̄ij
, ψ̄ij = φ̄ij −2πkij , where l̄ij is the sum of

signaled discontinuities in the neighborhood of site (i, j)
and φ̄ij is the mean phase of first order neighbors not
signaled with discontinuities.
There are no closed form solutions for maximization

(21), since it involves transcendent and power functions.
We compute ψ̂ij using a simple two-resolution numeric
method. First we search ψ̂ij in the set {πi/M | i =
−M, . . . ,M − 1}. Next we refine the search by using the
set {πi0/M + πi/M2 | i = −M, . . . ,M − 1}, where πi0/M
is the result of the first search. We have used M = 20,
which leads to the maximum error of π/(20)2.

IV. Results

The algorithm presented in the previous sections is now
applied to synthetic data. Fig. 2 displays the interfero-
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Fig. 3. Phase estimate φ̂
(t)
; (a) t = 1; (b) t = 10 .

gram (η = {ηij} image) obtained with parameters θ = 1,
α = 0.8 and σn = 0. The absolute phase image φ is a
Gaussian elevation of height 14π rad and standard devi-
ations σi = 10 and σj = 15 pixels. The magnitude of
the phase difference φi,j+1−φij takes the maximum value
of 2.5 and is greater than 2 in many sites. On the other
hand a correlation coefficient of α = 0.8 implies a stan-
dard deviation of the maximum likelihood estimate ηij of
0.91. This figure is computed with basis on the density of
η obtained from the joint density (3). In these conditions,
the task of absolute phase estimation is extremely hard,
as the interferogram exhibits a large number of inconsis-
tencies; i.e., the observed image η is not consistent with
the assumption of absolute phase differences less than π
in a large number of sites. In the unwrapping jargon we
say that the interferogram has a lot of residues.
The smoothness parameter was set to µ = 1/0.82, thus

modeling phase images with phase differences (horizontal
and vertical) of standard deviation 0.8. This value is too
large for most of the true absolute phase image φ and too
small for sites in the neighborhood of sites (i = −45, j =
50) and (i = 55, j = 50) (where the magnitude of the
phase difference has its largest value). Nevertheless, the
ZπM algorithm yields good results as it can be read from

Fig. 3; Fig. 3(a) shows the phase estimate φ̂
(1)
and Fig.

3(b) shows the phase estimate φ̂
(10)
.

To rank ZπM algorithm, we have applied the following
phase unwrapping algorithms to the present problem:



TABLE I

L2
norm of the estimation errors of ZπM and of classical

unwrapping algorithms. The left column plots results

based of the the maximum likelihood estimate of η using a

3× 3 rectangular window; the right column plots results

based on the non-smooth η given by (6).

‖φ̂ − φ‖2

Algorithm Smooth η Non-smooth η
ZπM – 0.1
GBC 48.0 7.0
QG 10.0 2.2
MC 40.8 28.6
FMD 22.4 3.4
WLS 8.8 3.5
L0N 24.1 2.6

• Path following type: Golstein’s branch cut (GBC);
quality guided (QG); and mask cut (MC)
• Minimum norm type: Flyn’s minimum discontinu-
ity (FMD); weighted least-square (WLS); and L0 norm
(L0N).
Path following and minimum norm algorithms were im-
plemented with the code supplied in the book [1], using
the following settings: GBC (-dipole yes); QG, MC, (-
mode min var -tsize 3); and WLS (-mode min var -tsize
3, -thresh yes). The unweighted versions of the FMD and
L0N algorithms have been used.
Table I displays the L2 norm of the estimation error

||φ̂−φ||2 for each of the classic algorithm referred above.
Results on the left column area based on the maximum
likelihood estimate of η, using a 3×3 rectangular window.
Results on the right column are based on the interferogram
η without any smoothing. Apart from the proposed ZπM
scheme, all the algorithms have produced poor results,
some of them catastrophic.

V. Concluding Remarks

The paper presented an effective algorithm to absolute
phase estimation in InSAR applications. The Bayesian
standpoint was adopted. The likelihood function, which
models the observation mechanism given the absolute
phase, is 2π-periodic and accounts for interferometric pair
decorrelation and system noise. The a priori probabil-
ity of the absolute phase is modelled by a noncausal first
order compound Gauss Markov random field (CGMRF).
This prior is suited to piecewise smooth fields, in the sense
that it enforces smoothness, in a statistical sense, between
neighboring sites not split by discontinuities. The adopted
framework also models incomplete data observations.
To compute the absolute phase estimate we adopted

the maximum a posteriori (MAP) criterion. We derived a
suboptimal iterative procedure consisting of two steps per
iteration: the first step, termed Z-step, maximimizes the

posterior density with respect to the 2π phase multiples;
the second step, termed π-step, maximize the posterior
density with respect to the phase principal values. The Z-
step is a discrete optimization problem solved exactly by
network programing techniques inspired by Flyn’s mini-
mum discontinuity algorithm [10]. The π-step is a contin-
uous optimization problem solved approximately by the
iterated conditional modes (ICM) procedure. We named
the proposed algorithm ZπM, where the letter M stands
for maximization.
To evaluate the performance of the ZπM algorithm, we

compared ZπM estimates with those provided by path
following and minimum-norm schemes, namely the Gol-
stein’s branch cut, the quality guided, the Flyn’s mini-
mum discontinuity, the weighted least-square, and the L0

norm. In the studied example, the proposed algorithm
yields the best estimate.
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