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Abstract—This paper introduces a new method to blindly
unmix hyperspectral data, termed dependent component analysis
(DECA). This method decomposes a hyperspectral images into
a collection of reflectance (or radiance) spectra of the materials
present in the scene (endmember signatures) and the correspond-
ing abundance fractions at each pixel.

DECA assumes that each pixel is a linear mixture of the end-
members signatures weighted by the correspondent abundance
fractions. These abudances are modeled as mixtures of Dirichlet
densities, thus enforcing the constraints on abundance fractions
imposed by the acquisition process, namely non-negativity and
constant sum. The mixing matrix is inferred by a generalized
expectation-maximization (GEM) type algorithm. This method
overcomes the limitations of unmixing methods based on Inde-
pendent Component Analysis (ICA) and on geometrical based
approaches. The effectiveness of the proposed method is illus-
trated using simulated data based on U.S.G.S. laboratory spectra
and real hyperspectral data collected by the AVIRIS sensor over
Cuprite, Nevada.

I. INTRODUCTION

Hyperspectral imaging sensors collect two dimensional spa-
tial images from the Earth’s surface over many contiguous
bands of high spectral resolution covering the visible, near-
infrared, and shortwave infrared (wavelengths between 0.3um
and 2.5um), in hundreds of narrow (on the order of 10nm)
contiguous spectral bands. These radiances, collected in spec-
tral vectors, are mixtures of spectra from the substances (also
called endmembers) present in the respective pixel coverage.
A commonly approach to analyze hyperspectral data is the
linear spectral unmixing, which considers that a mixed pixel
is a linear combination of endmember signatures (endmember
spectra) weighted by the correspondent abundance fractions.
Under this model, the observations from a scene are in a
simplex whose vertices correspond to the endmembers [1].

Several approaches such as vertex component analysis
(VCA), [2], pixel purity index (PPI), [3], and N-FINDR [4]
have exploited geometric features of hyperspectral mixtures
to determine the smallest simplex containing the data. Those
methods assume the presence in the data of at least one pure
pixel of each endmember. This is a strong requisite that may
not hold in some data sets.
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Iterative constrained endmembers (ICE) [5] combines a
model based on convex geometry with statistical procedures
about the errors to obtain an objective function. The mini-
mization of this function provides the endmember’s signatures
without the assumption of pure-pixels in the data. ICE is a
fast method but it is not fully automated since an estimation
of three initial parameters is needed.

Independent Component Analysis (ICA) has recently been
proposed as a tool to blindly unmix hyperspectral data (see
ref. in [6]). However, ICA applicability is compromised by
the statistical dependence existing among abundances. This
dependence results from the constant sum constraint imposed
on the abundance fractions by the acquisition process. In
ICA jargon, sources are not independent. Thus, the central
assumption of ICA is not satisfied [6].

The separation of sources that show some degree of de-
pendence was attempted with MaxNG [7] and uMaxEnt [8]
methods. The former method use a non-Gaussianity measure
based on the L2-Euclidian distance between probability distri-
butions, whereas, the latter method is based on the maximum
entropy principle.

This paper proposes a new method to blindly unmix
hyperspectral data, termed dependent component analysis
(DECA), where abundance fractions are modelled by a mixture
of Dirichlet densities (MOD), thus automatically enforcing
source nonnegativity and constant sum constraints. The mixing
matrix is inferred by a generalized expectation-maximization
(GEM) type algorithm. DECA processes simultaneously the
endmembers signatures and the abundance fraction estimation.
Compared with the geometric based approaches, the advantage
of DECA is that there is no need to have pure pixels in the
observations. The paper is organized as follows.

Section II describes the fundamentals of the proposed
method. Sections III and IV illustrate aspects of the perfor-
mance of DECA approach with experimental data based on
U.S.G.S. laboratory spectra and real hyperspectral data col-
lected by the AVIRIS sensor over Cuprite Nevada, respectively.
Section V ends the paper by presenting a few concluding
remarks.



II. STATISTICAL MODELLING AND UNMIXING
ALGORITHM

Assuming the linear observation model, each pixel r of an
hyperspectral image can be represented as a spectral vector in
R% (L is the number of bands) and is given by r = Ms, where
M = [m;, mg, ..., m,]| is an L xp mixing matrix (m; denotes
the ith endmember signature), p is the number of endmembers
present in the covered area, and s = [s1, S2,..., 8|7 is the
abundance vector containing the fractions of each endmember
(notation ()7 stands for vector transposed).

To be physically meaningful, abundance fractions are sub-
ject to nonnegativity and constant sum constraints, i.e., {s €
RP :s; >0, Z§=1 sj = 1}. Note that only p — 1 components
of s are free, i.e, s, =1 — f 1 4. Therefore the spectral
vectors are in a p — 1 dimensional simplex in R”.

Usually the number of endmembers is much lower than the
number of bands (p < L). Thus, the observed spectral vectors
can be projected onto the signal subspace. The identification
of the signal subspace improves the SNR, allows a correct
dimension reduction, and thus yields gains in computational
time and complexity [9]. Let E,, be a matrix, with orthonormal
columns, spanning the signal subspace. The coordinates of the
spectral vector r with respect to E,, are

X = Egr
= E Ms

= As, ey

where A is a p X p square mixing matrix and x =
[z1,22,. .. ,xp]T is a p x 1 vector. Let’s assume that W =
A1 exists. Then, we have s = Wx.

Assume that the abundance fractions follow a -component
Dirichlet finite mixture given by
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where the complete set of parameters 8 needed to specify the
mixture contains the mixing probabilities €1, ..., ex and the
g-component Dirichlet parameters 8, = {041,...,04}, for
qzl,...,K,i.e.,O:{el,..., ,0[{}.

Consider that each vector x represents one particu-
lar outcome of a p-dimensional random variable X =
[X1,...,X,]T. Given a set of N iid. samples X =
{xW ... x(M}] then, we may write the likelihood of the
unmixing matrix W and of the set of parameters 0 as
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+ log (| det W), (3)

where we have used the fact that px(x) = pg(s)|det(W)|
and T[x] = 1/N YV x®, ie., T[x] is the sample average
of x. o

The maximum likelihood (ML) estimate (W, 0) =
argmaxw g Lny(W,0) can not be found analytically [10].
The usual choice for obtaining the ML estimates of the
parameters is the EM framework [11], which relies on the
so-called incomplete data and missing data. In our setup, X’
denotes the incomplete data and Z = {z1), ... z™V)} the
missing data, a set of N labels indicating which component
has produced each sample. Each label z(¥) = [29, e z%)] is
a binary K -vector, where only one component zé is set to one
indicating which mode produced the i-sample. The complete
log-likelihood is then

Lo(W,0) = % log [px,z(X, 210)]
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“)

The EM algorithm iterates between the E-step and the M-step:

o E-step: Computes the conditional expectation of the com-
plete log-likelihood, given the samples and the current
estimate #(*). The result is the so-called Q-function
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o M-step: Updates the parameter estimates according to

5(t+1) = arg max {Q (0 0(0)}

Maximization of expression (7) is still a hard optimiza-
tion problem. Instead of computing 0, we maximize

~(1
Q(0,0( )) with respect to 6;, for j = 1,...,p, resulting the
following learning rules for the mixing probabilities and for
the mixture of Dirichlet source parameters:
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(+) denote the psi function and its inverse,
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where ¥(-) and ¥~}
respectively.

The resulting algorithm is of the generalized expectation-
maximization class (GEM) [11]: the learning rule (8) maxi-
mizes (Q-function with respect to eqt , whereas expression (9)
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Fig. 1: (a) Scatterplot (bands A = 827nm and A = 1780nm)
of the three endmembers mixture: true endmembers (circles);
VCA estimate (triangles); DECA estimate (diamonds); (b)
Dirichlet mixing probabilities.

assures that the Q)-function does not decrease (see [12] for
details).

Since 0Q/OW = 0 is not a linear equation and cannot be
solved analytically, an iterative gradient type learning rule is
derived for the unmixing matrix W:
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where 7(*) determines the learning rate on iteration ¢ and
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where w;, for 7 = 1,...,p— 1 denotes the jth row of matrix
W and [W’T]j_: denotes the jth row of the inverse of W
transposed. ’

The algorithm aimed at the maximization of the log-
likelihood (4) implements a cyclic maximizer, which splits the
estimation of W and 6 into block maximization operations.
An approach based on the majorization maximization (MM)
[13] perspective leading to a similar algorithm can be found
in [14].
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III. EVALUATION WITH SIMULATED DATA

In this section DECA is tested on simulated scenes. The
data is generated according to expression (1), where three
signatures where selected from the USGS digital spectral
library. The scene is composed by 10° pixels partitioned into
two regions; region A has the half size of the region B.
The abundance fractions follow a Dirichlet distribution with
04 =19,2,9] and 5 = [2, 15, 7] for regions A and B of
the scene, respectively. Pure pixels were removed from the
data set in order to illustrate the robustness of DECA to the
absence of pure pixels.

In this experiment the number of modes is set to K = 5, the
Dirichlet parameters are randomly initialized, and the mixing
probabilities are set to ¢, = 1/K, for ¢ = 1,..., K. This

setting reflects a situation in which no knowledge of the size
and the number of regions in the scene exists. Fig. 1a presents
a scatterplot (bands A = 827nm and A = 1780nm) of the
simulated scene, where dots represent the pixels. The two
clouds corresponds to the two regions. It is also presented
the true endmembers (circles), the endmembers estimation
(diamonds), and for comparison purposes the endmembers
estimation by VCA (triangles). Estimates provided by the
DECA algorithm are close to the true endmembers. The
algorithm searches for the smallest simplex that contains all
data, whereas VCA finds the most pure pixels in data (see
triangles in Fig. la). Since there is no pure pixels in data,
VCA performs worse than DECA.

Fig 1b), presents the evolution of the Dirichlet mixing prob-
abilities (¢4, for ¢ = 1,..., K) as a function of the number
of iterations of the algorithm. Note that three modes tend to
zero and the remaining modes have the values of 0.65 and
0.33, corresponding to the weight of the region B and region
A respectively. The Dirichlet parameters estimate for the two
modes are 8 4 = [9.0, 2.2, 10.0] and 6 = [2.5, 14.8, 9.7] for
region A and B, respectively. Although the estimated values
are close to the true parameter values (64 = [9, 2, 9] and
0 = [2, 15, 7]), we note that this does not have to happen
necessarily, since the same distribution can be modelled with
different MODs. We stress that the main purpose of the DECA
algorithm is the estimation of the unmixing matrix W and not
of the MOD parameters.

The result of the separation process is illustrated trough the
product of the unmixing matrix W and square mixing matrix
A which is, in an ideal scenario, the identity matrix I,,, apart
from a permutation. In this experiment the obtained product
is

0.97 0.02 -0.02
WA = | 0.03 0.93 —-0.02 (12)
0.00 0.04 1.03

IV. EXPERIMENTS WITH REAL HYPERSPECTRAL DATA

In this section, the proposed method, DECA, is applied
to real hyperspectral data collected by the AVIRIS sensor
over Cuprite, Nevada. This site has been extensively used for
remote sensing experiments over the past years and its geology
was previously mapped in detail [15]. This site has become a
standard test site for comparison of unmixing and endmember
extraction algorithms.

Fig. 2 (a) presents the subimage (50 x 90 pixels and 224
bands) for this experiment. Due to several degradation mech-
anisms normally found in hyperspectral applications (namely,
signature variability, topography modulation, and noise), the
observed data is not in a simplex. To obtain a simplex, a
projective projection of data onto a hyperplane y” u = 1 is im-
plemented as a pre-processing step (see [2] for more details). A
visual comparison between the abundance fractions estimates
on the cuprite data set and the ground truth presented in
[15] shows that first, second, and third extracted endmembers
are predominantly Alunite, Kaolinite, and Montmorillonite,
respectively (see Fig. 2 (b)-(d)).
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Fig. 2: (a) Band 30 (wavelength A = 667.3nm) of the subim-
age of AVIRIS cuprite Nevada data set (rectangle denotes
the image fraction used in the experiment);(b)-(d) Alunite,
Kaolinite, and Montmorillonite abundance fractions;
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Fig. 3: Comparison of the DECA estimated signatures (dotted
line) with the U.S.G.S spectral library (solid line): (a) Alunite;
(b) Kaolinite; (c) Montmorillonite.

A comparison of the estimated endmember signatures with
laboratory spectrum is presented in Fig. 3. The signatures
provided by DECA are scaled in order to minimize the mean
square error between them and the respective library spectra.
The estimated signatures are very close to the laboratory
spectra reflectances.

V. CONCLUSIONS

Blind hyperspectral linear unmixing aims at estimating the
number of endmembers, their spectral signatures, and their
abundance fractions at each pixel, using only the observed
data (mixed pixels). Geometric approaches have been used

whenever pure pixels are present in data. In most cases,
however, pure pixels can not be found in data. In such cases,
unmixing procedures become a difficult task. ICA has been
proposed has a tool to unmix hyperspectral data. However, the
source dependence present in hyperspectral data compromises
the unmixing results.

In this paper, a new method is proposed to blindly unmix
hyperspectral data, where abundance fractions are modelled
as Dirichlet sources. This model forces abundance fractions
to be nonnegative and to have constant sum on each pixel.
The mixing matrix is inferred by an EM type algorithm. The
main advantage of this model is that there is no need to have
pure pixels in the observations.

The performance of the proposed model is illustrated with
simulated and real hyperspectral data. Comparisons with pure
pixel estimation methods are conducted. The results achieved
shows the effectiveness of DECA on hyperspectral data unmix-
ing. In future work, the proposed algorithm shall be improved
in order to account for sensor noise.
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